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SUMMARY

This paper discusses some applications of statistical condition estimation (SCE) to the problem of solving
linear systems. Specifically, triangular and bidiagonal matrices are studied in some detail as typical of
structured matrices. Such a structure, when properly respected, leads to condition estimates that are
much less conservative compared with traditional non-statistical methods of condition estimation. Some
examples of linear systems and Sylvester equations are presented. Vandermonde and Cauchy matrices
are also studied as representative of linear systems with large condition numbers that can nonetheless be
solved accurately. SCE reflects this. Moreover, SCE when applied to solving very large linear systems by
iterative solvers, including conjugate gradient and multigrid methods, performs equally well and various
examples are given to illustrate the performance. SCE for solving large linear systems with direct methods,
such as methods for semi-separable structures, are also investigated. In all cases, the advantages of using
SCE are manifold: ease of use, efficiency, and reliability. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The need to estimate the condition or sensitivity of numerical problems is one of the most funda-
mental issues in numerical analysis. Together with knowledge of the underlying stability of the
algorithm employed to solve a problem, a good condition estimate can be used to provide a means
to say something quantitative about the accuracy of a computed solution.

Many methods are known for estimating the condition of a linear system Ax=b with A∈Rn×n

and b∈Rn , and rigorous inequalities are known for many of them. Statistical condition estimation
(SCE) has been introduced in [1] and applied to linear systems in [2]. By not focusing on rigorous
inequalities, SCE has been found to be entirely as reliable as competing methods and, moreover,
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490 A. J. LAUB AND J. XIA

is much better at respecting structures that may be found in many of the problems. Structured
perturbations for linear systems have attracted much attention recently (see [3–5], for example).
SCE provides a systematic way of estimating structured condition numbers. Moreover, SCE is
every bit as competitive on efficiency grounds when specialized to linear systems. Application of
the SCE method itself does not require linearity. Both componentwise and normwise condition
estimates can be provided by SCE.

The idea of SCE can be illustrated with a general real-valued function f :Rr →R. By Taylor’s
theorem, we have

f (p+�z)− f (p)=�dTz+O(�2)

where � is small, ‖z‖22=1, and dT≡∇ f (p) is the gradient of f . It is clear that the following
inequality is true up to first order in �

| f (p+�z)− f (p)|≈�‖d‖2 (1)

That is, ‖d‖2 can be considered as a local condition number that gives a good approximation error
�‖d‖2 in numerical computations of f (p) (with � on the order of the machine epsilon �mach).
According to [1], if z is selected uniformly and randomly from the unit r -sphere Sr−1 (denoted as
z∈U(Sr−1)) and then normalized, then the expected value E(|dTz|/wr ) is ‖d‖2, where wr is the
Wallis factor [1]. We can then use �=|dTz|/wr as a condition estimator. The accuracy is given by
the probability relationship [1]:

Pr(‖d‖2/�����‖d‖2)≈1− 2

��
, �>1

To increase the accuracy, multiple samples of z( j) can be used [1]. For example, a 2-sample
estimator is given by �(2) =(w2/wr )

√|dTz(1)|2+|dTz(2)|2, where [z(1), z(2)] is orthonormalized
after z(1) and z(2) are generated. The accuracy of �(2)

i is

Pr(‖d‖2/���(2)��‖d‖2)≈1− �

4�2
, �>1

The results can be extended to vector-valued functions f :Rr →Rn . By Taylor’s theorem, we
have

f (p+�z)− f (p)

�
=Dz+O(�)

where D≡Df (p)=(� fi/�p j )∈Rn×r is the Fréchet derivative of f at p. (Later we will use
Df (p; z)=Df (p)z to denote the Fréchet derivative of f with respect to p evaluated in the direction
of z.) Let D≡[d1, . . . ,dn]T. The SCE estimate for the i th entry of f is given by �i =|dTi z|/wr .

A 2-sample SCE estimate takes the form �(2)
i =(w2/wr )

√|di z(1)|2+|di z(2)|2. For convenience,
for the entire solution vector, we can define the following 2-sample componentwise condition
estimator:

�(2)
csce=

w2

wr

√
|Dz(1)|2+|Dz(2)|2

which is a condition vector for the n solution components. A general k-sample SCE estimator can
be similarly defined.
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APPLICATIONS OF STATISTICAL CONDITION ESTIMATION 491

In particular, we are interested in the situation where f is defined by the problem of solving
a structured linear system. Assume that A and b are structured and depend on r parameters
p1, . . . , pr . We may assume a structure map

�(p)≡[�A(p),�b(p)]=[A,b], p∈P=Rr (2)

Note that � can be either linear or nonlinear compared with linear or affine maps in [2]. (We
say that the system is linearly or nonlinearly structured.) We exploit structured perturbations by
perturbing each pi to pi +�zi . We represent the problem of solving the linear system as

x= A−1b=�A(p)−1�b(p)≡ f (p)

The condition of f at p can be determined by the Fréchet derivative Df (p; z), which, according
to Section 2.1, is given by A−1(D�b(p; z)−D�A(p; z)x). We then have the following k-sample
structured SCE algorithm based on the multiple-sample SCE algorithm in [2].
Algorithm 1 (k-sample componentwise structured SCE for x= A−1b)

1. Generate z(1), . . . , z(k) ∈U(Sr−1). Orthonormalize [z(1), . . . , z(k)] to obtain [ẑ(1), . . . , ẑ(k)].
Replace each z(i) by ẑ(i).

2. Calculate u(i) = A−1(D�b(p; z(i))−D�A(p; z(i))x), i=1, . . . ,k, where x= A−1b (usually an
approximate solution).

3. Calculate the k-sample componentwise SCE condition vector:

�(k)
csce=

wk

wr

√
|u(1)|2+·· ·+|u(k)|2 (3)

On the other hand, SCE can also estimate the regular Frobenius-norm condition number �F(A)=
‖A‖F‖A−1‖F (nonstructured). It is shown in [6] that for a matrix B∈Rn the expected value of
‖Bu‖2, where v∈Rr has entries in N (0,1), is equal to wn‖B‖F. Thus, by letting B= A−1 we
have the following algorithm [2].
Algorithm 2 (k-sample SCE for estimating �F(A)=‖A‖F‖A−1‖F)

1. Generate z(1), . . . , z(k) ∈U(Sr−1). Orthonormalize [z(1), . . . , z(k)] to obtain [ẑ(1), . . . , ẑ(k)].
Replace each z(i) by ẑ(i).

