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Abstract. In this paper we develop a fast direct solver for large discretized linear systems us-
ing the supernodal multifrontal method together with low-rank approximations. For linear systems
arising from certain partial differential equations such as elliptic equations, during the Gaussian
elimination of the matrices with proper ordering, the fill-in has a low-rank property: all off-diagonal
blocks have small numerical ranks with proper definition of off-diagonal blocks. Matrices with this
low-rank property can be efficiently approximated with semiseparable structures called hierarchi-
cally semiseparable (HSS) representations. We reveal the above low-rank property by ordering the
variables with nested dissection and eliminating them with the multifrontal method. All matrix
operations in the multifrontal method are performed in HSS forms. We present efficient ways to or-
ganize the HSS structured operations along the elimination. Some fast HSS matrix operations using
tree structures are proposed. This new structured multifrontal method has nearly linear complexity
and a linear storage requirement. Thus, we call it a superfast multifrontal method. It is especially
suitable for large sparse problems and also has natural adaptability to parallel computations and
great potential to provide effective preconditioners. Numerical results demonstrate the efficiency.
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1. Introduction. In many computational and engineering problems it is critical
to solve large structured linear systems of equations. Different structures come from
different natures of the original problems or different techniques of discretization,
linearization, or simplification. It is usually important to take advantage of the special
structures or to preserve the structures when necessary. Direct solvers often provide
good chances to exploit the structures. Direct methods are attractive also due to their
efficiency, reliability, and generality.

Here we are interested in the discretization of differential equations such as elliptic
PDEs on a two-dimensional (2D) finite element mesh (grid)M. We consider discretiza-
tions with a regular mesh or, more generally, discretizations with a well-shaped mesh
[37, 38, 42], so that nested dissection or its generalizations [19, 20, 23, 32, 42] can be
used. The finite element system

(1.1) Ax = b

associated with the discretization on M is considered, where A is symmetric positive
definite (SPD). Such matrices arise, say, when we apply finite difference or finite ele-
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SUPERFAST MULTIFRONTAL METHOD FOR LINEAR SYSTEMS 1383

ment techniques to solve 2D linear boundary value problems such as elliptic boundary
problems on rectangular domains.

For the purpose of presentations, we focus on 2D problems and demonstrate the
potential of our ideas, although it is possible to generalize to other problems. For
convenience, we will refer to the following model problem at some places.

Model Problem 1.1. We use the 2D discrete Laplacian on a 5-point stencil as a
model problem, where A is a 5-diagonal n2 × n2 sparse matrix:

(1.2) A =

⎛
⎜⎜⎜⎜⎝

T −I 0

−I
. . .

. . .

. . .
. . . −I

0 −I T

⎞
⎟⎟⎟⎟⎠ , T =

⎛
⎜⎜⎜⎜⎝

4 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 4

⎞
⎟⎟⎟⎟⎠ .

Note we can also use the 9-point or other stencils, since the actual entries or nonzero
patterns are not referenced in the descriptions of our method below.

To factorize the discretized matrix A, people typically first order the mesh points.
Direct factorization of such a matrix with rowwise or columnwise mesh ordering takes
O(n4) flops [19]. The nested dissection ordering [19] gives an elimination scheme with
O(n3) cost, which is optimal for any ordering in exact arithmetic [31] (ignoring any
special techniques such as Strassen’s algorithm [41]). But O(n3) is still large for a big
n. Sometimes, iterative methods are cheaper if effective preconditioners are available.
But for hard problems good preconditioners can be difficult to find.

1.1. Superfast multifrontal method. Direct solvers have been considered ex-
pensive because of the large amount of fill-in even if the original matrix is sparse.
To effectively handle the fill-in, some people approximate full matrices in compli-
cated problems with structured matrices such as H-matrices [26, 28, 29], H2-matrices
[3, 27, 30], quasiseparable matrices [17], semiseparable matrices [7, 9, 10], etc. Sim-
ilarly, when solving discretized PDEs such as elliptic equations, we can develop fast
direct solvers by exploiting the rank property and by approximating dense matrices
in these problems with compact structured matrices without compromising the ac-
curacy. These approximations are feasible, as we notice that the fill-in during the
elimination with certain ordering is actually structured. The fill-in is closely related
to the Green’s functions via Schur complements. Thus the off-diagonal blocks of the
fill-in have small numerical ranks, which has been observed in [1, 2, 8, 24, 25, 35, 45]
and other work. Due to this low-rank property, we show that the structured approx-
imations of the dense N × N subproblems in those problems can be solved with a
cost of O(p2N), and this leads to a total complexity of O(pn2), where p is a constant
related to the PDE and the accuracy in the matrix approximations and n is the mesh
dimension. Our solver includes both the approximation stage of dense matrices and
the direct solution stage using the approximations. We still call the overall procedure
a direct solver.

