
SIAM J. SCI. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 35, No. 6, pp. C519–C544

EFFICIENT SCALABLE ALGORITHMS FOR SOLVING DENSE
LINEAR SYSTEMS WITH HIERARCHICALLY SEMISEPARABLE

STRUCTURES∗

SHEN WANG† , XIAOYE S. LI‡ , JIANLIN XIA† , YINGCHONG SITU§ , AND

MAARTEN V. DE HOOP†

Abstract. Hierarchically semiseparable (HSS) matrix techniques are emerging in constructing
superfast direct solvers for both dense and sparse linear systems. Here, we develop a set of novel
parallel algorithms for key HSS operations that are used for solving large linear systems. These
are parallel rank-revealing QR factorization, HSS constructions with hierarchical compression, ULV
HSS factorization, and HSS solutions. The HSS tree-based parallelism is fully exploited at the
coarse level. The BLACS and ScaLAPACK libraries are used to facilitate the parallel dense kernel
operations at the fine-grained level. We appply our new solvers for discretized Helmholtz equations
for multifrequency seismic imaging and iteratively solve time-harmonic seismic inverse boundary
value problems. In particular, we use the HSS algorithms to solve the dense Schur complement
systems associated with the root separator of the separator tree obtained from nested dissection
of the graph of discretized Helmholtz equations. We demonstrate that the new approach is much
faster and uses much less memory than the LU factorization algorithm for both two-dimensional and
three-dimensional problems, using up to 8912 processing cores. This is the first work in parallelizing
HSS algorithms and conducting detailed performance analysis on a large parallel machine. This also
lays a good foundation for developing scalable sparse structured factorization algorithms for general
sparse linear systems.

Key words. HSS matrix, parallel HSS algorithm, low-rank property, compression, HSS con-
struction, direct solver

AMS subject classifications. 15A23, 65F05, 65F30, 65F50

DOI. 10.1137/110848062

1. Introduction. In recent years, rank structured matrices have attracted much
attention and have been widely used in the fast solutions of various partial differential
equations, integral equations, and eigenvalue problems. Several useful rank structured
matrix representations have been developed, such as H-matrices [17, 15, 14], H2-
matrices [4, 5, 16], quasi-separable matrices [1, 9], and semiseparable matrices [6, 23].

Here, we focus on a type of semiseparable structures, called hierarchically semisep-
arable (HSS) forms. Key applications of the HSS algorithms, coupled with sparse ma-
trix techniques such as multifrontal solvers [28], have been shown very useful in solving
certain large-scale discretized PDEs and computational inverse problems. For exam-
ple, they can be built into parallel structured direct solvers for Helmholtz equations

∗Submitted to the journal’s Software and High-Performance Computing section September 15,
2011; accepted for publication (in revised form) October 15, 2013; published electronically December
11, 2013. This research used resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-
AC02-05CH11231.

http://www.siam.org/journals/sisc/35-6/84806.html
†Department of Mathematics, Purdue University, West Lafayette, IN 47907 (wang273@math.

purdue.edu, xiaj@math.purdue.edu, mdehoop@math.purdue.edu). The research of the third author
was supported in part by NSF grants DMS-1115572 and CHE-0957024.

‡Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (xsli@lbl.gov). The research of this
author was supported in part by the director of the Office of Science, Office of Advanced Scientific
Computing Research of the U.S. Department of Energy under contract DE-AC02-05CH11231.

§Department of Computer Science, Purdue University, West Lafayette, IN 47907 (ysitu@cs.
purdue.edu).

C519

C520 WANG, LI, XIA, SITU, AND DE HOOP

arising from time-harmonic wave equation modeling prevailing in the energy indus-
try [24, 25]. Direct solvers are particularly important in the time-harmonic formulation
of the seismic inverse boundary value problem. Following the iterative reconstruction
approach, one has to solve the Helmholtz equation for many right-hand sides on a
large domain for a selected set of frequencies. The computational accuracy can be
controlled, namely, in concert with the accuracy of the data.

An HSS representation has a binary tree structure, called the HSS tree, and the
HSS operations can be generally conducted following the traversal of this tree in a
parallel fashion. However, the existing studies of the HSS structures focus only on
their mathematical aspects, and the current HSS methods are only implemented in
sequential computations. Similar limitations also exist for some other rank structured
methods.

Here, we present new parallel and efficient HSS algorithms and study their scal-
ability. We concentrate on the three most significant HSS algorithms: the parallel
construction of an HSS representation or approximation for a dense matrix using a
parallel block compression scheme, the parallel ULV-type factorization [7] of such a
matrix, and the parallel solution. The operation complexities of the HSS construction,
factorization, and solution algorithms are O(rn2), O(r2n), and O(rn), respectively,
where r is the maximum numerical rank and n is the size of the dense matrix [7, 29].
(The numerical rank of a matrix is the number of its singular values greater than a
given tolerance.) We further analyze the communication complexity of our parallel
algorithms and demonstrate parallel performance on a real machine.

Our parallel HSS construction consists of three phases: parallel block compression
based on a modified Gram–Schmidt method with column pivoting, parallel row com-
pression, and parallel column compression. The parallel HSS factorization involves
the use of two children’s contexts for a given parent context. The communication
patterns are composed of intracontext and intercontext ones. Similar strategies are
also applied to the HSS solution. Some tree techniques for symmetric positive defi-
nite HSS matrices in [30] are generalized in order to efficiently handle nonsymmetric
matrices in parallel. We present analyses of the communication costs in the different
procedures. For example, in the HSS construction, the number of messages and the
number of words transferred are O(r log2 P +logP) and O(rn log P + r2 log2 P + rn),
respectively, where P is the number of processes. In our numerical experiments, we
confirm the accuracy and the weak scaling of the methods when they are used as ker-
nels for solving large (two-dimensional) and (three-dimensional) Helmholtz problems.
We show that our new parallel HSS solution methods are superior to the traditional
dense LU factorization kernels in all the performance metrics.

Our main contributions are summarized as follows. We are the first to develop
the scalable algorithms as well as the parallel code for the HSS algorithms used in the
solution of dense linear systems. We performed detailed complexity analysis of our
parallel HSS algorthms, taking into account communication latency and bandwidth.
We demonstrated our code performance on an actual parallel computational platform
with input matrices associated with the Schur complement systems from an important
application area—the Helmholtz equations in seismic inversion. This parallelization
effort has paved the way for a wide spectrum of research of employing HSS structure
techniques in the solution methods for solving many large-scale PDE problems on
extreme scale parallel machines.

The outline of the paper is as follows. In section 2, we present an overview of HSS
structures. The fundamental parallelization strategy and the performance model are
introduced in section 3, where we also briefly discuss our use of BLACS and ScaLAPACK

PARALLEL HSS ALGORITHMS C521

to implement the high-performance kernels. In section 4, we present our parallel HSS
construction framework. The parallel HSS factorization is described in section 5. In
section 6, we discuss the parallel solution strategy. Some computational experiments
are given in section 7.

2. Overview of HSS structures. We briefly summarize the key concepts of
HSS structures following the definitions and notation in [32, 29]. Let A be a general
n× n real or complex matrix and I = {1, 2, . . . , n} be the set of all row and column
indices. Suppose T is a full binary tree with 2k−1 nodes labeled as i = 1, 2, . . . , 2k−1,
such that the root node is 2k − 1 and the number of leaf nodes is k. Let T also be a
postordered tree. That is, for each nonleaf node i of T , its left child c1 and right child
c2 satisfy c1 < c2 < i. Let ti ⊂ I be an index subset associated with each node i of
T . We use A|ti×tj to denote the submatrix of A with row index subset ti and column
index subset tj .

HSS matrices are designed to take advantage of the low-rank property. In particu-
lar, when the off-diagonal blocks of a matrix (with hierarchical partitioning) have small
(numerical) ranks, they are represented or approximated hierarchically by compact
forms. These compact forms at different hierarchical levels are also related through
nested basis forms. This can be seen from the definition of an HSS form.

Definition 2.1. We say that A is in a postordered HSS form with the corre-
sponding HSS tree T if the following conditions are satisfied:

• tc1 ∩ tc2 = ∅, tc1 ∪ tc2 = ti for each nonleaf node i of T with children c1 and
c2, and t2k−1 = I.

• There exist matrices Di, Ui, Ri, Bi,Wi, Vi (called HSS generators) associated
with each node i of T such that

D2k−1 = A,

Di = A|ti×ti =

(
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

)
,(2.1)

Ui =

(
Uc1Rc1

Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
,

where the superscript H denotes the Hermitian transpose, and U2k−1, V2k−1,
R2k−1, B2k−1 are not needed.