2. Solve

Au(i) = z(i), i=1, . . . ,k (4)

3. Calculate the k-sample Frobenius-norm SCE condition estimate

�(k)
fsce=

wk

wn
‖A‖F

√
‖u(1)‖22+·· ·+‖u(k)‖22 (5)

This algorithm is especially useful for large systems where traditional condition estimators can
be expensive. Usually, k=1 or 2 is sufficient for both Algorithms 1 and 2.
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492 A. J. LAUB AND J. XIA

The purpose of this paper is to provide additional examples of structured (possibly large) linear
systems, illustrate the performance of SCE on such systems, and urge the use of SCE when
appropriate. We have two major tasks: one is to consider linear systems depending both linearly
and nonlinearly on parameters and the other is to improve the efficiency of SCE for large systems
by efficiently approximating the solution u(i) in (4) in various situations. MATLAB codes for SCE
have been developed and are available from the authors.

The cost of a 1-sample SCE is generally no more than the work of solving the system. In fact,
in direct solutions of the problem, a 1-sample SCE needs only one linear solve that is usually
much faster than the matrix factorization. When iterative methods are used in SCE, the number
of iterations is usually far less than that required for the solution, since only modest accuracy
is desired. SCE is also cheaper than some other methods such as the one-cycle power method
estimate of the 2-norm condition where two linear solves are needed.

This paper is organized as follows. In Section 2, we work on some general linearly or nonlinearly
structured matrices. Examples including tridiagonal matrices, bidiagonal matrices, Vandermonde
matrices, and Cauchy matrices are presented. Some linear system examples and Sylvester equation
examples are presented. Section 3 discusses SCE based on some direct and iterative algorithms
for large linear systems such as the conjugate gradient (CG) method, the multigrid method, and
methods based on semi-separable representations.

2. SCE FOR STRUCTURED SYSTEMS

In many situations, such as when A is structured, it is more meaningful to consider the condition
in terms of perturbations that respect the structure. Structured condition analysis has been involved
in a lot of recent work, e.g. [3–5]. As an example, Higham and Higham [3] define the structured
componentwise backward error and apply it to symmetric matrices and Toeplitz matrices as
examples. Here, we provide more applications where SCE clearly reflects the structured conditions.
All these matrices are defined on certain parameters.

2.1. General structured linear systems

SCE for structured matrices was introduced in [2]. Those matrices can be viewed as linear structure
maps of certain parameters. Here, we look at general linearly or nonlinearly structured systems.
Consider linear systems of the general form:

L(A, X)= B (6)

where L is linear in A and X . (This also includes systems such as AX+X A= B. More general
affine problems of the form L(A1, A2, . . . Am, X)= B can be considered similarly.) For convenience,
we also represent the problem of solving the linear system as

X =g([A, B])=g(�(p))≡ f (p)

Given A and B we wish to determine the condition of g. The matrices A and B are structured and
depend on r parameters p1, . . . , pr . We may assume a structure map:

�(p)≡[�A(p),�B(p)]=[A, B], p∈P=Rr

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:489–513
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APPLICATIONS OF STATISTICAL CONDITION ESTIMATION 493

We perturb each pi to pi +�zi . Correspondingly, X is perturbed to X+�X̂ . Here X̂ is the desired
Fréchet derivative of the problem.

The Fréchet derivative can be derived in the following way. The linear system (6) is perturbed
to L(�A(p+�z), X+�X̂)=�B(p+�z). Using the approximation �(p+�z)≈�(p)+�D�(p; z), we
have

L(�A(p)+�D�A(p; z), X+�X̂)≈�B(p)+�D�B(p; z) (7)

Expand (7) by the linearity of L , divide by �, and let �→0. We obtain the following Fréchet
relation:

L(�A(p), X̂)+L(D�A(p; z), X)=D�B(p; z) (8)

which provides X̂ .
In particular, for the linear system Ax(= L(A, x))=b, (8) leads to

X̂ = A−1(D�b(p; z)−D�(p; z)x)
Here, without loss of generality, we assume that b is not structured and is directly perturbed to
b+�b̂. That is, �(p)≡�A(p)= A, and the Fréchet derivative of f (p)= x= A−1b evaluated in the
direction z is given by

Df (p; z)= A−1(b̂−D�(p; z)x) (9)

Given a structured matrix, we can choose a � and thus determine D�(p; z) to obtain Df (p; z). After
we obtain the Fréchet derivative (9), SCE applies similarly as discussed in [2] (see Algorithm 1).
In SCE, we preserve the matrix structure by working with perturbations in P and then mapping
the Fréchet derivative D�(p; z) to the matrix structure.

2.2. SCE for large linearly structured matrices

We first investigate some classical examples of large linearly structured matrices that have been
used in other testing of condition estimators. Note that for linear structures D�(p; z)=�(z) in (9).
The SCE estimate is used to compute an approximate forward error, which is compared with the
forward error FERR obtained by LAPACK [7]. We also discuss various other types of condition
for the problems.

2.2.1. Upper triangular matrices. An important class of structured matrices is upper triangular
matrices. They are basic to, e.g. LU factorizations.

Example 1
Let A∈Rn×n be an upper triangular matrix generated by computing the QR factorization of a
random matrix whose elements are uniformly distributed on [−1,1]. We consider the condition of
x= A−1b, where b is generated by multiplying A by the exact solution x=[1, . . . ,1]T.

Table I shows the actual forward error maxn |x− x̂ |, the approximate errors (or error bounds)
FERR (from LAPACK), and �machmaxn �(1)

csce (from SCE with � in (1) of order �mach which
approximates the actual perturbation in numerical computations). Algorithm 1 is used to compute
the SCE condition vector �(k)

csce in (3). Since �(k)
csce is a vector of n componentwise estimates, only
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494 A. J. LAUB AND J. XIA

Table I. Errors for Example 1.

n maxn |x− x̂ | FERR �machmaxn �(1)
csce

1000 8.4E−15 6.8E−11 5.3E−15
2000 1.6E−14 3.0E−10 1.5E−14
4000 1.9E−14 1.3E−9 3.0E−14

maxn �(k)
csce is given. We can see that FERR is usually too pessimistic. In fact, a regular triangular

solver applied to such systems gives very accurate results. By contrast, SCE respects this structure
by perturbing only the upper triangular part. SCE gives more realistic condition estimates. For
example, for n=4000 we have maxn �(2)

csce=1.4×102. On the other hand, the Skeel condition
number is �skeel=2.9×103. In fact, the problem is considered to be ill-conditioned by condition
estimators such as MATLAB routines rcond (which uses LAPACK condition estimators xGECON
based on Higham’s modification of Hager’s method [8]) and condest (which is based on Hager’s
method and a block generalization by Higham and Tisseur [9]). Both 1/rcond and condest
measure normwise conditions and can be conservative. For this example with n=4000, they both
give an estimate of 5.4×107. SCE perturbs only the upper triangular part instead of the entire
matrix as many other estimators do. Of course, this phenomenon is easily detected by a person.
However, the difficulty arises when such a detection is ‘automatic’ as, for example, may happen
if other software is doing the checking.