Our work shares similar ideas as those in [1, 2, 8, 24, 25, 35, 45]. Here, we fully
integrate sparse matrix techniques (nested dissection) in the context of a supernodal
multifrontal method, and we use tree structures for both the overall matrix factoriza-
tion and the intermediate data structure. The multifrontal method is one of the most
important direct methods for sparse matrix solutions [16, 34]. In our direct solver
we order the mesh nodes into separators with nested dissection [19] and organize the
elimination process with a supernodal multifrontal method. The method eliminates
separators and accumulates updates locally following an elimination tree [22, 33].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1384 J. XIA, S. CHANDRASEKARAN, M. GU, AND X. S. LI

Moreover, the dense intermediate matrices (fill-in) in the supernodal multifrontal
method for many discretized PDEs have the above low-rank property. Those dense
matrices are then approximated by tree-structured semiseparable matrices, called hi-
erarchically semiseparable (HSS) matrices [11, 13, 14, 46]. HSS matrices have close
relation to H2-matrices in [3, 27, 30]. Many HSS operations such as matrix multipli-
cations and system solutions can be done in nearly linear complexity. HSS matrices
feature hierarchical low-rank properties in the off-diagonal blocks. More specifically,
we say that a matrix has the low-rank property if all its off-diagonal blocks have small
ranks or numerical ranks (Definition 2.6). In our supernodal multifrontal method, all
matrix operations are conducted efficiently via HSS approximations. Some basic HSS
operations can be found in [11, 13, 14]. In this paper, we provide some new HSS
algorithms necessary to convert the multifrontal method into a structured one. These
new HSS algorithms provide an innovative way of handling HSS matrix operations by
tree techniques.

Both the multifrontal method and the HSS structure have nice hierarchical tree
structures. They both take good advantage of dense matrix computations and have
efficient storage, good data locality, and natural adaptability to parallel computations.
The usage of HSS matrices in the multifrontal method leads to an efficient structured
multifrontal method. For problems such as the 5-point or 9-point finite difference
Laplacian, this structured multifrontal method has nearly linear complexity. We thus
call this method a superfast multifrontal method. The method is also memory efficient.
By setting a relatively large tolerance in the matrix approximations, the method can
also work as an efficient and effective preconditioner. We have developed a software
package for the solver and various HSS operations.

1.2. Outline of the paper. This paper is organized as follows. In section 2,
we give an introduction to the multifrontal method, nested dissection, and HSS struc-
tures. Section 3 demonstrates the low-rank property and presents an overview of our
new superfast multifrontal method. The detailed superfast structured multifrontal
algorithm is discussed in section 4. Two major steps are covered: structured elimi-
nation of separators and structured matrix assembly (called extend-add). Some new
HSS operations are proposed. Section 5 demonstrates the efficiency of the superfast
multifrontal method with numerical experiments in terms of the model problem and
a linear elasticity problem. Section 6 gives some general remarks.

2. Review of the multifrontal method and HSS representations. In this
section, we briefly review the multifrontal method and HSS representations which
build our superfast structured multifrontal method.

2.1. Multifrontal method with nested dissection ordering. In the direct
factorization of a sparse matrix, usually, the rows and columns of the matrix are first
ordered to reduce fill-in. Nested dissection [19] is an important method for finding an
elimination ordering. Consider a discretized matrix and its associated mesh. Nested
dissection orders mesh points with the aid of separators. A separator is a small set of
mesh points whose removal divides the rest of the mesh or submesh into two disjoint
pieces. The mesh is recursively partitioned with multiple levels of separators. Lower
level separators are ordered before upper level ones; see Figure 2.1(i). Here, by a
“level” we mean a set of separators at the same level of partition.

After the nodes are ordered, we compute the Cholesky factorization A = LLT

by Gaussian elimination, which corresponds to the elimination of the mesh points
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(i) Partition with separators (ii) Connections of points
during elimination

Fig. 2.1. Separators in nested dissection and the connections of mesh points.

(unknowns) from lower levels to upper levels. Mesh points may get connected during
the elimination (Figure 2.1(ii)). The elimination of a mesh point pairwise connects
all its neighbor points [19, 39].

The factorization process can be conducted following the multifrontal method
[16, 34]. The central idea of the multifrontal method is to reorganize the overall
factorization of A into partial updates and factorizations of small dense matrices. It
has been widely used in numerical methods for PDEs, optimization, fluid dynamics,
and other areas.