The HSS generators define the HSS form of A. The use of a postordered HSS tree
enables us to use a single subscript (corresponding to the label of a node of T) for each
HSS generator [29] instead of up to three subscripts as in [7]. Thus, we also call the
HSS form a postordered one. Figure 2.1 illustrates a block 8 × 8 HSS representation
A. As a special example, its leading block 4× 4 part looks like

A|t7×t7 =

⎛⎜⎜⎝
(

D1 U1B1V
H
2

U2B2V
H
1 D2

) (
U1R1

U2R2

)
B3

(
WH

4 V H
4 WH

5 V H
5

)(
U4R4

U5R5

)
B6

(
WH

1 V H
1 WH

2 V H
2

) (
D4 U4B4V

H
5

U5B5V
H
4 D5

)
⎞⎟⎟⎠ .

For each diagonal block Di = A|ti×ti associated with each node i of T , we define

A−
i = A|ti×(I\ti) to be the HSS block row and A

|
i = A|(I\ti)×ti to be the HSS block

column. They are both called HSS blocks. The maximum rank r (or numerical rank
r for a given tolerance) of all HSS blocks is called the HSS rank of A. If r is small as
compared with the matrix size, we say that A has a low-rank property.

C522 WANG, LI, XIA, SITU, AND DE HOOP

Fig. 2.1. Pictorial illustrations of a block 8× 8 HSS form and the corresponding HSS tree T .

Given a general dense matrix A with the low-rank property, we seek to construct
an HSS representation in parallel or an HSS approximation when compression with a
given tolerance is used. Our HSS factorization and solution will be conducted on the
HSS forms.

3. Parallelization strategy. For ease of exposition, we assume that all the di-
agonal blocks associated with the leaf nodes have the same block size m. We choose
m first, which is related to the HSS rank, and then choose the HSS tree and the
number of processes P ≈ n/m. For simplicity, assume P is a power of two. Some
existing serial HSS algorithms traverse the HSS tree in a postorder [29, 32]. For the
HSS construction, the postordered traversal allows us to take advantage of previously
compressed forms in later compression steps. However, the postordered HSS con-
struction is serial in nature and involves global access of the matrix entries [29] and
is not suitable for parallel computation.

To fully exploit parallelism, we reorganize the algorithms so that the HSS trees
are traversed level by level. We use the HSS tree T as the primary tool to guide
the matrix distribution and parallel matrix operations. Associated with each tree
node i, various matrix operations are performed on the HSS generators of node i:
Di, Ui, Ri, Bi,Wi, Vi. We arrange the parallel framework in such a way that all the
operations are performed in either an upward sweep or a downward sweep along the
HSS tree. We refer to the leaf/bottom level of the tree as level 1, the next level up as
level 2, and so on. We use the example in Figure 2.1 to illustrate the organization of the
algorithms. The matrix is partitioned into eight block rows (Figure 3.1). We use eight
processes {0, 1, 2, 3, 4, 5, 6, 7} for the parallel operations. Each process individually
works on one leaf node at level 1 of T . At the second level, each group of two
processes cooperates at a level-2 node. At the third level, each group of four processes
cooperates at a level-3 node, and so on.

3.1. Using ScaLAPACK and BLACS for dense operations. Most of the HSS
algorithms consist of dense matrix kernels; although the matrix sizes are relatively
small, the ScaLAPACK library [21] and the BLACS library [3] were used as much as
possible. This way, we can fully benefit from the state-of-the-art high-performance
dense linear algebra kernels and speed up the code development. The governing
distribution scheme in ScaLAPACK is a 2D block cyclic matrix layout, in which the user
specifies the block size of a submatrix and the shape of the 2D process grid. The blocks
of matrices are then cyclically mapped to the process grid in both row and column
dimensions. Furthermore, the processes can be divided into subgroups (called context

PARALLEL HSS ALGORITHMS C523

Fig. 3.1. A block partition of a dense matrix A before the construction of the HSS form in
Figure 2.1, where the labels inside the matrix and beside the nodes show the processes assigned to
the nodes of the HSS tree in Figure 2.1.

in BLACS terms) to work on independent parts of the calculations. Each subgroup is
similar to the subcommunicator concept in MPI [20]. All our algorithms start with
a global context created from the entire communicator, e.g., MPI COMM WORLD. When
we move up the HSS tree, we define the other contexts encompassing the process
subgroups.

For example, in Figures 2.1 and 3.1, the eight processes can be arranged as eight
contexts for the leaf nodes in T . At the second level, a group of two processes forms
a context and is mapped to one node of T . We use the notation {0, 1} ↔ node 3 to
indicate that the set of processes {0, 1} forms a context and is mapped to node 3.
Hence, four contexts are defined at the second level:

{0, 1} ↔ node 3, {2, 3} ↔ node 6, {4, 5} ↔ node 10, and {6, 7} ↔ node 13.

Two contexts are defined at the third level:

{0, 1; 2, 3} ↔ node 7, {4, 5; 6, 7} ↔ node 14,

where the notation {0, 1; 2, 3}means that processes 0 and 1 are stacked atop processes
2 and 3. Finally, one context is defined:

[0, 1, 4, 5; 2, 3, 6, 7] ↔ node 15.

We always arrange the process grid as square as possible, i.e., P ≈
√
P ×

√
P , and

we can conveniently use
√
P to refer to the number of processes in the row or column

dimension. Figure 3.2 depicts a process tree associated with an HSS tree with 16
nodes. This illustrates how the 16 processes are arranged as subgroups while going
up the tree.

When the algorithms move up the HSS tree, we need to perform redistribution to
merge the submatrices in the two children’s process contexts to a submatrix in the par-
ent’s context. Since the two children’s contexts have the same size and shape and the
parent context doubles each child’s context, the parent context can always be arranged
to combine the two children’s contexts either side by side or one on top of the other, as
shown in Figure 3.2. With this arrangement, the redistribution pattern involves only
pairwise exchanges, that is, only the pair of processes at the same coordinate in the two
children’s contexts exchange data. For example, the redistribution from {0, 1; 2, 3}

C524 WANG, LI, XIA, SITU, AND DE HOOP

Fig. 3.2. Illustration of the 16 processes which form various process subgroups/contexts along
an HSS tree.

and {4, 5; 6, 7} to {0, 1, 4, 5; 2, 3, 6, 7} is achieved by the following pairwise exchanges:
0 ↔ 4, 1 ↔ 5, 2 ↔ 6, and 3 ↔ 7. The redistribution from {0, 1, 4, 5; 2, 3, 6, 7} and
{8, 9, 12, 13; 10, 11, 14, 15} to {0, 1, 4, 5; 2, 3, 6, 7; 8, 9, 12, 13; 10, 11, 14, 15} is achieved
by the following pairwise exchanges: 0 ↔ 8, 1 ↔ 9, 4 ↔ 12, 5 ↔ 13, 2 ↔ 10, 3 ↔ 11.
6 ↔ 14, and 7 ↔ 15.

3.2. Parallel runtime model. We will use the following notation in the anal-
ysis of the computational cost of our parallel algorithms:

• r is the HSS rank of A.
• The pair [#messages, #words] is used to count the number of messages and
the number of words transferred. The parallel runtime can be modeled as the
following (ignoring the overlap of communication with computation):

Time = #flops · γ + #messages · α+ #words · β,

where γ, α, and β are the time taken for each flop, each message (latency),
and each word transferred (reciprocal bandwidth), respectively. This model
is realistic for our parallel algorithms, since our algorithms are mostly block
synchronous, composed of sequences of communication phases followed by
computation phases. There is very little overlap between communication and
computation.

• The cost of broadcasting a message ofW words among P processes is modeled
as [logP, W logP], assuming that a tree-based or hypercube-based broadcast
algorithm is used [22]. The same cost is incurred for a reduction operation of
W words.

The floating point operation counts were analyzed previously in [29, 32], which
are O(rn2) for HSS construction, O(r2n) for ULV factorization, and O(rn) for solu-
tion, respectively. The flop counts between our levelwise HSS construction and the
postordered one in [29, 32] are roughly the same. In fact, the flop count with the
levelwise traversal is slightly higher by O(rn log n), while the leading terms O(rn2)
in the counts are the same, or the asymptotic behavior is the same [32].

In the following sections, we will focus on analyzing the communication cost of
our new parallel algorithms.

PARALLEL HSS ALGORITHMS C525

4. Parallel HSS construction. In this section we discuss the construction of
an HSS representation (or approximation) for A in parallel. The construction is
composed of a row compression step (section 4.2) followed by a column compression
step (section 4.3). The column compression step is applied to the intermediate matrix
that is already row compressed. That is, the column compression is applied to a
potentially much smaller matrix. The key kernel is a parallel compression algorithm
which we discuss first.