In addition, SCE is also very efficient. For n=4000, the SCE MATLAB routine takes only about
1
5 th the time of the MATLAB built-in functions rcond or condest.

2.2.2. Upper bidiagonal matrices. Even more dramatic is the case of, for example, upper bi-
diagonal matrices.

Example 2
Consider the n×n matrix A

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

1 1

1
. . .

. . . 1

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A−1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 · · · (−1)n+1

1 −1
...

1
. . .

...

. . . −1

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

As before, we look at the conditions of x= A−1b, where b is generated by multiplying A with x
whose entries are uniform random numbers on [−1,1].

The matrix A is used in [10] as a counterexample to show that Hager’s method gives poor
condition estimates. It is easy to see that �1(A)=2n. Therefore, in this sense A is ill-conditioned
for large n. This is further supported by the condition estimates from 1/ rcond and condest.
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However, in practice Ax=b can be accurately solved with backward substitution. This is precisely
reflected by the SCE estimates.

SCE can maintain the structural restrictions in different ways. The matrix A can be defined in
terms of different types of parameters. For example, we can consider A to be a general upper
triangular matrix, a bidiagonal matrix, a general upper bidiagonal matrix, a Toeplitz matrix with
only two nonzero diagonals, or a matrix defined by a single parameter (i.e. 1). Correspondingly,
we have different choices of perturbations �A in SCE, where the entries of �A have absolute
values bounded by the machine precision �mach:

(i) �A is an upper triangular matrix;
(ii) �A is an upper bidiagonal matrix;
(iii) �A has the following structure:

�A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�a1 �a2 0

�a1
. . .

. . . �a2

0 �a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(iv) �A has the following structure:

�A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�a �a 0

�a
. . .

. . . �a

0 �a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We compute SCE componentwise condition estimates �(1)
csce with these choices of �A for different

matrix sizes n. Table II presents the approximate forward errors.
We see that, with all choices of �A, the error estimate �machmaxn �(1)

csce is more reliable than
FERR. Again, we can compare the condition estimates from different estimators. For n=4000, we

Table II. Errors for Example 2.

�machmaxn �(1)
csce

n maxn |x− x̂ | FERR Choice (i) Choice (ii) Choice (iii) Choice (iv)

1000 7.8E−16 8.1E−11 7.7E−14 1.4E−14 1.1E−14 4.9E−15
2000 8.9E−16 3.3E−10 1.2E−13 2.8E−14 3.4E−14 1.1E−14
4000 2.8E−15 2.9E−9 3.0E−13 2.2E−14 2.2E−14 2.1E−14
8000 3.4E−15 5.3E−9 1.3E−12 2.9E−14 2.7E−14 3.5E−14
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have maxn �(1)
csce=98.5 with choice (ii). On the other hand, the Skeel condition number is 6.6×103.

Also 1/rcond and condest return the estimates of 4.4×103 and 8.0×103, respectively.
This example illustrates that carefully chosen parameters are helpful for structured SCE. For

the first choice of �A, the entire upper triangular part with r = 1
2n(n+1) entries is perturbed and

the estimate is more conservative than those from the other three choices. That is, choices (ii),
(iii), and (iv) respect the structures better. In addition, good choices of parameters can also save
on cost and storage. SCE with choices (ii), (iii), or (iv) can be applied to large matrices for which
other routines such as 1/rcond and condest have trouble due to speed or memory issues. In
general, choices (iii) and (iv) are more efficient than (ii).

2.2.3. Sylvester equation with triangular coefficient matrices. Consider the linear problem (6)
where L is defined by two coefficient matrices T ∈Rm×m and R∈Rn×n:

L(T, R, X)=TX+XR

The system L(T, R, X)= B is a Sylvester equation:

TX+XR= B (10)

Sylvester equations play an important role in control theory, signal processing, invariant subspace
computation, numerical solution of differential equations, and many others. Equation (10) can be
rewritten as

Avec(X)=vec(B)

where A= In⊗T +RT⊗ Im , and vec(·) denotes the column vector formed by stacking the columns
of a matrix from left to right.

Condition estimators for L or A= In⊗T +RT⊗ Im such as the one in [11] compute a condition
number for L or A. The cost is usually of the same order as the solution cost for the equation.
Here we show that, with nearly the same amount of work (for solving an extra Sylvester equation
and computing some matrix products), SCE can obtain a condition estimate matrix that indicates
the sensitivity of the solution entries. In addition, SCE gives less conservative condition estimates,
especially for structured problems. We consider (10) in a structured form, that is, T is lower
triangular and R is upper triangular. Such a form is important in the Bartels–Stewart algorithm
[12] for solving (10).

Example 3
Consider the example in [13].

T =diag(1,2, . . . ,m)+Nm, R=2−t In−diag(1,2, . . . ,n)+NT
n

where t is a scalar, and

Nk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1 0

1 1 0

...
...

. . .

1 1 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
k×k
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For simplicity, let m=n. It is clear that

‖L‖‖L−1‖ ≡ ‖A‖2‖A−1‖2�n ·2t

We choose n=20 and t=20 and generate B by letting X have uniformly random entries in [0,1].
Then this estimate gives a lower bound of 2.1×107. The actual condition number ‖A‖2‖A−1‖2
is 4.5×109. These results indicate the poor condition of the problem. However, we find that most
of the solution entries can be computed quite accurately by numerical algorithms such as the
Bartels–Stewart algorithm. See Figure 1 for the errors in the solution entries and the corresponding
entrywise SCE condition numbers. SCE clearly reflects the sensitivity of the solution entries.

Example 4
Consider another Sylvester equation where T and R are generated as in Example 1. Generate B
by letting X have uniformly random entries in [0,1]. In Table III, we report the maximum of the
errors of the solution entries max |vec(X)−vec(X̂)|, the maximum SCE condition number of the
entries max�(1)

csce, and the traditional condition number �2(A)=‖A‖2‖A−1‖2. We can see that the
traditional condition number is too conservative, whereas the SCE condition is more reasonable.
In addition, if we look at the individual SCE condition numbers for the entries, we can observe

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

100

10–2

10–6

10–8

10–10

10–12

10–14

10–16

10–18

102

104

106

108

1010
Errors in solution entries

Entry index of vec (X) Entry index of vec (X)

SCE condition estimate for solution entries

Figure 1. Errors in the entries of the numerical solution and the SCE condition estimate
for the Sylvester system in Example 3.