Suppose j − 1 steps of factorizations of A are finished. Some portions of the
first j − 1 columns of L contribute to later computations in the form of outer-product
updates [34]. The nonzero portion of column j of A and some early outer-product
contributions are assembled together by an operation called extend-add. The result
matrix is called a frontal matrix Fj . One step of factorization of Fj gives the jth
column of L. The Schur complement is called the update matrix. See [34] for a formal
discussion of the procedure. To conveniently consider how the update contributions
are passed, a powerful tool called elimination tree is used. The following definitions
can be found in [33, 34, 40, etc.].

Definition 2.1. The elimination tree T (A) of an N × N matrix A is the tree
structure with N nodes {1, . . . , N} such that node p is the parent of j if and only if
p = min{i > j|lij �= 0}, where A = LLT and L = (lij)N×N is lower triangular.

In addition, the concept of an assembly tree is given in [34]. In this work, we
do not distinguish between these two types of trees. We also assume the elimination
follows the postordering of the elimination tree.

We use a supernodal version of the multifrontal method together with nested
dissection to solve the discretized problems. Each separator in nested dissection is
considered to be a node in the postordering elimination tree. The separators are put
into different levels of the tree (Figure 2.2).

During elimination, the separators are eliminated following the postordering elim-
ination tree. The elimination of a separator will connect all its neighbor separator
pieces. For a separator i, let p1, p2, . . . , pk be the pieces of the uneliminated neighbor
separators of i which are directly or indirectly connected to i (due to matrix factor-
ization). We say that the pieces {i, p1, p2, . . . , pk} form an element and that i is the
pivot separator of this element. Figure 2.3 shows two examples.
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(i) Ordering separators (ii) Separator tree/nested dissection
elimination tree

Fig. 2.2. Ordering separators.

p1

p2

p3

p4

i
p1

Rp1
L

p1

p2

p3

p4

p3
L p3

R

i
c1 c2

(i) Leaf node i (ii) Non-leaf node i

Fig. 2.3. Examples of elements. The ordering of p1, p2, p3, p4 may not necessarily follow their
order in the elimination tree.

If separator i is a bottom level separator in nested dissection (or a leaf node in
the elimination tree) (Figure 2.3(i)), the frontal matrix Fi is directly formed from A:

(2.1) Fi ≡ F0
i =

⎛
⎜⎜⎜⎝

Aii Aip1 · · ·Aipk

Ap1i

... 0
Apki

⎞
⎟⎟⎟⎠ , Ui = −

⎛
⎜⎝
Ap1i

...
Apki

⎞
⎟⎠A−1

ii

(
Aip1 · · ·Aipk

)
.

The elimination of separator i provides the block column in L corresponding to i, and
the Schur complement is the ith update matrix Ui.

If separator i is not a leaf node (Figure 2.3(ii)), we assume it has two children c1
and c2. The update matrices Uc1 and Uc2 represent contributions from the subtrees
rooted at c1 and c2, respectively. Then Fi is obtained by assembling F0

i , Uc1 , and Uc2

with the extend-add process, and the elimination of separator i yields Ui:

(2.2) Fi = F0
i ↔� Uc1↔� Uc2 =

(
Lii 0
LBi I

)(
LT
ii LT

Bi

0 Ui

)
,

where B denotes the element boundary {p1, p2, . . . , pk}.
For convenience, when presenting the ideas of handling the connections of sep-

arators, we use the situation k = 4 as in the model problem. Situations with a
general k can be similarly discussed (subsection 4.6). Here, as shown in Figure 2.4,
we say that the separator pieces {c1, pL1 , p2, pL3 , i} form the left child element and
{c2, pR1 , p2, pR3 , i} form the right child element.
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p1
Rp1

L

p1

p2

p3

p4

p3
L p3

R

i
c1 c2

Fig. 2.4. In extend-add, separator pieces in the left and right child elements, marked by the
solid-line oval box and the dashed-line oval box, respectively.

7

63

42 51

(i) Postordering of a binary tree (ii) 2nd level HSS blocks (iii) 1st level HSS blocks

Fig. 2.5. Example: A binary tree with postordering and two levels of HSS off-diagonal blocks
of a matrix, where the indices follow the postordering of the tree.

Recursive application of the above procedure to all nodes of the elimination tree
leads to a supernodal multifrontal method. The supernodal multifrontal method with
nested dissection for factorizing A in (1.2) costs O(n3) flops. The number of nonzeros
in the Cholesky factor is O(n2 log2 n). A stack of size O(n2) is used to store the
update matrices.

2.2. Hierarchically semiseparable structures. Semiseparable or quasi-
separable structures have attracted a lot of interests in the recent years. In our super-
fast multifrontal method, frontal matrices and update matrices are approximated by
semiseparable matrices. Semiseparable forms of upper level frontal matrices are ob-
tained from lower level ones recursively. In this subsection, we review a tree-structured
semiseparable representation. Note this tree structure is used for each frontal matrix
and is not associated with the outer assembly tree. Thus, this subsection can be
understood independent of the multifrontal method.