4.1. Parallel block compression. The key step in the HSS construction is to
compress the HSS blocks of A. For example, consider an HSS block F . Truncated
SVD is one option to realize such compression. That is, we drop those singular values
below a prescribed threshold of all the singular values of F . SVD is generally very
expensive. An efficient alternative is to use QR factorization with column pivoting
and truncation, which is often sufficient. We now describe our parallel compression
algorithm.

The input matrix is F of size M × N and is distributed in the process context
P ≈

√
P ×

√
P . That is, the local dimension of F is M√

P
× N√

P
. The second input

is a prescribed tolerance τ to be used as a threshold to terminate the rank-revealing
process when some |Tii| is relatively smaller than τ .

The following Algorithm 1, based on a modified Gram–Schmidt strategy which
is revised from a QR factorization scheme in [12, 13], computes block compression

in parallel: F ≈ Q̃T̃ , where Q̃ = (q1, q2, . . . , qr) and T̃H = (t1, t2, . . . , tr). Assuming
that the HSS rank is r, each rank-revealing process takes no more than r steps, and
it exits the loop when the stopping criterion is satisfied; see line 3 of Algorithm 1.
Note that step 2 is used for clarity of explanation and is not done in the actual code.
Step 3 is done quickly by the norm update strategy as in [12].

Algorithm 1. Parallel compression of F with a relative tolerance τ .
subroutine [Q, T, r] = compr(F, τ), such that F ≈ QT
for i = 1 :min(M,N)
1. In parallel, find the column fj = F (:, j) with the maximum norm
2. Interchange fi and fj
3. Set tii = ‖fi‖2, and if tii/t11 ≤ τ , then EXIT with r := i
4. Normalize fi: qi = fi/‖fi‖2
5. Broadcast qi rowwise within the context in which F resides
6. PBLAS2: tHi = qHi (fi+1, fi+2, . . . , fN)
7. Compute rank-1 update: (fi+1, fi+2, . . . , fN)=(fi+1, fi+2, . . . , fN)−qit

H
i

end

Communications occur in steps 1 and 5. The other steps only involve local com-
putations. In step 1, the processes in each column group perform one reduction of size
N√
P

to compute the column norms, with communication cost [log
√
P, N√

P
log

√
P].

This is followed by another reduction among the processes in the row group to find the
maximum norm among all the columns, with communication cost [log

√
P , log

√
P].

In step 5, the processes among each row group broadcast qi of size M√
P
, costing

[log
√
P , M√

P
log

√
P].

Summing the leading terms for (at most) r steps, we obtain the following com-
munication cost:

C526 WANG, LI, XIA, SITU, AND DE HOOP

(4.1) Commcompr =

[
log

√
P ,

M +N√
P

log
√
P

]
· r .

To achieve higher performance, a block strategy can be adopted similarly, like
the serial LAPACK subroutine xGEQP3 [19]. The parallel blocked algorithm remains our
future work.

4.2. Parallel row compression stage. Algorithm 2 gives an overview of the
main steps of parallel row compression stage [29]:

• At the leaf level, compute the compression of the HSS block rows with a
QR factorization with column pivoting. Then ignore the resulting orthogonal
basis (which are the U generators).

• At an upper level, merge the remaining factors from the child compression,
and form a block to compress. The compression yields the R generators,
which are ignored in upper level compression.

(The remaining blocks participate in the column compression later, which has a
similar framework.)

We use the block 8 × 8 matrix in Figures 2.1 and 3.1 to illustrate the algorithm
step by step.

Algorithm 2. Parallel row compression of A with P processes.
Let L = logP be the number of leaves of the HSS tree T and L+ 1 be the
number of levels of T .
1.At level-1 leaf nodes,
(1.1) In parallel, each process i performs local compression on node i:

Fi ≈ UiF̂i, where, Fi ≡ A−
i = A|ti×(I\ti).

(1.2) Redistribution to prepare for level-2 compression:
For i = 0 . . . L/2, pairs of processes {2i} ↔ {2i+ 1} do pairwise exchange,

2r × n matrix [F̂2i; F̂2i+1] is distributed in new process subgroup {2i, 2i+ 1}.
2.For levels l = 2 . . . L+ 1 in T ,

(2.1) Each 2D process subgroup 2�
l
2 �−1 × 2�

l
2 � performs parallel compression

on node i, with c1 and c2 being two children of i:

Fi ≡
(

F̂c1

F̂c2

)
≈
(

Rc1

Rc2

)
F̂i

(2.2) (If l �= L+ 1) Redistribution to prepare for level l + 1 compression:
For i = 0 . . . L/2, pairs of processes {2i} ↔ {2i+ 2l} do pairwise exchange,

2r × n matrix [F̂2i; F̂2i+1] is distributed in new process subgroup

2�
l+1
2 �−1 × 2�

l+1
2 �.

Endfor

4.2.1. Row compression—level 1. In the first step, all the leaves 1, 2, 4, 5,
8, 9, 11, and 12 of T have their own processes {0}, {1}, {2}, {3}, {4}, {5}, {6}, and
{7}, respectively. Each process owns a block row of the global matrix A, given by
Di = A|ti×ti and A−

i = A|ti×(I\ti), as illustrated in Figure 3.1. The off-diagonal

block to be compressed is Fi ≡ A−
i . Each process performs a sequential operation of

compression on Fi:

Fi ≈ UiF̂i.

PARALLEL HSS ALGORITHMS C527

For notational convenience, we write F̂i ≡ A|t̂i×(I\ti), which can be understood as F̂i

is stored in the space of Fi or in A with row index set t̂i. That is, we can write the
above factorization as1

(4.2) A|ti×(I\ti) ≈ UiA|t̂i×(I\ti).

No communication is involved in this step. One of the HSS generators Ui is obtained
here.

We now prepare for the compression at the upper level, level 2 of T . The upper
level compression must be carried out among a pair of processes in each context.
For this purpose, we need a redistribution phase prior to the compression. That is,
we perform pairwise exchange of data: {0} ↔ {1}, {2} ↔ {3}, {4} ↔ {5}, and
{6} ↔ {7}. The level-2 nodes on T are 3, 6, 10, and 13, whose contexts are {0, 1},
{2, 3}, {4, 5}, and {6, 7}, respectively. For each node i at level 2 with children c1 and
c2, we have

A|tc1×tc2
≈ Uc1A|t̂c1×tc2

, A|tc2×tc1
≈ Uc2A|t̂c2×tc1

, A−
i ≈

(
Uc1A|t̂c1×(I\ti)
Uc2A|t̂c2×(I\ti)

)
.

Ignoring the basis matrices Uc1 and Uc2 , the block to be compressed in the next step
is

(4.3) Fi ≡
(

A|t̂c1×(I\ti)
A|t̂c2×(I\ti)

)
.

This procedure is illustrated in Figure 4.1(a). Two communication steps are used
during redistribution. First, exchange A|t̂c1×tc2

and A|t̂c2×tc1
between c1’s and c2’s

contexts. This prepares for the column compression in the future (section 4.3). Next,
redistribute the newly merged off-diagonal block Fi, i = 3, 6, 10, 13, into the process
grid contexts {0, 1}, {2, 3}, {4, 5}, and {6, 7} corresponding to nodes 3, 6, 10, and
13, respectively. Here we use a ScaLAPACK subroutine PxGEMR2D to realize the data
exchange and redistribution steps.

During the redistribution phase, the number of messages is 2, and the number of
words exchanged is rn

2 · 2. The communication cost is [2, rn
2 · 2]. We recall that n is

the number of columns of Fi and each compressed block row is assumed to have the
same rank r.

4.2.2. Row compression—level 2. At level 2 of T , within the context for
each node i = 3, 6, 10, 13, we perform parallel compression for Fi in (4.3):

(4.4) Fi ≈
(

Rc1

Rc2

)
A|t̂i×(I\ti),

where A|t̂i×(I\ti) is defined similar to the one in (4.2). The R generators associated
with the child level are then obtained. Since the size of each Fi is bounded by 2r× n
and two processes are used for the compression, we obtain the communication cost
[log

√
2, 2r+n√

2
log

√
2] · r using (4.1).

To prepare for the compression at level 3 of T , again, we need a redistribution
phase, performing the following pairwise data exchange: {0, 1} ↔ {2, 3} and {4, 5} ↔

1This is only a way to simplify notation in the presentation and is not the actual storage used
in our implementation.