Table III. Errors, SCE condition estimates, and traditional condition numbers for Example 4.

n 10 20 30 40 50

max |vec(X)−vec(X̂)| 3.1E−12 7.2E−9 5.1E−8 5.9E−7 4.4E−6

max�(1)
csce 5.2E3 1.7E6 3.2E7 9.4E10 2.4E11

�2(A) 6.1E6 5.4E10 6.1E11 7.4E12 1.3E15
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a phenomenon similar to the previous example. That is, the SCE condition numbers reflect the
accuracy of the entries much more accurately.

2.2.4. Other standard (structured) matrices. SCE can obtain similar results for many other
common structured problems. The following are some examples:

1. An upper Hessenberg matrix H generated by computing the factorization B=PHPT of
a random matrix B whose elements are uniformly distributed on [−1,1], where P is an
orthogonal matrix.

2. Pei’s matrix [14]
A=�I +vvT, �>0, v=[1, . . . ,1]T

3. A symmetric Toeplitz matrix whose entries are uniformly distributed on [−1,1].

2.3. SCE for nonlinearly structured matrices

The structures discussed in [2] and also in Section 2.2 are linear maps of the parameters. In fact,
SCE can also be applied to many linear systems with nonlinear structure maps. Here, we would
like to investigate the componentwise sensitivity of solutions to some typical nonlinearly structured
linear systems.

2.3.1. Vandermonde matrices. Consider the Vandermonde matrix

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

v1 v2 · · · vn

v21 v22 · · · v2n

...
...

...

vn−1
1 vn−1

2 · · · vn−1
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈Rn×n (11)

defined by n distinct scalars v1, . . . ,vn ∈R, and the associated linear systems

primary: V x=b

or

dual: V Tx=b

The Vandermonde matrix is nonsingular according to the formula (see, e.g. [15])
detV = ∏

i, j,i> j
(vi −v j )

which is easy to verify. Vandermonde systems are traditionally considered to be very ill-conditioned.
In fact, it is well known that the condition number �∞(V )=‖V ‖∞‖V−1‖∞ has lower bounds
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growing exponentially in n as O(2n) [16]. However, accurate solutions to Vandermonde systems
are still possible. Björck and Pereyra present some examples that can be solved with good accuracy
by their algorithm [17]. Higham gives an error analysis of the Björck–Pereyra algorithm and shows
why accurate solutions are possible [18].

When SCE is applied to the Vandermonde system V x=b, we can evaluate the Fréchet derivative
(9) easily. Note that p j ≡v j in (9) and D�(p; z)≡D is now a matrix with entries

di j =
{
0 if i=1

(i−1)vi−2
j v̂ j otherwise

where each v j is perturbed to v j +�v̂ j .

Example 5
Solve the problem V x=b, where v j = j/n, j =1, . . . ,n, and b is generated by V Tx with the
entries of x being random numbers chosen from a normal distribution.

Although the matrix is very ill-conditioned for large n, the numerical solution x̃ obtained by
Gaussian elimination with partial pivoting has good accuracy in certain entries. For example, for
n=15, the matrix has �∞(V ) on the order of 1012. However, some entries of x̃ have up to 11 digits
of accuracy. See Figure 2 for the errors in the solution entries and the corresponding componentwise
SCE condition estimate. The componentwise SCE condition numbers precisely reflect the accuracy
in the solution entries. Standard condition estimators such as the Skeel componentwise condition
can be very conservative. Note that the Björck–Pereyra algorithm can be used in the estimations
for solving Vandermonde systems with O(n2) complexity.

1 3 5 7 9 11 13 15
10–12

10–11

10–10

10–9

10–8

10–7

10–6

10–5

10–4

Entry index Entry index

Errors in solution entries

1 3 5 7 9 11 13 15
104

105

106

107

108

109

1010

1011

1012
SCE condition estimate for solution entries

Figure 2. Errors in the entries of the numerical solution and the SCE condition estimate for
a Vandermonde system with n=15 in Example 5.
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2.3.2. Cauchy matrices. As another example now consider the Cauchy matrix

C=
(

1

si − t j

)
1�i, j�n

(12)

defined by 2n pairwise distinct parameters si , t j ∈R. It is easy to verify that C is nonsingular by
an explicit formula for its determinant (see, e.g. [19]):

detC=
∏

i< j (si −s j )
∏

i< j (ti − t j )∏
i, j (si − t j )

With different choices of si and t j , the structure of the C matrix can be a symmetric Hankel
matrix, Hilbert matrix, or others. For these nonlinear structures, we can have an SCE procedure
similar to the one in the previous section. This time D�(p; z)≡D in the Fréchet derivative (9) is
a matrix with entries

di j =− ŝi − t̂ j
(si − t j )2

where the parameters si and t j are perturbed to si +�ŝi and t j +�t̂ j , respectively. Similarly, results
can be obtained for a Cauchy-like matrix

C̃=
(

uiv j

si − t j

)
1�i, j�n

Example 6
Solve Cx=b, where C is defined by si = i−1, t j =− j, i, j =1, . . . ,n, and b is generated by Cx
with the entries of x to be random numbers chosen from a normal distribution.

For this example, we observe a phenomenon very similar to that in Example 5. That is, again,
the SCE componentwise estimates precisely reflect the accuracy in the solution entries. Since the
results are very similar to those in Figure 2, we skip the details.

3. SCE ALGORITHMS FOR LARGE MATRICES

In this section we consider reducing the cost of SCE by efficiently approximating the solutions
of related linear systems in Algorithms 1 and 2. For simplicity we consider system (4), which is
used to estimate the Frobenius-norm condition number �F.

3.1. SCE with iterative methods

It is usually expensive to estimate directly the condition of large discretized problems. The effi-
ciency of SCE for large linear systems is outlined in [2]. For the purposes of condition estimation,
the cost for approximating the solution to (4) is usually small compared with the cost for accu-
rate system solving. In an iterative method for solving (4), the error vector satisfies an equation
ek+1=Mek where M=−D−1N is defined by a splitting A=D+N . Usually the spectral radius
	(M) determines the speed of convergence of the method. In SCE we need only solve (4) accu-
rately enough to approximate the norm of the true solution [2]. If we start with u0=0, then
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‖ek‖2≈	k‖e0‖2≈	k‖u‖2. Therefore, to approximate ‖u‖ to within a relative accuracy �, we need
to iterate only k steps such that 	k<�. For the purposes of SCE, a relatively large �, say, 0.9 is
sufficient. Clearly, the reduction in the accuracy � by a square root leads to the saving of half of
the iterations.