There are different definitions for semiseparable matrices [17, 18, 43, 44]. One
definition often used is based on the low-rankness of appropriate off-diagonal blocks.
Here we use the HSS off-diagonal blocks in [11, 12, 13, 14], as shown in the example
in Figure 2.5. We first define HSS blocks with the aid of a full binary tree (a binary
tree where each node except the root has exactly one sibling) and its postordering.

Definition 2.2 (HSS blocks). HSS blocks are block rows or columns excluding
the diagonal parts defined at different levels of splittings of a matrix as follows. Given
a full binary tree with its postordering, an N ×N matrix H, and a partition sequence
{mij}kj=1, where ij, j = 1, 2, . . . , k, are the leaf nodes of the tree and

∑k
j=1 mij =

N , partition H into k block rows (columns) following {mij}kj=1 so that block row
(column) j has mij rows (columns) of H. Any block row (column) i excluding the
mij ×mij diagonal block is called a bottom level HSS (off-diagonal) block. Associate
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W4
B4
B5
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TU3B3
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TU4B4

D1

D2

D4

D5

(i) HSS tree (ii) Hierarchical form of the matrix

Fig. 2.6. An HSS tree corresponding to Figure 2.5 and the structured form of the matrix.

with each leaf a bottom level HSS block. An HSS block for an upper level node is defined
recursively from child HSS blocks but with the appropriate diagonal block removed.

We emphasize that postordered trees are used in this paper so that the HSS
blocks in Figure 2.5(ii) are indexed following the ordering of the tree nodes. This
significantly simplifies the HSS notation below and the coding, as discussed in [11],
since for each node only one index is needed instead of two or three as in [12, 13, 14].
A full binary tree with k leaves has totally 2k − 1 nodes, where node 1 is the first
leaf and 2k − 1 is the root. The binary tree used in the above definition is called an
HSS tree (Figure 2.6(i), also called a merge tree in [12, 13, 14]), which helps define
the HSS structure.

Definition 2.3 (HSS tree and HSS representation). An HSS tree T = (V,E)
that defines an HSS representation for a matrix H is the binary tree in Definition 2.2
and is further defined as follows. Let node 1 be the first leaf, 2k − 1 be the root, and
ij , j = 1, 2, . . . , k, be the leaves of T. Each node i ∈ V (i < 2k− 1) is associated with
matrices Di, Ui, Vi, Ri,Wi, Bi, which are called generators of H. The HSS represen-
tation of H is given by the generators {Ri,Wi, Bi}2k−2

i=1 and {Dij , Uij , Vij}kj=1, which
satisfy the recursive definition of upper level generators Di, Ui, and Vi:

(2.3)

Di =

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 Dc2

)
, i ∈ V is a nonleaf node,

Ui =

(
Uc1Rc1

Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
, i ∈ V\{2k − 1} is a nonleaf node,

so that at the top level, D2k−1 ≡ H, where c1 and c2 represent the left and right
children of i, respectively.

Remark 2.4. Generators are indexed following the postordering of the tree nodes.
The generators Di, Ui, Vi for a nonleaf node i are not explicitly stored. Ri and Wi are
empty matrices if i is a direct child of the root.

The following is a block 4 × 4 HSS example corresponding to Figure 2.5(ii) and
Figure 2.6:
(2.4)

H=

⎛
⎜⎜⎝

D1 U1B1V
T
2 U1R1B3W

T
4 V T

4 U1R1B3W
T
5 V T

5

U2B2V
T
1 D2 U2R2B3W

T
4 V T

4 U2R2B3W
T
5 V T

5

U4R4B6W
T
1 V T

1 U4R4B6W
T
2 V T

2 D4 U4B4V
T
5

U5R5B6W
T
1 V T

1 U5R5B6W
T
2 V T

2 U5B5V
T
5 D4

⎞
⎟⎟⎠

m1

m2

m4

m5

.

To see the hierarchical structure of (2.4), we can write H as

H =

(
D3 U3B3V

T
6

U6B6V
T
3 D6

)
m1 +m2

m4 +m5
,
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corresponding to Figure 2.5(iii), where the generators are obtained by setting i =
3, c1 = 1, c2 = 2 in (2.3). However, only the generators in (2.4) are explicitly stored.

Remark 2.5. In the HSS representation,
- each Ui is an appropriate column basis matrix for an HSS block row. For
example, the second level HSS block row associated with node i = 1 is

U1

(
B1V

T
2 R1B3

(
WT

4 V T
4 WT

5 V T
5

) )
.