C528 WANG, LI, XIA, SITU, AND DE HOOP

Fig. 4.1. Illustration of data distribution in the row and column compressions, where the labels
inside the matrix mean processes, and those outside mean the nodes of T .

{6, 7}. In this notation, the exchanges 0 ↔ 2 and 1 ↔ 3 occur simultaneously. There is
no need for data exchanges between processes 0 and 3, nor 1 and 2. The level-3 nodes
are 7 and 14 with the process contexts {0, 1; 2, 3} and {4, 5; 6, 7}, respectively. There
are also communications similar to the procedure for forming (4.3) in the previous
step, so that each of the two off-diagonal blocks Fi, i = 7, 14, is formed and distributed
onto the respective process context. This is illustrated in Figure 4.1(b).

PARALLEL HSS ALGORITHMS C529

During the redistribution phase, the number of messages is 2, and the number of
words exchanged is rn

22 · 2. Thus the communication cost is [2, rn
22 · 2].

4.2.3. Row compression—level 3. At level 3, we perform the parallel com-
pression within each context for each Fi, i = 7, 14, similar to (4.4). The R generators
associated with the child level are also obtained here. The communication cost of the
compression is given by [log

√
4, 2r+n√

4
log

√
4] · r.

Since the upper level node has only one node, the root node 15 of T , there
is no off-diagonal block associated with it. Thus, to prepare for the column HSS
constructions, only one pairwise exchange step is needed between the two contexts:
{0, 1; 2, 3} ↔ {4, 5; 6, 7}, meaning 0 ↔ 4, 1 ↔ 5, 2 ↔ 6, and 3 ↔ 7. This is similar to
(4.3) except that there is no merging step to form F15. The procedure is illustrated in
Figure 4.1(c). The communication cost in the redistribution phase is [2, rn

23 · 2].

4.2.4. Communication costs in row compression. In general, the compres-
sion and communication for an HSS matrix with more blocks can be similarly shown,
following Algorithm 2. Here, we sum the messages and number of words communi-
cated at all the levels of the tree in this row compression stage. For simplicity, assume
there are P leaves and about L ≈ logP levels in T . Then the total communication
cost is summed up by the following:2

(1) Redistributions:

#messages =
L∑

i=1

2 ≈ 2 logP,

#words =

L∑
i=1

(rn
2i

2
)
= O(2rn).

(2) RRQR compression (Algorithm 1):

#messages =

L∑
i=1

(log
√
2i) · r = r log 2

L∑
i=1

i

2
= O(r log2 P),

#words =

L∑
i=1

(
2r + n√

2i
log

√
2i
)
· r

= r

(
2r + n

2

)
log 2

L∑
i=1

i

2i/2
= O(rn logP).

The total flop count of all the row compression is

L∑
i=1

O
(
r

n

2L−i

(
n− n

2i

))
= O(rn2),

where we assume the bottom level diagonal blocks have sizes O(r), as commonly done
[32].

2In most situations in which we are interested, we can assume n � r.

C530 WANG, LI, XIA, SITU, AND DE HOOP

4.3. Parallel column compression stage. After the row compression, the
blocks A|t̂j×(I\tj) that remain to be compressed in the column compression stage are

much smaller. In addition, in this stage, pieces of the blocks A|t̂j×(I\tj) for nodes j
at different levels may be compressed together to get a V generator. For example, for
node 11 in Figure 4.1(c), to form the block to be compressed, we need to stack the
off-diagonal pieces (marked with process 6) resulting from row compression at three
different levels:

GH
11 =

⎛⎝ A|t̂12×t11
A|t̂10×t11
A|t̂7×t11

⎞⎠.

Clearly, A|t̂7×t11
and A|t̂10×t11

are pieces associated with nodes 7 and 10, respectively,
which are previously visited.

To systematically keep track of the nodes which are previously visited and need
to be considered in a column compress step, we use the following definition, which
generalizes the concept of visited sets in [30] for symmetric positive definite matrices
to nonsymmetric ones. (Please see [30] for a related illustration.)

Definition 4.1. The left visited set associated with a node i of a postordered
full binary tree T is

Vi = {j | j is a left node and sib(j) ∈ ances(i)},

where sib(j) is the sibling of j in T and ances(i) is the set of ancestors of node i
including i. Similarly, the right visited set associated with i is

Wi = {j | j is a right node and sib(j) ∈ ances(i)}.

Vi and Wi are essentially the stacks before the visit of i in the postordered and
reverse-postordered traversals of T , respectively.

We now describe how the column compression works. We use the same 8 × 8
block matrix example after the row compression for illustration.

4.3.1. Column compression—level 1. After the row compression, the up-
dated off-diagonal blocks F̂j ≡ A|t̂j×(I\tj), j = 1, 2, . . . , 14, are stored in the indi-

vidual contexts, at different levels of the HSS tree. For example, F̂1 is stored in
the context {0}, F̂3 is stored in the context {0, 1}, and F̂7 is stored in the context
{0, 1; 2, 3}. Similar to the row compression phase, the column compression proceeds
upward along T level by level. The difference is that, here, associated with each tree
node is a block column of the matrix, and it was already compressed during the row
compression stage. To prepare for the compression associated with the leaf nodes, we
first need a redistribution phase to transfer the A|t̂j×sib(j) blocks for nodes j at the
higher levels to the bottom leaf level. This is achieved in logP steps of communication
in a top-down fashion. In each step, we redistribute A|t̂j×sib(j) in the context of j
to the contexts of the leaf nodes. These j indices of the row blocks that need to be
redistributed downward are precisely those in the visited sets in Definition 4.1. For
instance, the block column associated with leaf node 2 needs the pieces correspond-
ing to the nodes V2 ∪ W2 = {1} ∪ {6, 14}. For all the leaf nodes, the redistribution
procedure achieves the following blocks which need to be compressed in this stage:

PARALLEL HSS ALGORITHMS C531

(4.5)

GH
1 =

⎛⎝ A|t̂2×t1
A|t̂6×t1
A|t̂14×t1

⎞⎠ , GH
2 =

⎛⎝ A|t̂1×t2
A|t̂6×t2
A|t̂14×t2

⎞⎠ , GH
4 =

⎛⎝ A|t̂3×t4
A|t̂5×t4
A|t̂14×t4

⎞⎠ , GH
5 =

⎛⎝ A|t̂4×t5
A|t̂3×t5
A|t̂14×t5

⎞⎠ ,

GH
8 =

⎛⎝ A|t̂9×t8
A|t̂13×t8
A|t̂7×t8

⎞⎠ , GH
9 =

⎛⎝ A|t̂8×t9
A|t̂13×t9
A|t̂7×t9

⎞⎠ , GH
11 =

⎛⎝A|t̂12×t11
A|t̂10×t11
A|t̂7×t11

⎞⎠ , GH
12 =

⎛⎝A|t̂11×t12
A|t̂10×t12
A|t̂7×t12

⎞⎠ .

We can use Vi and Wi to simplify the notation. For example, we write

t̄1 = t̂2 ∪ t̂6 ∪ t̂14, GH
1 = A|t̄1×t1 .

We still use the ScaLAPACK subroutine PxGEMR2D to perform these intercontext
communications. In this redistribution phase, the number of messages sent is logP ,
and the number of words is r n√

P
logP . Thus the communication cost is [logP, rn√

P
logP].

After the redistribution, the layout of the off-diagonal blocks is illustrated by
Figure 4.1(c), which initiates the parallel column construction. At the bottom level,
the contexts {0}, {1}, {2}, {3}, {4}, {5}, {6}, and {7} are associated with the leaf
nodes 1, 2, 4, 5, 8, 9, 11, and 12, respectively. GH

i for all leaves i are indicated by the
shaded areas in Figure 4.1(c). We carry out parallel compression on Gi:

Gi ≈ ViG̃i.

This can be denoted as

Gi ≈ A|t̄i×t̃iV
H
i ,

where t̃i is a subset of ti and we can understand that G̃i =
(
A|t̄i×t̃i

)H
can be stored

in the space of Gi. (This is solely for notational convenience. See the remark for
(4.2).) We note that this step is done locally within each process. The V generators
are obtained here. See Figure 4.1(c)–(d).

To prepare for the upper level column compression, communications occur pair-
wise: {0} ↔ {1}, {2} ↔ {3}, {4} ↔ {5}, {6} ↔ {7}. The upper level blocks
Gi, i = 3, 6, 10, 13, for compression are formed by ignoring the V basis matrices and
merging parts of A|t̄c1×t̃c1

and A|t̄c2×t̃c2
. That is, we set

(4.6) Gi =
(

A|t̄i×t̃c1
, A|t̄i×t̃c2

)
, Bc1 = A|t̂c1×t̃c2

, Bc2 = A|t̂c2×t̃c1
.