A model problem from the 1D Poisson equation with Dirichlet boundary conditions is considered
in [2]. The discretized matrix A∈Rn×n is a tridiagonal matrix:

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13)

In [2] the solution to Au= z was illustrated with SOR. However, for such large sparse matrices we
can use other methods with better convergence such as the CG method and the multigrid method
[20]. We discuss each below.

3.1.1. SCE with the CG method. The CG method is widely used in solving linear systems with
symmetric positive definite (SPD) coefficient matrices A. It is attractive for large problems such as
discretized systems. A well-known bound for the error ek in the solution after k steps of iterations
is [21]

‖ek‖A

‖e0‖A
�2

(√
�2(A)−1√
�2(A)+1

)k

(14)

where ‖ek‖A=
√
eTk Aek . That is, in practice we have the following bound for the number of CG

iterations needed to reduce the error by a factor ε:

k∗ =
⌈
1

2

√
�2(A) ln

2

ε

⌉
(15)

More extensive investigations of the convergence behavior of CG are available (e.g. [22–24]). As
an example, when the matrix has small isolated eigenvalues, an improved bound is [25]

k∗ =
⌈
1

2

√

n

p

(
ln

2

ε
+

r−1∑
i=1

ln

r

i

)⌉
+(r−1)

⎡
⎢⎢⎢
√


n

r

+1

⎤
⎥⎥⎥ (16)

where 
1� · · ·�
r� · · ·�
n are the eigenvalues of A, and r is an integer (number of isolated small
eigenvalues).

These error analyses give us a sense about the role that ε plays in the iterations. A smaller ε

often requires more iterations. On the other hand, when CG is used in SCE a relatively large ε is
usually sufficient, which leads to fast convergence.

For the model problem (13) with n=104, the SCE method estimates ‖A−1‖F by solving Au= z
in Algorithm 2. For such a vector z, Figure 3 displays the errors and norms of the numerical
solutions after some CG iterations with initial vector u0=0. The CG method is relatively slow in
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Figure 3. The CG method for the 1D discretized Poisson equation. The left figure shows the ratio
‖ek‖A/‖e0‖A, and the right one shows the ratio ‖uk‖2/‖u‖2, in terms of the iterations.

reducing the error norm for this example. It takes k=9147 iterations to reach ‖ek‖A/‖e0‖A�0.1.
On the other hand, it takes only k=3065 steps to estimate the norm ‖uk‖2 to within a relative
factor of about 70% of ‖u‖2. The corresponding estimate of �F(A) is �(1)

fsce=‖A‖F‖u3065‖2/�n =
1.48×109 (Algorithm 2), which is a favorable approximation of the true condition number �F(A)=
2.58×109.

Example 7
Consider the matrix A=diag(
i ) where


1=10−4, 
2=10−2, 
3=1, 
 j =1+( j−3)
99

n−3
, j =4, . . . ,n

This is an example with small isolated eigenvalues. It is used in [25] to compare the bound (16)
with the actual number of iterations.

Again we choose a vector z as in Algorithm 2 and use CG to solve Au= z for n=9900.
According to bound (16) (with r =3) after approximately k=108 steps of CG iterations, the A-norm
relative error of the solution can be reduced by ε=0.1. According to the numerical experiments,
we observe that for k=108 the norm of the numerical solution is almost identical to the true norm,
or, ‖uk‖2/‖u‖2=1. We obtain an estimate of �F(A) as �(1)

fsce=‖A‖F‖u108‖2/�n =3.13×107. The
true condition number is �F(A)=5.77×107.

In practice, for better convergence, the CG method is always used with preconditioning. To
illustrate the performance of preconditioned CG (PCG) in SCE, we consider an example of the
2D discretized Poisson equation.
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Example 8
Consider a model problem derived from the 2D Poisson equation with Dirichlet boundary condi-
tions. The discretized matrix A is a block-tridiagonal matrix

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T −I 0

−I
. . .

. . .

. . .
. . . −I

0 −I T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17)

where A∈Rn×n, T ∈Rm×m with n=m2.

Matrix A is positive definite with eigenvalues


i, j =4sin2
(

i�

2(n+1)

)
+4sin2

(
j�

2(n+1)

)
, i, j =1, . . . ,m

and eigenvectors being the columns of a matrix Z⊗Z where

Z =
(√

2

n+1
sin

i j�

n+1

)
1�i, j�m

Numerical results for n=104 with PCG are presented in Figure 4, where the preconditioner is
obtained by incomplete Cholesky factorizations with no fill-in.
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Figure 4. The CG method for the 2D discretized Poisson equation. The left figure shows the ratio
‖ek‖A/‖e0‖A, and the right one shows the ratio ‖uk‖2/‖u‖2, in terms of the iterations.

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:489–513
DOI: 10.1002/nla



504 A. J. LAUB AND J. XIA

The PCG method still takes k=99 steps to reach ‖ek‖A/‖e0‖A�10−8, but for k=17 we already
have ‖uk‖2/‖u‖2�0.74, and for k=24, ‖uk‖2/‖u‖2�0.92. The corresponding estimates of �F(A)

are 2.45×105 and 3.04×105, respectively, while the true value is �F(A)=3.01×105. To save on
the cost in SCE, we can use a preconditioner computed by incomplete Cholesky factorizations
with a large tolerance (say, 0.5).

Remark 1
Preconditioning can significantly improve the performance of CG in SCE as it can often accelerate
the convergence of CG in the initial stages. It is observed that for ill-conditioned problems CG
often converges slowly in its early stage (see, e.g. [23, 24]). A large �2(A) may incur such a delay
in convergence. In (16) the ε-independent term can be viewed as a bound for this delay. After
preconditioning, the role of ε gets more significant, and the speedup in the early stage can be more
noticeable.