- we can verify the following [11]: to identify a block of H , say, the (2, 3) block
in (2.4), we can use the directed path connecting the 2nd and 3rd nodes at
the bottom level (nodes 2 and 4 as marked) of the HSS tree:

U2
2

R2−→ 3
B3−→ 6

WT
4−→

V T
4
4 .

- for a symmetric HSS matrix, we can set Ui = Vi, Ri = Wi, and Bi = BT
j ,

i = 1, 2, . . . , 2k − 2, where j represents the sibling of each i.
Theoretically, an HSS form representation can be constructed for any matrix H

[11, 14] and an appropriate HSS tree. However, such a representation is generally
more useful when the HSS blocks have small (numerical) ranks.

Definition 2.6 (numerical rank and HSS rank). In this work, the numerical
rank of any matrix block with a relative or absolute tolerance τ is the rank obtained
by applying rank revealing QR factorizations [5, 6] or τ-accurate SVD (SVD with
a tolerance τ for singular values) to the block. For a matrix and an HSS tree, the
maximum of the numerical ranks of the HSS blocks at all tree levels is called the HSS
rank (with a given τ) of the matrix. Later, we say a matrix is hierarchically separable
if its HSS rank is small with a given τ .

For an HSS matrix with a small HSS rank p, if all Bi generators in its HSS
representation have sizes close to p, we say that the HSS form is compact. It is
shown in [11, 14] that for a matrix in compact HSS form, nearly linear complexity
system solvers exist. Many other HSS matrix operations such as structure generation,
compression, etc., are also very efficient. The reader is referred to [11, 12, 13, 14] for
more details on HSS representations.

3. Superfast multifrontal method: Low-rank property and overview.
Notice that in the multifrontal method for discretized matrices the frontal and update
matrices are generally dense because of the mutual connections among mesh nodes
(Figure 2.1(ii)). The elimination together with the extend-add operation on such a
dense N ×N matrix typically take O(N3) flops in exact arithmetic. Here we consider
approximations of these dense matrices. Approximations of dense matrices are feasible
in solving linear systems derived from discretizations of certain PDEs such as elliptic
equations, as we discover that low-rank properties exist in these problems. Similar
results can also be found in [1, 2, 8, 24, 25, 35].

In this work, we take advantage of the hierarchical tree structures of both HSS
matrices and the multifrontal method. We have developed a series of efficient HSS
operations [11, 14]. Additional HSS operations necessary for our superfast multi-
frontal method will be presented here. With these techniques, we are able to produce
a structured multifrontal method, and we reduce the total complexity for solving dis-
cretized problems such as (1.2) from O(n3) to O(pn2) and storage from O(n2 log2 n)
to O(n2 log2 p), where p is a parameter related to the problem and the tolerance for
matrix approximations.
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Table 3.1

Numerical ranks with different relative tolerances τ of four FiB blocks from mesh dimensions
n = 127,255,511 and 1023, respectively. Note the size of FiB can be larger than n.

τ 10−2 10−4 10−6 10−8 10−10

size(FiB)

31× 161 8 13 17 20 23
63× 321 9 15 21 25 29
127× 641 9 18 24 30 36
255× 1281 10 20 28 35 42

Table 3.2

HSS ranks of an order 1023 block Fii with different τ , where the bottom level HSS block row
size is about 16 and a perfect binary HSS tree with 64 nodes is used.

τ 10−2 10−4 10−6 10−8 10−10

HSS rank 6 12 17 21 26

3.1. Off-diagonal numerical ranks. It has been shown in [1, 2, 8, 24, 25] that
the low-rank property exists in the LU factorizations of finite-element matrices from
elliptic operators and some other problems. Here in the context of the supernodal
multifrontal method, we show some rank results of the frontal and update matrices.

For a separator i and all its neighbors (denoted B) as shown in Figure 2.3, we order
them and their interior nodes properly (Definition 3.1 below). The corresponding
frontal matrix Fi has the following form:

(3.1) Fi =

(
Fii FiB

FBi FBB

)
=

(
Lii 0
LBi I

)(
LT
ii LT

Bi

0 Ui

)
,

where the elimination of separator i gives the update matrix Ui. For the frontal and
update matrices in the supernodal multifrontal method for solving Model Problem 1.1,
we have the following critical rank observations:

• The off-diagonal block FiB has a small numerical rank.
• The HSS blocks of Fii have small numerical ranks.
• The HSS blocks of Ui have small numerical ranks.

Some rank results are reported as follows.
(1) Numerical rank of FiB . We choose some frontal matrices Fi and compute the

numerical rank of FiB in each Fi. Table 3.1 shows the rank results.
(2) Off-diagonal numerical ranks of Fii. We then test the HSS ranks of Fii with

different relative tolerances. As an example, we use the frontal matrix corresponding
to the top level separator of a 1023× 1023 mesh. In such a situation, Fi(≡ Fii) has
order 1023. We choose a fixed block row size and make all bottom level HSS off-
diagonal blocks to have approximately the same row dimension, so that the HSS tree
is a perfect binary tree. (As an example, when there are four block rows, a binary
tree as in Figure 2.6 is used. Again, this binary tree is not related to the elimination
tree.) Table 3.2 shows the HSS ranks, which are relatively small as compared with
the size of Fii.