This procedure is illustrated in Figure 4.1(d). Two communication steps are needed.
In the first step Bc1 and Bc2 are generated by exchanging A|t̂c2×t̃c1

and A|t̂c1×t̃c2
pairwise between c1’s and c2’s contexts. We note that some B generators are obtained
here. The second step is to redistribute the newly merged off-diagonal block Gi onto
the process grid associated with the contexts for nodes i = 3, 6, 10, 13.

We note that during the column compression stage, the number of nodes in Vi∪Wi

needed to form Gi is the same as the number of levels in the HSS tree, which is
log(n

m) ≈ logP . See, e.g., (4.6). Therefore, the row dimension of Gi is bounded
by r log(n

m), which is much smaller than the column dimension n during the row
compression stage. Similar to the level-1 row compression, during this redistribution

phase, the number of messages is 2 and the number of words exchanged is r2 logP
2 · 2.

The communication cost is then [2, r2 logP
2 · 2].

C532 WANG, LI, XIA, SITU, AND DE HOOP

4.3.2. Column compression—level 2. At level 2, the contexts {0, 1}, {2, 3},
{4, 5}, and {6, 7} are associated with the nodes 3, 6, 10, and 13, respectively. Each off-
diagonal block Gi, i = 3, 6, 10, 13, has already been distributed onto the respective
process context, as illustrated in Figure 4.1(d). That is, Gi is formed by merging
appropriate blocks associated with the children c1 and c2:

Gi =

(
(A|t̄i×t̃c1

)H

(A|t̄i×t̃c2
)H

)
.

Then we perform parallel compression on each Gi:

(4.7) Gi =

(
Wc1

Wc2

)
G̃i, G̃i ≡

(
A|t̄i×t̃i

)H
.

See Figure 4.1(d)–(e). Some W generators are obtained. Since each Gi is bounded
by the size r logP × 2r and two processes are used for its compression, using (4.1),
we obtain the communication cost [log

√
2, 2r+r log P√

2
log

√
2] · r.

To enable the upper level column HSS construction, communication occurs pair-
wise: {0, 1} ↔ {2, 3} and {4, 5} ↔ {6, 7}. The procedure is illustrated by Fig-
ure 4.1(e). Similar to (4.6), two communication steps are needed. During the dis-
tribution phase, the number of messages is 2, and the number of words exchanged is
r2 log P

4 · 2. The communication cost is [2, r2 logP
4 · 2].

4.3.3. Column compression—level 3. At level 3, the two contexts {0, 1; 2, 3}
and {4, 5; 6, 7} are associated with the nodes 7 and 14, respectively. Each off-diagonal
block Fi, i = 7, 14, has already been distributed onto the respective process con-
texts, as shown in Figure 4.1(e). Then we perform the compression similarly to
(4.7). See Figure 4.1(e)–(f). The communication cost of the compression is given by
[log

√
4, 2r+r logP√

4
log

√
4] · r.

Since the level-4 node is the root node 15 of T , there is no off-diagonal block F15

associated with it. Thus, the entire parallel HSS construction is finalized at this step.
There is only one stage of communications occurring: {0, 1; 2, 3} ↔ {4, 5; 6, 7}, which
is similar to (4.6) except there is no merging step. Figure 4.1(f) indicates that after
this final communication, all the HSS generators are obtained. The communication

cost is [2, r2 logP
8 · 2].

4.3.4. Communication costs in column compression. We now sum all the
messages and words communicated at all the levels of the tree during the column
compression and obtain the total communication costs as follows, where L ≈ logP :

(1) Redistributions:

#messages = logP +

L∑
i=1

2 ≈ 3 logP,

#words =
rn√
P

logP +

L∑
i=1

(
r2 logP

2i
2

)
= O(rn).

PARALLEL HSS ALGORITHMS C533

(2) RRQR compression (Algorithm 1):

#messages =

L∑
i=1

log
√
2i · r = r log 2

L∑
i=1

i

2
= O(r log2 P),

#words =

L∑
i=1

(
2r + r logP√

2i
log

√
2i
)
· r

= r · 2r + r logP

2
log 2

L∑
i=1

i

2i/2
= O(r2 log2 P).

The flop count of all the column compression is less straightforward. Just like in
[32], with the aid of visited sets (see Definition 4.1), it can be shown that the cost is
O(rn log n).

4.4. Total communication cost in parallel HSS construction. After the
two stages of compression, all the HSS generators Di, Ui, Ri, Bi,Wi, Vi are obtained.
The following formulas summarize the total communication costs for the entire parallel
HSS construction, including both the row construction and the column construction:

(1) Redistributions:

#messages = O(logP),(4.8)

#words = O(rn).(4.9)

(2) RRQR compression:

#messages = O(r log2 P),(4.10)

#words = O(rn logP + r2 log2 P).(4.11)

Comparing (4.8)–(4.11), we see that the compression dominates the communica-
tion costs both in message count and in message volume.

Remarks. Putting this in perspective, we compare the communication complexity
to the flop count. It was analyzed in [29] that the total #flops of the sequential HSS
construction algorithm is O(rn2). Then, assuming a perfect load balance, the flop

count per process is O(rn
2

P). Taking (4.11) to be the dominant communication part
for large problems, the flop-to-byte ratio is roughly n

P logP , which is very small. This
indicates that our parallel algorithm is very much communication bound, and its
parallel performance is more sensitive to the network speed than the CPU speed.

When the HSS-based method is used to solve a linear system, the construction cost
dominates those of the ULV factorization (section 5) and solution (section 6). There-
fore, we can now compare this complexity to that of Gaussian elimination commonly
used for solving a dense linear system. We recall that the parallel LU factorization

implemented in ScaLAPACK needs O(n3) flops and [O(n logP),O(n
2 logP√

P
)] communi-

cation cost [2]. They are both higher than the HSS counterparts. For the ScaLAPACK
LU algorithm, the flop-to-byte ratio is O(n√

P logP
). Therefore, the new HSS algorithm

has a lower flop-to-byte ratio than the classical dense LU algorithm, indicating less
potential for data reuse and more communication bound.

If a (relative) tolerance τ is used in the HSS construction, the Frobenius-norm
relative approximation error is O(τ

√
r logn) [33]. In practice, the errors are often

much smaller.

C534 WANG, LI, XIA, SITU, AND DE HOOP

From our experiences with seismic applications using the Helmholtz equations [27,
26], the HSS ranks r are usually on the order of 10 s for 2D problems and 100 s∼ 1000 s
for 3D problems. The typical values of n/r are about 100 s for 2D problems and 10 s
for 3D problems (see Figure 7.1 in section 7). This corroborates the prior analysis
that for 2D problems, r is about O(logn) [10], and for 3D, it is about O(

√
n) [31].

Thus, n/r is larger in 2D than in 3D. Therefore, from the #flops viewpoint, HSS has
greater advantage over LU in 2D than in 3D.

5. Parallel ULV HSS factorization. After the HSS approximation to A is
constructed, we are ready to factorize it via the generators. In these two sections, we
discuss a type of factorization and solution strategies, called ULV HSS factorization
and solution [7, 29]. That is, the factorization on an HSS matrix generates a sequence
of orthogonal (U, V) and triangular (L) local matrices. These local matrices are also
obtained during the traversal of the HSS tree and are also associated with the nodes.
The ULV HSS factorization generally involves these steps:

• Introduce zeros into off-diagonal block rows using the U generators.
• Partially factorize and eliminate the diagonal blocks.
• Merge the remaining blocks and repeat.

(A framework for the ULV solution can be similarly outlined.)
Here, we present our parallel strategy in terms of a block 2× 2 HSS form which

is a submatrix of the HSS matrix and corresponds to two leaves in the HSS tree
(Figure 5.1(a)):

(5.1)

(
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

)
,

where c1 and c2 are children of a node i and are leaves of the HSS tree T , and the
generators associated with c1 and c2 are distributed on the process grids corresponding
to the contexts of c1 and c2, respectively. The context of i is the union of the contexts
of c1 and c2. We assume that the sizes of Uc1 and Uc2 are m× r.