Remark 2
The bounds on the number of CG iterations required in SCE are related to the condition of the
problem, which on the other hand is what SCE tries to estimate. Therefore, during the iterations
the numerical solutions can be used to obtain approximate bounds on the number of iterations
required to reach a given accuracy. The following relationship between 2-norm condition numbers
and Frobenius-norm condition numbers is then useful:

1

n
�F(A)��2(A)��F(A)

This can be easily verified by noting

1√
n
‖A‖F�‖A‖2�‖A‖F

3.1.2. SCE with the multigrid method. Multigrid was designed for PDEs and many other large
problems and can obtain the solution in O(n) operations for n unknowns. A multigrid V-cycle
updates the errors such as

ek+1 = Rw(I −PT(PAPT)−1PA)Rwek

= Mek

where Rw =1−wA/2 with w a weight in the weighted Jacobi method, and P is a restriction
matrix that maps from the current grid to a coarser grid. Multigrid is superior in that for a multigrid
V-cycle with certain w, the spectral radius 	(M)<1 is independent of grid sizes [26]. For example,
when solving the Poisson equation with Dirichlet boundary conditions (model problem (17)) with
w= 2

3 , we have 	(M)≡ 1
9 , which means, to approximate ‖u‖2 to within a relative accuracy of

89%, usually one multigrid V-cycle is sufficient. It is then clear that if multigrid is used with SCE,
we do not need to compute the spectral radius 	(M) (as is done in [2]) to estimate the accuracy
of the iterations.

In addition, noting that in a V-cycle the coarse grid sweeps are much faster than fine grid sweeps,
we can reduce the number of weighted Jacobi iterations on fine grid sweeps (or all grid levels).
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If we call the cost of weighted Jacobi iterations on the finest grid to be a work unit (WU), then
the total cost of a V-cycle is [20]

2(1+2−2+2−4+·· ·+2−2n)WU<
2

1−2−2
WU (18)

This means that if we avoid certain weighted Jacobi iterations in the V-cycle we can save a large
amount of the work.

The use of less weighted Jacobi iterations is acceptable because of the following. Assume that
we totally avoid a Jacobi step Rw at the beginning or the end of M , that is, we have a new iteration
matrix

M̂=(I −PT(PAPT)−1PA)Rw (19)

or

M̂= Rw(I −PT(PAPT)−1PA) (20)

It can be shown that 	(M̂)= 1
3 (see Appendix A.1). This indicates that one step of such a modified V-

cycle is sufficient for condition estimation. The use of (19) or (20) instead of M saves approximately
another half of the computational work (see (18)).

We use (19) with SCE for the matrix A in the above 1D model problem (13) and find that for
n=1023 the SCE Frobenius-norm estimate for �F(A) is �(2)

fsce(A)=7.4×106, which approximates
the true condition number �F(A)=8.7×106 very well. Note that in the regular multigrid method
it takes about 10 full multigrid cycles to reach a relative accuracy of about 10−8.

We further consider the 2D problem (17). One step of the modified V-cycle (19) with zero initial
vectors is used in the SCE method when each linear system is solved. The method is implemented
in MATLAB and compared with the routines rcond and condest. The timings for the routines
on a Pentium IV 2.8GHz desktop with 2GB memory are also presented (see Table IV).

Remark 3
In these results SCE slightly underestimates the true �F due to the choice of zero initial vectors in
the multigrid method. This situation does not necessarily hold in general. We can show that under-
estimations may occur, but they are not significant. For a detailed discussion, see Appendix A.2.

3.2. SCE with direct methods

In many situations the structures of matrices can be better exploited by direct methods. Sometimes
direct solvers are used because it is hard to find effective preconditioners for iterative methods.

Table IV. Condition estimates and computation time (in seconds) for Example 8.

n �1 1/rcond 1/rcond time condest condest time �F(A) �(2)
fsce(A) SCE time

1089 6.8E2 6.8E2 3.1E−1 6.8E2 4.2E−2 1.1E4 4.4E3 2.4E−3
4225 2.6E3 2.6E3 1.5E1 2.6E3 3.9E−1 8.4E4 3.4E4 5.1E−3
16 641 Out of memory 1.0E4 3.6 6.4E5 2.7E5 2.4E−2
66 049 Out of memory Out of memory 5.0E6 2.2E6 1.1E−1
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In particular, direct solvers can be efficient in multiple-sample SCE where the same coefficient
matrix is used to solve systems with different right-hand sides. Here, we take a look at a special
type of direct method based on certain rank structures, and their applications to SCE.

3.2.1. SSS/HSS matrices. Chandrasekaran et al. propose two rank structures called sequentially
semi-separable (SSS) structure and hierarchically semi-separable (HSS) structure [27, 28]. They
consider matrices with small off-diagonal numerical ranks. They have shown the efficiency of
these structures in solving many problems, especially large ones [27, 29].

Recently, they have developed strategies to maintain positive definiteness for SSS/HSS algo-
rithms. These strategies are called Schur-monotonic approximations and they have been shown
to give efficient preconditioners [30, 31]. However, they do not provide systematic estimations of
the condition numbers in the algorithms. In fact, with SCE we can obtain normwise condition
estimates very cheaply using the ideas of Schur-monotonic approximations of SPD matrices in
[30, 31]. In the meantime, the method is guaranteed to run even for very large and ill-conditioned
problems because the semi-separable approximations have the same or better positive definiteness
compared with the original matrices.

Here we consider only the situation of HSS matrices. A 4×4 block HSS matrix looks like

A=

⎡
⎢⎢⎢⎢⎢⎣

D1 U1B1V
T
2 U1R1B3W

T
4 V

T
4 U1R1B3W

T
5 V

T
5

U2B2V
T
1 D2 U2R2B3W

T
4 V

T
4 U2R2B3W

T
5 V

T
5

U4R4B6W
T
1 V

T
1 U4R4B6W

T
2 V

T
2 D4 U4B4V

T
5

U5R5B6W
T
1 V

T
1 U5R5B6W

T
2 V

T
2 U5B5V

T
4 D5

⎤
⎥⎥⎥⎥⎥⎦ (21)

where the indices are defined following the rules in [29]. Matrix (21) is a simplified version of
the original one proposed in [28]. The matrices Di ,Ui , Ri , Bi are called generators. For a general
SPD matrix A, we can approximate it with a product A=LLT where L is an HSS matrix, say, in
4×4 block form

LT=

⎡
⎢⎢⎢⎢⎢⎣

D̃1 Ũ1 B̃1Ũ
T
2 Ũ1 R̃1 B̃3 R̃

T
4 Ũ

T
4 Ũ1 R̃1 B̃3 R̃

T
5 Ũ

T
5

D̃2 Ũ2 R̃2 B̃3 R̃
T
4 Ũ

T
4 Ũ2 R̃2 B̃3 R̃

T
5 Ũ

T
5

D̃4 Ũ4 B̃4Ũ
T
5

0 D̃5

⎤
⎥⎥⎥⎥⎥⎦

In general, the system Ax=b can be solved (approximately) in O(pn2) flops, where n is the
order of A, and p is a parameter related to A and the tolerance (p is usually the maximum of
the off-diagonal numerical ranks). For the purposes of condition estimation, we can first obtain an
approximation LLT (very cheaply) and then find an approximate solution in O(cn2) complexity
where c� p (typically it is sufficient for c to be 2 or 3). This is because usually we need only the
matrices Bi and Ri to have dimension 2 or 3 in order to obtain a good approximate solution. In fact,
when the original system is solved with an HSS algorithm we can always obtain an approximation
LLT by dropping appropriate columns in the original HSS representations. This makes the cost
for the estimation O(c2n) which is the cost for solving a compact HSS system [29]. This cost is
usually minor compared with that of the system solve which costs O(pn2) for the factorization
and O(p2n) for the substitution solve.
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We can also set a large tolerance � in the generation of HSS representations, instead of setting
a fixed number of columns c. Readers are referred to [28, 29] for the details of HSS generations
with tolerances.