(3)Off-diagonal numerical ranks of Ui. Similarly, Table 3.3 shows HSS ranks of an
update matrix Ui with different tolerances. The mesh dimension is n = 1023. Similar
situations hold for the frontal matrices. When n is larger, the low-rank property is
more significant.

The low-rank property has certain physical background. For example, the paper
[4] considers a 2D physical model consisting of a set of particles with pairwise interac-
tions satisfying Coulomb’s law. The authors define well-separated sets of particles to
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Table 3.3

HSS ranks of a 1023×1023 update matrix Ui with different τ , where the bottom level HSS block
row size is about 16 and a perfect binary HSS tree with 64 nodes is used.

τ 10−2 10−4 10−6 10−8 10−10

HSS rank 6 12 17 22 26

p1

p2

p3

p4

i

Fig. 3.1. Examples of well-separated sets in an element.

be the sets that have strong interactions within sets but weak ones between different
sets. Here when we consider 2D meshes for discretized problems, we have a similar
situation. In Figure 2.1(ii) the mesh points in the current-level element are mutually
connected. But the connections differ for different points. We can think of the points
closer to each other or not well separated to have stronger connections; see Figure 3.1.
For theoretical analysis of the low-rank property, see, e.g., [1, 2, 8, 24, 25].

3.2. Overview of the structured extend-add process and the structured
multifrontal method. We can take advantage of the previous low-rank property in
the multifrontal process to get a new structured method. There are two major tasks:

• to replace the traditional dense Cholesky factorization by a structured one;
• to develop a structured extend-add process.

We use HSS matrices to approximate frontal and update matrices. HSS matrices
can be quickly factorized due to the low-rank property. HSS forms are accumulated
bottom-up along the assembly tree.

The structured extend-add process is relatively complicated, since the mesh nodes
and separators are generally not consistent with the HSS block partitions. We consider
a separator i, its four neighbor pieces p1, p2, p3, p4 at upper levels of the assembly tree,
and its children c1 and c2 as in Figure 2.3(ii). In the traditional multifrontal method,
the frontal matrix Fi is obtained from the extend-add operation (2.2)

(3.2) Fi = F0
i ↔� Uc1↔� Uc2 ≡ F0

i + Ûc1 + Ûc2 ,

where each Ûci is a subtree update matrix obtained from Uci by matching indices to
F0

i and inserting zero entries [34]. The matrices in (3.2) take the nonzero patterns as
illustrated in Figure 3.2.

There are three key issues in developing the structured extend-add process.
(1) Uniform ordering. Firstly, in order to effectively conduct (3.2) and to handle

the interactions of elements, we need to match the ordering of separators and mesh
points at different levels. The ordering can be predetermined in a symbolic factoriza-
tion stage. We define the following uniform ordering whose effectiveness in revealing
the low-rank property is shown by our numerical experiments.

Definition 3.1 (uniform ordering). The separator pieces and mesh points within
an element are uniformly ordered if the neighbors are ordered counterclockwise as
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1

i p1 p2 p3 p4
i
p1
p2
p3p4

i p1 p2 p3 p4

i p1 p2 p3 p4 i p1 p2 p3 p4 i p1 p2 p3 p4
i
p1
p2
p3p4

i
p1
p2
p3p4

i
p1
p2
p3p4

i
p1
p2
p3p4

p2
p2

i

i

i
ip1

L

1p1
L

1p3
L

1p3
L

1p1
R

1p3
R

p1
R

1p3
R

p4

p4

Fig. 3.2. Matrices in extend-add (3.2), where the + shaped bars correspond to the overlap
pL1 ∩ pR1 in separator p1.

(i) Uniform ordering (ii) Transpose of (i) (iii) Rank pattern of Fi

Fig. 3.3. Uniform ordering of neighbors and mesh points and the resulting rank pattern of Fi.

Table 3.4

Making child element separator pieces consistent with the current level pieces i, p1, p2, p3, p4
following the uniform ordering.

Matrix Uniform ordering Permutation Padding zero blocks
Fi i, p1, p2, p3, p4 / /

Uc1 p2, pL1 , i, p
L
3 i, pL1 , p2, p

L
3 i, {pL1 , 0}, p2, {pL3 , 0}, 0

Uc2 i, pR1 , p4, pR3 i, pR1 , pR3 , p4 i, {0, pR1 }, 0, {0, pR3 }, p4

shown in Figure 3.3(i) (or clockwise in Figure 3.3(ii), which can be considered as a
transpose of Figure 3.3(i)), and the mesh points inside each separator piece are ordered
following the natural ordering of mesh points (left-right and top-down).