We start with the QL factorization of Uc1 and Uc2 :

(5.2) Uc1 = Qc1

(
0

Ũc1

)
, Uc2 = Qc2

(
0

Ũc2

)
,

where Ũc1 and Ũc2 are lower triangular matrices of size r × r, respectively. (In fact,
since Uc1 and Uc2 have orthonormal columns in our HSS construction, we can directly

derive orthogonal matrices so that Ũc1 and Ũc2 become identity matrices.) We note
that there is no intercontext communication at this stage. We multiply QH

c1 and QH
c2

to the block rows independently within each context and obtain

(
QH

c1 0
0 QH

c2

)(
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

)
=

⎛⎜⎜⎝ D̂c1

(
0

Ũc1

)
Bc1V

H
c2(

0

Ũc2

)
Bc2V

H
c1 D̂c2

⎞⎟⎟⎠ ,

where

D̂c1 = QH
c1Dc1 , D̂c2 = QH

c2Dc2 .

This is illustrated by Figure 5.1(b).

PARALLEL HSS ALGORITHMS C535

Fig. 5.1. (a) The ULV factorization of a block 2 × 2 HSS form and the illustration of the
intercontext communication to form (5.4).

Next, we partition the diagonal blocks conformably as

D̂c1 =

(
D̂c1;1,1 D̂c1;1,2

D̂c1;2,1 D̂c1;2,2

)
, D̂c2 =

(
D̂c2;1,1 D̂c2;1,2

D̂c2;2,1 D̂c2;2,2

)
,

where D̂c1;2,2 and D̂c2;2,2 are of size r× r and correspond to the rows of Ũc1 and Ũc2 ,
respectively. Compute an LQ factorization independently within each context:(

D̂c1;1,1 D̂c1;1,2

)
=
(

D̃c1;1,1 0
)
Pc1 ,(

D̂c2;1,1 D̂c2;1,2

)
=
(

D̃c2;1,1 0
)
Pc2 .

We multiply Pc1 and Pc2 to the block columns independently within each context and
obtain (

QH
c1 0
0 QH

c2

)(
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

)(
PH
c1 0
0 PH

c2

)

=

⎛⎜⎜⎜⎜⎝
(

D̃c1;1,1 0

D̃c1;2,1 D̃c1;2,2

) (
0

Ũc1Bc1

(
Ṽ H
c2;1 Ṽ H

c2;2

))(
0

Ũc2Bc2

(
Ṽ H
c1;1 Ṽ H

c1;2

)) (
D̃c2;1,1 0

D̃c2;2,1 D̃c2;2,2

)
⎞⎟⎟⎟⎟⎠ ,(5.3)

where the blocks are partitioned conformably. See Figure 5.1(c). We note that there
is still no intercontext communication up to this stage.

C536 WANG, LI, XIA, SITU, AND DE HOOP

After this, we can assign new generators to the parent node i of c1 and c2:
(5.4)

Di =

(
D̃c1;2,2 Ũc1Bc1 Ṽ

H
c2;2

Ũc2Bc2 Ṽ
H
c1;2 D̃c2;2,2

)
, Ui =

(
Ũc1Rc1

Ũc2Rc2

)
, Vi =

(
Ṽc1;2Wc1

Ṽc2;2Wc2

)
.

These generators are formed via intercontext communications. See Figure 5.1(d).
Equation (5.4) maintains the form of the recursive definition (2.1) of the HSS gener-
ators, except that the size has been reduced due to the HSS compression introduced
in section 4. Then we remove c1 and c2 from T (the related processes are finished),
so that i becomes a leaf and we can repeat the above steps on i.

Such a step is then performed recursively. When the root node is reached, an LU
factorization with partial pivoting is performed on Di.

We now examine the communication cost in the HSS factorization. In the first step
corresponding to the leaf level, each process performs local QL and LQ factorizations
with Ui of size bounded by m× r. No communication is involved. In the subsequent
higher levels, the sizes of all the matrices are bounded by 2r× 2r, as in Figure 5.1(d)
and (5.4). The ScaLAPACK QL/LQ factorization and matrix multiplication routines

all have the communication cost [O(2rb), O((2r)
2

√
Pi

)] [2], where b is the block size used

in ScaLAPACK, and Pi is the number of processes used for node i of T . Summing over
all the levels, the total cost is bounded by

[O(
r

b
logP), O(r2 logP)].

Since r � n, this cost is much smaller than that incurred during the HSS compression
phase (see (4.10)–(4.11)).

Clearly, there are O(r3) operations associated with each node of the HSS tree.
Thus, the total cost for the factorization is [29]

O
(
n

r

)
×O(r3) = O(r2n).

Note that in the HSS ULV factorization, the two major operations (introducing
zeros into the off-diagonal blocks and partially factorizing the diagonal blocks) are
both done by QR factorizations. Thus, the overall ULV algorithm can be considered
as a generalized QR algorithm, and generally no pivoting is necessary. This can also
be understood as follows. If a local diagonal block is ill-conditioned, the intermediate
QR factorizations pass the ill-conditioning all the way up along the tree, until the root
node is reached, where the final reduced matrix [31] has the same condition number
as the original HSS matrix, but is small and can be factorized accurately. In fact, it
is shown in [33] that the stability of the ULV factorization is significantly better than
standard LU factorizations with partial pivoting.

6. Parallel HSS solution. We solve the linear system of equations Ax = b
after obtaining an HSS approximation to A in section 4 and the ULV factorization in
section 5. We continue the discussion for the block 2 × 2 HSS form in section 5, and
the HSS system looks like

(6.1)

(
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

)(
xc1

xc2

)
=

(
bc1
bc2

)
.

PARALLEL HSS ALGORITHMS C537

Fig. 6.1. Illustration of the linear system of (6.2) when i = 3, c1 = 1, and c2 = 2.

With the aid of (5.3), we can rewrite (6.1) into the following form:
(6.2)⎛⎜⎜⎜⎜⎝

(
D̃c1;1,1 0

D̃c1;2,1 D̃c1;2,2

) (
0

Ũc1Bc1

(
Ṽ H
c2;1 Ṽ H

c2;2

))(
0

Ũc2Bc2

(
Ṽ H
c1;1 Ṽ H

c1;2

)) (
D̃c2;1,1 0

D̃c2;2,1 D̃c2;2,2

)
⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

x̃c1;1

x̃c1;2

x̃c2;1

x̃c2;2

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
b̃c1;1
b̃c1;2
b̃c2;1
b̃c2;2

⎞⎟⎟⎟⎠ ,

where

xc1 = PH
c1 x̃c1 = PH

c1

(
x̃c1;1

x̃c1;2

)
, xc2 = PH

c2 x̃c2 = PH
c2

(
x̃c2;1

x̃c2;2

)
,

bc1 = Qc1 b̃c1 = Qc1

(
b̃c1;1
b̃c1;2

)
, bc2 = Qc2 b̃c2 = Qc2

(
b̃c2;1
b̃c2;2

)
.

Equation (6.2) is illustrated by Figure 6.1. We point out that the solution to (6.1)
is converted into the solution to (6.2). We can easily compute the original solution x
once x̃c1 and x̃c2 are obtained as follows.

First, the following two triangular systems can be efficiently solved locally within
each context:

D̃c1;1,1 x̃c1;1 = b̃c1;1, D̃c2;1,1 x̃c2;1 = b̃c2;1.

Then a local update of the right-hand side is conducted:

b̃c1;2 = b̃c1;2 − D̃c1;2,1 x̃c1;1, b̃c2;2 = b̃c2;2 − D̃c2;2,1 x̃c2;1.

Up to this stage, there is no intercontext communication between c1’s and c2’s con-
texts.

Next, we update the right-hand side via intercontext communication:

b̃c1;2 = b̃c1;2 − Ũc1

[
Bc1

(
Ṽ H
c2;1 x̃c2;1

)]
,

b̃c2;2 = b̃c2;2 − Ũc2

[
Bc2

(
Ṽ H
c1;1 x̃c1;1

)]
.

Finally, we solve a system on the i context:(
D̃c1;2,2 Ũc1Bc1 Ṽ

H
c2;2

Ũc2Bc2 Ṽ
H
c1;2 D̃c2;2,2

)(
x̃c1;2

x̃c2;2

)
=

(
b̃c1;2
b̃c2;2

)
.

C538 WANG, LI, XIA, SITU, AND DE HOOP

This can be done by two triangular solutions after the LU factorization of the coeffi-
cient matrix.

For the general case, the above idea is applied recursively. Clearly, there are
O(r2) operations associated with each node of the HSS tree. Thus, the total cost for
the solution is [29]

O
(n
r

)
×O(r2) = O(rn).

7. Performance tests and numerical results. In this section, we present
the performance results of our parallel HSS solver when applied to some matrices
arising from real applications. We carry out the experiments on the cluster Cray XE6
(hopper.nersc.gov) at the National Energy Research Scientific Computing Center.
Each node has two 12-core AMD MagnyCours 2.1-GHz processors with 24 cores in
total on a node. Each node has 32 GB memory.