Example 9
We consider a matrix Ã obtained in the following way (we use the notation Ã to mean we are
considering a matrix other than the discretization matrix). Look at second-order finite-element
discretizations of the following problem defined on the unit square:

a(x, y)
�2u
�x2

+2b(x, y)
�2u
�x�y

+c(x, y)
�2u
�y2

= f (x, y)

with [
a(x, y) b(x, y)

b(x, y) c(x, y)

]
=ε I +ddT

where ε>0 and d is a unit vector. We assume a mixture of Dirichlet and Neumann boundary
conditions. The problem is solved with the nested-dissection ordering of the nodes. We consider
the condition of matrix Ã which is the last Schur complement of the discretization matrix (we
choose this matrix as it can be approximated by an HSS form with a small p). Ã is dense and SPD.

We approximate Ã by LLT where L has Ri and Bi generators of order c. Then we estimate
the Frobenius-norm condition number by SCE. In Table V we use �(k)

fsce( Ã,c) to denote the SCE
condition number with k samples and approximation Ã≈LLT.

We can see that the approximation LLT gives a very good estimate for the condition number.
For c=3 the estimates are already close to those with the original matrix A.

Example 10
Consider the 2D discrete Poisson matrices (17). Similarly, we look at the condition of matrix
Ã which is the last Schur complement in nested dissection (Table VI). (Note that we are not
considering the condition of the original A.)

Table V. Condition estimates and computatin time (in seconds) for Example 9.

n ε �F �(2)
fsce( Ã) �(2)

fsce( Ã,c) (c=2) �(2)
fsce( Ã,c) (c=3)

200 1E−8 2.6E4 2.5E4 2.3E4 2.5E4
400 1E−4 5.2E6 5.6E6 1.0E6 5.2E6

Table VI. Condition estimates for Example 10.

n �F �(2)
fsce( Ã) �(2)

fsce( Ã,c) (c=2) �(2)
fsce( Ã,c) (c=3)

511 8.4E3 8.5E3 5.2E3 7.4E3
1023 2.4E4 2.7E4 1.0E4 1.4E4
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It is also possible to consider the componentwise SCE for Ax=b, where A is an SSS/HSS
matrix, and the entries of the generators are perturbed.

Remark 4
The structures in HSS matrices are not taken into account when considering the condition estimates,
due to the difficulty in forming the Fréchet derivative D�(p; z) in (9).

3.2.2. Large discretized matrices. We can extend the ideas in Section 3.2.1 to estimate the condition
of large discretized problems from certain PDEs. Given a discretized problem we can convert it
to a series of small intermediate problems by employing some well-known techniques such as the
multifrontal method [32, 33] and nested dissection ordering [34, 35]. These intermediate problems
are usually dense. Condition estimators based on standard solvers are still expensive. In [29] some
superfast direct solvers have been developed for problems where the intermediate matrices have
small off-diagonal numerical ranks.

Here, in order to obtain fast SCE estimation, we can use solvers similar to those in [29]. In
addition, we use the approximation method in Section 3.2.1. Unlike the solvers in [29], for the
purposes of condition estimation we usually do not require those intermediate problems to have
small off-diagonal numerical ranks.

The cost of SCE using nested-dissection-based direct solvers is O(n), where n is the number
of unknowns. In fact, there are a total of l=O(log(n)) levels in nested dissection. To solve each
system, we can put the intermediate problems into two solve stages, separated by a switching level.
Before the switching level, the problems are small and standard factorizations can be used. Assume
that there are m levels before the switching level. The cost is then

∑l
k=l−m+1 4

k−1(O(2l−k))3=
O(4l2m). After the switching level, structured factorizations (for l−m levels) get involved. The
cost is

∑l−m
1 4k−1O(c22l−k)=O(4l c2/2m), where the same notation c as in Section 3.2.1 is used

to denote the maximum order of the appropriate generators in matrix approximations. The total
cost of such an approximate solver is then O(4l2m)+O(4l c2/2m), which can be approximately
minimized with m satisfying 2m ≈c. Then the total cost is O(4l c)=O(cn). In this case, the costs
before and after the switching level are approximately the same.

On the other hand, if the matrix is factorized (in O(cn) time) when the problem is originally
solved, then only O((logc)n) extra work is needed by SCE to estimate the condition. This is mainly
the cost for the substitution solve based on the structured factors obtained in the factorization stage
[29]. This also indicates another advantage of direct solvers, that is, a condition estimate can be
obtained with only a little extra work based on the existing factorization.

Again we consider A in Example 8 and use SCE to estimate �F(A). When solving related linear
systems we use the approximate solver mentioned above (superfast multifrontal method [29] with
HSS approximations). Here, we set a tolerance �. The k-sample SCE Frobenius-norm estimate is
then denoted by �(k)

fsce(A,�). We observe from Table VII that even for a relatively large � we can
still obtain condition estimates that compare favorably with the true values.

Table VII. Condition estimates for Example 8 by superfast multifrontal methods with approximations.

n �F �(2)
fsce(A) �(2)

fsce(A,�) (�=1E−1) �(2)
fsce(A,�) (�=1E−2) �(2)

fsce(A,�) (�=1E−3)

2552 4.9E6 4.0E6 3.2E6 3.8E6 6.8E6
5112 4.0E7 3.8E7 2.7E7 3.0E7 3.8E7
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APPENDIX A

A.1. Proof of 	(M̂)= 1
3 in Section 3.1

We sketch the proof of 	(M̂)= 1
3 , where M̂ is the iteration matrix given by (19). For simplicity

we consider the 1D case only, where A∈Rn×n with n=2k−1. Also, let m=2k−1−1. Note that
m=(n+1)/2−1.