According to the uniform ordering for Figure 2.3(ii), we have the ordering of the
separator pieces and their corresponding matrices as shown in the first two columns of
Table 3.4. Clearly, the neighbor orderings associated with Uc1 and Uc2 do not match
with Fi. Thus, permutations of the separator pieces in the two child elements are
needed for (3.2); see the third column of Table 3.4.

(2) Incompatible separator pieces. Secondly, the separator pieces for Uc1 are not
fully compatible with those for Uc2 . That is, separator pieces in one child element
may not appear in the other. For example, p2 appears in the left child element but
not in the right one. Thus, we need to insert some zero blocks into Uc1 and Uc2 . In
terms of the separators, we attach a zero piece to pL1 so that the length of {pL1 , 0} is
consistent with p1. Other separators are processed similarly; see the fourth column
of Table 3.4.
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F i F j

U p

U jU i

F p

F c1
U c1

U c2

switching level

traditional
factorizations

structured
factorizations

F c2

Fig. 3.4. Illustration of the superfast multifrontal method, where unstructured matrices are in
dark color and others are structured. In each oval box, a frontal matrix is partially factorized and,
the update matrix is computed.

(3) Overlaps. Lastly, the child elements share (parts of) the neighbors. The
left and right child elements share the entire separator i, which becomes the pivot
separator in the upper element. The piece pL1 in the left child element and pR1 in the
right one satisfy pL1 ∪ pR1 = p1. In general, pL1 ∩ pR1 is nonempty (Figures 2.3(ii), 2.4,
and 3.2) and is shared by both the left and right child elements. Furthermore, pL1 ∩pR1
may not always correspond to an entire HSS block row/column. Then certain blocks
may need to be split and merged with others. The techniques in subsection 4.2.2 can
be used. A similar situation holds for pL3 and pR3 .

All the matrix operations are done in HSS forms to provide a structured extend-
add process. After Fi is formed, we eliminate the pivot separator i and compute the
Schur complement with the fast HSS algorithms in [11]. The structured extend-add
is used again, and the process repeats.

Before going into the details of the HSS operations, we give an overview of the
structured multifrontal algorithm. A pictorial illustration is shown in Figure 3.4.

Algorithm 3.2 (Structured supernodal multifrontal method).
1. Use nested dissection to order the nodes. Build postordering elimination tree

of separators.
2. Do traditional factorization and extend-add at certain bottom levels.
3. At a switching level, construct HSS approximations of update matrices and

do structured extend-add.
4. Following the nested dissection ordering, do structured factorization and

extend-add at each upper level.
(a) Eliminate a separator by factorizing the pivot blocks of the structured

frontal matrix to obtain the structured update matrix.
(b) Do structured extend-add and repeat.

Two layers of trees are used: the outer layer elimination tree and an inner layer
HSS tree for each separator. Steps 4(a) and 4(b) are the two major structured oper-
ations.

4. Superfast multifrontal method: Detailed algorithm. According to the
previous section, in the supernodal multifrontal method, the update matrices and
frontal matrices are approximated by compact HSS matrices. There are two major
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Wj

RjRi

Wi
Bi
Bj ji

Wi

RiRj

Wj
Bj
Bi ij

Fig. 4.1. Permuting two subtrees.

tasks: the structured elimination step 4(a) of Algorithm 3.2 and the HSS structured
extend-add in step 4(b) of Algorithm 3.2. In this section we briefly review a fast gen-
eralized HSS factorization in [11] and then discuss in detail some new HSS algorithms
which build the HSS structured extend-add.

4.1. Fast generalized HSS Cholesky factorization. The elimination of a
separator with orderN can be done by the fast generalized HSS Cholesky factorization
in [11] in O(p2N) flops, where p is an appropriate HSS rank.

The fast generalized HSS Cholesky factorization computes explicit factorizations
of HSS matrices where the factors (called generalized HSS factors) consist of triangular
matrices, permutations, and other orthogonal matrices. For a given SPD HSS matrix
with generators {Dj}, {Uj(≡ Vj)}, {Wj(≡ Rj)}, {Bj}, the major steps include the
following:

1. Introduce zeros into off-diagonal blocks by compressing Uj generators. The
compression is done by rank revealing QR factorizations or τ -accurate SVD.