Our primary application testbed is the modeling of time-harmonic seismic waves,
for which we need to solve the Helmholtz equation of the form

(7.1)

(
−Δ− ω2

v(x)2

)
u(x, ω) = s(x, ω),

where Δ is the Laplacian, ω is the angular frequency, v(x) is the wavespeed (possibly
complex), and u(x, ω) is called the time-harmonic wavefield solution to the forcing
term s(x, ω). Helmholtz equations arise frequently in real applications such as seismic
imaging. The discretization of the Helmholtz operator commonly leads to very large
sparse matrices A which are indefinite and ill-conditioned. The matrices are complex
and unsymmetric. It has been observed that in the direct factorization of A the dense
intermediate matrices are highly compressible [10, 24].

Previously, we developed a parallel multifrontal factorization method for sparse
matrix A based on the multifrontal method [8] with nested dissection reordering [11].
Some performance results of the multifrontal solver for this application were presented
in [25]. Now, we apply our parallel HSS construction/ULV factorization/solution
algorithms to the dense Schur complement matrix corresponding to the root of the
separator tree in the nested dissection partitioning. In the following experiments, we
appy nested dissection to either a 2D k × k mesh or a 3D k × k × k mesh, where the
mesh is recursively partitioned into submeshes by the separators. The dimension of
the last Schur complement matrix A is n = k in two dimensions and n = k2 in three
dimensions. The frequency ω = 5Hz is used to obtain A, and A is obtained after
partial elimination of all the variables prior to the top level separator.

For these seismic applications, often the initial data has low accuracy (one to two
digits) in approximating the actual problems. Thus, two to three digits are usually
sufficient for compression accuracy. In our tests, we use τ = 10−3 in the compression
algorithm (Algorithm 1), and single precision is used in the code. Detailed error
and stability analysis is performed in [33], which indicates that we can usually get
nice accuracy as desired. To validate the accuracy, we present the normwise relative

residual, ‖Ax−b‖∞
‖A‖∞‖x‖∞+‖b‖∞ , in the last row of Tables 7.1 and 7.2, when we solve Ax = b

using the HSS compression and ULV factorization of A. Recall that ε ≈ 5.96× 10−8

in single precision.
In this paper, for convenience, we assume the dense matrix is stored first. In

practice, for problems such as solving Toeplitz problems with HSS methods in Fourier
space [33], there is no need to store the dense matrix in advance, and the blocks can
be formed dynamically based on some analytical representations. Even if we need to

PARALLEL HSS ALGORITHMS C539

Table 7.1

Parallel runtime, gigaflops rate, and memory usage of the HSS algorithms applied to the largest
dense frontal matrices A from the exact multifrontal factorization of 2D discretized Helmholtz oper-
ators in (7.1). n is the order of A, P is the number of processes, and the relative tolerance in HSS
construction is τ = 10−3. Each addition (multiplication) of two complex numbers is counted as two
(six) regular flops.

k (mesh: k × k; n = k) 5,000 10,000 20,000 40,000 80,000

P 16 64 256 1, 024 4, 096

LU factorization (s) 1.96 4.27 9.35 22.47 63.06
Gflops/s 170.3 625.1 2280.4 7596.4 21649.9

Dense LU Triangular solve (s) 0.01 0.03 0.05 0.10 0.30
Gflops/s 27.7 63.1 133.5 265.8 336.7

Total memory (GB) 0.2 0.8 3.2 12.8 51.2

HSS rank r 9 9 11 12 17
Total (s) 0.24 0.31 0.49 0.97 2.31

Constr. RRQR (s) 0.16 0.19 0.23 0.34 0.41
HSS Redist. (s) 0.06 0.05 0.10 0.19 0.32

Gflops/s 12.3 44.1 120.4 260.8 462.8
ULV factorization (s) 0.11 0.09 0.11 0.21 0.45

Gflops/s 95.6 243.5 402.3 427.4 399.4
Solution (s) 0.01 0.02 0.12 0.53 2.76

Gflops/s 1.9 2.1 0.8 0.4 0.1
Total memory (GB) 0.05 0.05 0.11 0.21 0.43
Relative residual 5.2e-4 8.1e-4 2.5e-3 4.7e-3 5.5e-3

Table 7.2

Parallel runtime and gigaflops rate of the HSS algorithms applied to the largest dense frontal
matrices A from the exact multifrontal factorization of 3D discretized Helmholtz operators in (7.1),
where n2 is the size of A, P is the number of processes, and the relative tolerance in HSS construction
is τ = 10−3. Each addition (multiplication) of two complex numbers is counted as two (six) regular
flops.

k (mesh: k × k × k; n = k2) 100 200 300 400 500

P 64 256 1,024 4,096 8,192

LU factorization (s) 4.21 57.62 175.85 312.87 540.28
Gflops/s 633.3 2961.8 11054.6 34911.6 77120.2

Dense Triangular solve (s) 0.02 0.12 0.30 0.80 1.34
LU Gflops/s 65.6 215.2 434.6 511.3 748.4

Total memory (GB) 0.8 12.8 64.8 204.8 500

HSS rank r 335 618 894 1226 1497
Total (s) 8.30 51.49 193.40 207.72 259.46

Constr. RRQR (s) 7.94 50.09 189.86 203.94 251.56
HSS Redist. (s) 0.24 1.05 2.21 2.11 3.22

Gflops/s 100.8 382.2 595.5 2041.5 4050.1
ULV factorization (s) 0.40 1.42 1.76 2.46 4.16

Gflops/s 166.3 495.3 1286.5 2863.8 2513.7
Solution (s) 0.04 0.20 0.55 2.29 9.52

Gflops/s 1.1 1.6 1.5 0.9 0.3
Total memory (GB) 0.12 0.76 1.96 4.55 6.84
Relative residual 9.7e-3 1.1e-2 1.7e-2 1.5e-2 1.7e-2

C540 WANG, LI, XIA, SITU, AND DE HOOP

form the dense matrix first, we may work by panels on part of the matrix, and the
panel storage can be reused by the panels at different times. In the results presented
below, the memory we consider is the memory for the HSS factors, as compared with
the dense LU factors.

Example 7.1. The 2D Helmholtz equations are discretized on k× k mesh. We
apply the parallel HSS algortihms to the last Schur complement A corresponding to
the top level separator in the nested dissection ordering.

For the weak scaling test, we increase the number of cores by a factor of four upon
doubling the mesh size k. Table 7.1 shows the various performance statistics of the
parallel HSS methods for k ranging from 5,000 to 80,000. As a comparison, we include
the results of parallel dense LU factorization and triangular solution from the routines
PCGETRF and PCGETRS in ScaLAPACK [21]. Recall that the HSS rank r is defined as
the maximum rank of all the HSS blocks. Here, for the 2D problems, the HSS ranks
are more or less constant (less than 20) and are independent of the problem size. We
split the total HSS compression time into an RRQR factorization (Algorithm 1) part
and a data redistribution part. As predicted, the HSS factorization and solution are
faster than the HSS compression. Inside the compression phase, the redistribution
part takes less time than the RRQR factorization. This validates our earlier analysis
on communication complexity; see section 4.4.

Figure 7.1(a) visually compares the weak scaling performance of the new HSS ap-
proach to the LU approach. Here we focus only on the HSS construction algorithm,
because it dominates the ULV factorization and solution. For each performance met-
ric, time, storage, #flops, and gigaflop rate, we plot the ratio of the LU algorithm
over the HSS construction algorithm. In all these metrics, the HSS method is always
better than the LU approach and scales better in parallel runtime, memory usage,
and #flops. For the largest mesh size 80,000 using 4096 cores, the HSS algorithm is
about 30 times faster than the LU algorithm and memory usage is reduced by 100-
fold. The #flops increases faster for the LU than for the HSS. For the largest problem,
the LU #flops is about 1000 times more than the HSS flops. On the other hand, the
LU Gflops/s rate is much higher than the HSS Gflops/s rate, as much as 40 times
higher. This is because the HSS algorithm involves operations with much smaller ma-
trices and spends a larger fraction of the time in memory access and communication,
as analyzed in section 4. (See remarks on the flop-to-byte ratio in section 4.4.) There-
fore, the flop count alone is not a very good predictive metric about parallel runtime
for this class of algorithms.

Example 7.2. The 3D Helmholtz equations discretized on k× k× k mesh. We
apply the parallel HSS algortihms to the last Schur complement A corresponding to
the top level separator in a nested dissection ordering.