Look at M̂ in detail:

M̂=[I −PT(PAPT)−1PA]R2/3

with

P=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 1 1

2 0

1
2 1 1

2

. . .
. . .

. . .

0 1
2 1 1

2

⎤
⎥⎥⎥⎥⎥⎥⎦
m×n

, A= Zn�ZT
n

where � is a diagonal matrix with diagonal entries 2(1−cos j�/(n+1)), j=1, . . . ,n; R2/3=
Zn�R Zn ≡ Zn(I − 1

3�)Zn; and Zn =(
√
2/(n+1)sin(i j�/(n+1)))1�i, j�n is the eigenvector matrix

of A satisfying Zn = ZT
n = Z−1

n . Similarly, let

Zm =
(√

2

m+1
sin

(
i j�

m+1

))
1�i, j�m

Then it is easy to verify that P= Zm�P Zn , where �P ∈Rm×n is a matrix satisfying [26]


P;i, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
8
di ≡ 1√

8

(
cos

�i

n+1
+1

)
if k= j

1√
8
ci ≡ 1√

8

(
cos

�i

n+1
−1

)
if k=2i − j

0 otherwise

(A1)

We can then express

T = Zn M̂ Zn

= {I −(Zn P
TZm)[(Zm PZn)(Zn AZn)(Zn P

TZm)]−1(Zm PZn)(Zn AZn)}(Zn R2/3Zn)

= {I −�T
R(�P��T

P)−1�P�}�R (A2)

The matrix �M has zeros on its main diagonal and antidiagonal. Therefore, one of its eigenvalues
is its entry tm+1,m+1, and the rest are formed by the eigenvalues of[

ti,i ti,n+1−i

tn+1−i,i tn+1−i,n+1−i

]
, i=1, . . . ,m (A3)
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Firstly,

tm+1,m+1=
R;m+1,m+1=1− 1

3
·2
(
1−cos

(m+1)�

n+1

)
= 1

3
(A4)

That is, 1
3 is an eigenvalue of T and thus M̂ .

Secondly, we can compute the entries in (A3) explicitly as follows. The matrix �P��T
P is a

diagonal matrix with diagonal entries

fi ≡− 1
4 (cid

2
i +c2i cn+1−i ), i=1, . . . ,m

Noting cn+1−i =−di , we have

fi ≡ 1
4 (c

2
i di −cid

2
i ), i=1, . . . ,m (A5)

Further computations show that

[
ti,i ti,n+1−i

tn+1−i,i tn+1−i,n+1−i

]
=

⎡
⎢⎢⎢⎢⎢⎣

(
1+ 1

4

cid2i
fi

)(
1+ 2

3
ci

)
1

4

ci cn+1−i di
fi

(
1+ 2

3
cn+1−i

)

1

4

c2i di
fi

(
1+ 2

3
ci

) (
1+ 1

4

c2i cn+1−i

fi

)(
1+ 2

3
cn+1−i

)

⎤
⎥⎥⎥⎥⎥⎦

i=1, . . . ,m

By (A5), and again using cn+1−i =−di ,

[
ti,i ti,n+1−i

tn+1−i,i tn+1−i,n+1−i

]
=

⎡
⎢⎢⎢⎣
1

4

c2i di
fi

(
1+ 2

3
ci

)
−1

4

cid2i
fi

(
1+ 2

3
cn+1−i

)

1

4

c2i di
fi

(
1+ 2

3
ci

)
−1

4

cid2i
fi

(
1+ 2

3
cn+1−i

)
⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

ci
ci −di

(
1+ 2

3
ci

)
− di
ci −di

(
1− 2

3
di

)
ci

ci −di

(
1+ 2

3
ci

)
− di
ci −di

(
1− 2

3
di

)
⎤
⎥⎥⎥⎦ (A6)

whose eigenvalues are


M̂;i,1 = 0


M̂;i,2 = ci
ci −di

(
1+ 2

3
ci

)
− di
ci −di

(
1− 2

3
di

)
=1+ 2

3

c2i +d2i
ci −di
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Using (A1) we have


M̂;i,2=1+ 2

3

2+2cos2
�i

n+1
−2

=1− 2

3

(
1+cos2

�i

n+1

)

Clearly,

− 1
3<
M̂;i,2<

1
3

Therefore, M̂ has one eigenvalue 1
3 , and the rest with absolute values bounded by

1
3 ; thus 	(M̂)= 1

3 .

A.2. Proof for Remark 3

We show that SCE with the modified multigrid V-cycle iteration may slightly underestimate the
condition numbers, as mentioned in Remark 3.

The iteration scheme can be represented in the form

xi+1= M̂xi +r

where M̂ is given by (19). One step of the modified V-cycle with x0=0 yields

x1=r

On the other hand, the exact solution x satisfies

x= M̂x+r

or

x=(I − M̂)−1r

We would like to show ‖x1‖2�‖x‖2, or
‖(I − M̂)x‖2�‖x‖2

By (A2) this is equivalent to

‖(I −T )x‖2�‖x‖2
Recall that T is a matrix with nonzeros only on the main diagonal and antidiagonal, and the
nonzero entries are explicitly given by (A6). Thus,

‖(I −T )x‖2 =
∣∣∣∣ m∑
i=1

{[(1− ti,i )
2+ t2n+1−i,i ]x2i +[t2i,n+1−i

+(1− tn+1−i,n+1−i )
2]x2n+1−i }+(1− tm+1,m+1)

2x2m+1

∣∣∣∣
1/2

According to (A4),
(
1− tm+1,m+1

)2
x2m+1= 4

9 x
2
m+1�x2m+1. Then if we can show [(1− ti,i )2+

t2n+1−i,i ]x2i �x2i , i=1, . . . ,m, or

(1− ti,i )
2+ t2n+1−i,i�1, i=1, . . . ,m
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we are done. In fact,

(1− ti,i )
2+ t2n+1−i,i =

((
1+ ci

2

)2+
(ci
2

)2)(
1+ 2

3
ci

)2

= 1

2

(
1+cos2

�i

n+1

)(
1

3
+ 2

3
cos

�i

n+1

)2

and 0�ci�1 for i=1, . . . ,m; we can easily verify that

(1− ti,i )
2+ t2n+1−i,i� 1

2 (1+1)( 13 + 2
3 )

2=1

The above procedure also shows that ‖x1‖2 is not much smaller than ‖x‖2, which means that
although SCE with the modified V-cycle may possibly underestimate the condition number, it does
not underestimate it by too much.
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