We now repeat the same experiments for the 3D problems. We increase the
number of cores used while increasing the mesh size k. Table 7.2 shows the various
performance statistics of the parallel HSS methods for k ranging from 100 to 500
(i.e., n ranging from 10,000 to 250,000. As a comparison, we include the results of
parallel dense LU factorization and triangular solution from the routines PCGETRF and
PCGETRS in ScaLAPACK.

In contrast to the 2D case, now the HSS ranks increase with the problem size.
The growth is linear with respect to one side of the mesh (i.e., k), which seems to
corroborate the theory predicted in [10]. The larger HSS ranks give less advantage for
the HSS method over the LU method than the 2D case. Figure 7.1(b) compares the
weak scaling performance of the HSS construction to the LU factorization. The HSS

PARALLEL HSS ALGORITHMS C541

time is faster than that of LU for large problems. For the largest mesh size 5003 using
8192 cores, the HSS algorithm is over 2 times faster and memory usage is reduced
by 70-fold. The #flops increases faster for the LU than for the HSS. For the largest
problem, the LU #flops is about 40 times more than the HSS flops. On the other
hand, the LU Gflops/s rate is 18 times higher than the HSS Gflops/s rate.

Notice that for the 3D case, the RRQR compression time much more dominates
the entire HSS construction time. One reason is that the HSS rank r is much larger
now, which represents a larger factor to both the computation cost (O(rn2)) and
the communication cost associated with the RRQR compression algorithm (see (4.8)
to (4.11)). Another reason is that the ranks of different HSS blocks (i.e., different
branches of the HSS tree) are not of similar values. We observed over 2 times the
difference between the ranks of some branches. With our current data distribution
scheme (see Figure 3.2), this causes significant load imbalance among the processors

Fig. 7.1. Performance ratio of LU over HSS.

C542 WANG, LI, XIA, SITU, AND DE HOOP

on the two branches of the tree. Overall, the RRQR time for the slowest processor
can be 2 to 3 times larger than that of the fastest processor. We will address this load
imbalance issue in our future work.

7.1. Communication cost. Finally, we examine the communication overhead
for the same 2D and 3D matrices. The communication statistics are collected using
the IPM (integrated performance monitoring) performance profiling tool [18].

Figure 7.2 compares the time spent in communication for the HSS construction
and for the LU factorization. In the 2D case, Figure 7.2(a), the fraction of time in
communication increases with the increasing matrix size and the number of process-
ing cores used. Furthermore, the LU algorithm spends a larger fraction of time in
communication than the HSS algorithm. In the 3D case, Figure 7.2(b), the fraction

Fig. 7.2. Percentage time spent in MPI communication.

PARALLEL HSS ALGORITHMS C543

of time in communication also increases with the increasing matrix size and number
of cores. But now, both the LU algorithm and the HSS algorithm spend a similar
fraction of time in communication. This is because the HSS ranks in the 3D case are
much larger, which contributes to a larger amount of communication (see (4.10) and
(4.11)).

8. Conclusions. We have designed and implemented novel parallel algorithms
for the HSS structured matrix algorithms in parallel computation. We are able to
conduct classical structured compression, factorizations, and solutions in parallel. We
performed a detailed analysis of the communication costs of the parallel algorithms
and found that the algorithms are more communication bound than the other al-
gorithms without using the rank structures. This is mainly because the amount of
floating point operations is drastically reduced by exploiting the low rankness, but
the reduction in communication is moderate. The future challenge is to design novel
communication-avoiding algorithms for this class of rank structured methods.

Our implementations are portable by using the two well-established libraries
BLACS and ScaLAPACK. The computational results for weak scaling, strong scal-
ing, and accuracy demonstrate the high efficiency and scalability of our algorithms.
The algorithms are very useful in solving large dense and sparse linear systems that
arise in real-world applications. For example, we have applied our new parallel HSS-
embedded multifrontal solver to the Helmholtz equation for time-harmonic seismic
inverse boundary value problems, and we were able to solve a linear system with 6.4
billion unknowns using 4096 processors in about 20 minutes. The classical multi-
frontal solver simply failed due to high demand for memory. Our techniques can also
benefit the development of fast parallel methods using the other rank structures.

Acknowledgments. We thank Francois-Henry Rouet for insightful discussions
about the parallel performance bottleneck of the code and for providing the code for
computing the residual. We thank the members of the Geo-Mathematical Imaging
Group at Purdue University, BGP, ConocoPhillips, ExxonMobil, PGS, Statoil, and
Total for partial financial support.

REFERENCES

[1] T. Bella, Y. Eidelman, V. Gohberg, and I. Olshevsky, Computations with quasiseparable
polynomials and matrices, Theoret. Comput. Sci., 409 (2008), pp. 158–179.

[2] L. S. Blackford, J. Choi, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-

marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley,
ScaLAPACK Users’ Guide, Software Environ. Tools, SIAM, Philadelphia, 1997.

[3] BLACS. http://www.netlib.org/blacs.
[4] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with

applications, Eng. Anal. Bound. Elem, 27 (2003), pp. 405–422.
[5] S. Börm and W. Hackbusch, Data-Sparse Approximation by Adaptive H2-Matrices, Technical

report, Max Planck Institute for Mathematics, Leipzig, Germany, 2001.
[6] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and

D. White, Some fast algorithms for sequentially semiseparable representations, SIAM J.
Matrix Anal. Appl., 27 (2005), pp. 341–364.

[7] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

[8] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Softw., 9 (1983), pp. 302–325.

[9] Y. Eidelman and I. Gohberg, On a new class of structured matrices, Integral Equations
Operator Theory, 34 (1999), pp. 293–324.

[10] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Hierarchical
matrix representation, Comm. Pure Appl. Math., 64 (2011), pp. 697–735.

C544 WANG, LI, XIA, SITU, AND DE HOOP

[11] J. A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363.

[12] G. H. Golub and C. V. Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,
Baltimore, MD, 1996.

[13] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing qr
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[14] W. Hackbusch, L. Grasedyck, and S. Börm, An introduction to hierarchical matrices, Math.
Bohem., 127 (2002), pp. 229–241.

[15] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: Application
to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.

[16] W. Hackbusch, B. Khoromskij, and S. A. Sauter, On H2-Matrices, Lectures on Appl.
Math., Springer, Berlin, 2000, pp. 9–29.

[17] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices, Computing, 62 (1999), pp. 89–108.

[18] Integrated Performance Monitoring: IPM, http://ipm-hpc.sourceforge.net.
[19] LAPACK—Linear Algebra PACKage, http://www.netlib.org/lapack.
[20] Message Passing Interface Forum, http://www.mpi-forum.org.
[21] ScaLAPACK—Scalable Linear Algebra PACKage, http://www.netlib.org/scalapack.
[22] R. Thakur, R. Rabenseifner, and W. Gropp, Optimization of collective communication

operations in MPICH, Int. J. High Performance Comput. Appl., 19 (2005), pp. 49–66.
[23] R. Vandebril, M. Van Barel, G. Golub, and N. Mastronardi, A bibliography on semisep-

arable matrices, Calcolo, 42 (2005), pp. 249–270.
[24] S. Wang, M. V. de Hoop, and J. Xia, Seismic inverse scattering via Helmholtz operator

factorization and optimization, J. Comput. Phys., 229 (2010), pp. 8445–8462.
[25] S. Wang, M. V. de Hoop, and J. Xia, On 3D modeling of seismic wave propagation via a

structured massively parallel multifrontal direct Helmholtz solver, Geophys. Prospect., 59
(2011), pp. 857–873.

[26] S. Wang, M. V. de Hoop, J. Xia, and X. S. Li, Massively parallel structured multifrontal
solver for time-harmonic elastic waves in 3D anisotropic media, Geophys. J. Int., 91
(2012), pp. 346–366.

[27] S. Wang, J. Xia, M. V. de Hoop, and X. S. Li, Massively parallel structured direct solver
for equations describing time-harmonic qP-polarized waves in TTI media, Geophysics, 77
(2012), pp. T69–T82.

[28] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large
structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–
1411.

[29] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 2010 (2010), pp. 953–976.

[30] J. Xia and M. Gu, Robust approximate cholesky factorization of rank-structured symmetric
positive definite matrices, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2899–2920.

[31] J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, SIAM
J. Sci. Comput., 35 (2012), pp. A832–A860.

[32] J. Xia, On the complexity of some hierarchical structured matrix algorithms, SIAM J. Matrix
Anal. Appl., 33 (2012), pp. 388–410.

[33] Y. Xi, J. Xia, S. Cauley, and V. Balakrishnan, Superfast and stable structured solvers for
Toeplitz least squares via randomized sampling, SIAM J. Matrix Anal. Appl., submitted.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