2. Partially factorize Dj . The subblock of Dj corresponding to zero off-diagonal
entries are eliminated.

3. Merge the uneliminated subblock of Dj with that of the sibling of j in the
HSS tree. Pass the block to the parent.

4. The HSS matrix is reduced to a new one with a smaller size and fewer blocks.
Repeat the process.

This process is applied to Fii of an HSS form frontal matrix Fi as in (3.1). This
elimination corresponds to the removal of the subtree for Fii from the HSS tree for
Fi. Or, more specifically, after this elimination the HSS subtree for Fii shrinks to
one single node. The generators associated with this single node are used to update
the rest nodes. This leads to the Schur complement, or the update matrix Ui in HSS
form. The details are given in [11].

Note that Lii in (3.1) is now the generalized HSS factor (see [11] for an example),
and Ui = FBB −LiiL

T
ii is essentially computed by a structured low-rank update. This

update is fast because FBB and Lii share some common generators.

4.2. Some basic HSS operations needed in structured extend-add. In
order to convert the standard extend-add process into a structured one, we need some
basic HSS operations, which are used to address the issues discussed in subsection 3.2.
These operations include permuting, merging/splitting, and inserting/deleting HSS
blocks in an HSS matrix.

4.2.1. Permuting HSS blocks. It is convenient to permute an HSS matrix by
permuting its HSS tree. We can generally get the new HSS form of the permuted
matrix by updating just a few generators. For example, consider permuting two
neighbor block rows/columns at a certain level of the HSS matrix. This corresponds to
the permutation of two neighbor HSS subtrees with roots being siblings; see Figure 4.1.

Thus in this simple situation, we can directly exchange generators associated
with i and j, and all their children, without updating the matrices. The new matrix
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Ri

Wi

Wc1

i

Uc1
, Vc1

Ui, Vi

Dc1

Di

Ri

Wi

i

c2c1

Rc1 Rc2

Wc2

Uc2
, Vc2

Dc2

Bc1

Bc2

Fig. 4.2. Merging and splitting nodes of an HSS tree.

is still in HSS form. For more complicated situations, say, if the two subtrees are
not neighbors, we can identify the path connecting the two subtrees and update the
matrices associated with the nodes in the path and those connected to the path. As
this varies for different situations, we come back to it in subsection 4.3, where the
permutations are specifically designed for our superfast multifrontal method.

4.2.2. Merging and splitting HSS blocks. We first look at a simple situation.
(1) Basic merging and splitting. The hierarchical structure of HSS matrices makes

it very convenient to merge and to split HSS blocks.
For a node i with two children c1 and c2 in an HSS tree (Figure 4.2), we can

merge c1 and c2 and update node i as in (2.3) in Definition 2.3. On the other hand, if
we want to split i into c1 and c2, then we need to find Dck , Uck , Vck , Rck , Wck , Bck ,
k = 1, 2 such that (2.3) is satisfied. First, partition Ui, Vi, Di conformally as

(4.1) Ui =

(
Ui;1

Ui;2

)
, Vi =

(
Vi;1

Vi;2

)
, Di =

(
Dc1 Di;1,2

Di;2,1 Dc2

)
.

Then compute QR factorizations

(
Ui;1 Di;1,2

)
= Uc1

(
Rc1 T1

)
,

(
T T
1

Vi;2

)
= Vc2

(
BT

c1
Wc2

)
,(4.2)

(
Ui;2 Di;2,1

)
= Uc2

(
Rc2 T2

)
,

(
T T
2

Vi;1

)
= Vc2

(
BT

c2
Wc1

)
.(4.3)

Equations (4.1)–(4.3) provides all the necessary new generators.
(2) Advanced merging and splitting. There are more complicated situations that

are very useful. Sometimes, we need to maintain the tree structure during merging
or splitting. For an HSS matrix H , we consider splitting a piece from a leaf node i of
the HSS tree of H and then to merging that piece with a neighbor j. We look at a
general situation where i and j are not siblings. Without loss of generality, we make
two simplifications. One is that the matrix is symmetric; another is that block j is
an empty block (or zero block whose size is to be set by the splitting). It suffices to
look at an example in Figure 4.3, where i = 5 and j = 10.

We first split node i into two child nodes c1 and c2 by the method above: (4.1)–
(4.3). Then move c2 to the position of j. After that we merge c1 into i.

The details are as follows. Identify the path connecting nodes c2 and j:

p(c2, i) : c2 − 5− 6− 7− 8− 9− 14− 13− 12− 11− 10.

We observe that in order to get a new HSS representation for H (denoted H̃), all
the generators associated with the nodes in this path and those directly connected to
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B11

2

3

4 5
6

7

8

9

10

13

11

12

14

15

B2

B3

B4

c1 c2

D4, U4
D5, U5 D10, U10

R1

R2

R3

R4 R5

R6

R7

R8

R9

R10

R11

R12

R13

R14B9

Fig. 4.3. Splitting a block (node 5) of an HSS tree, where c1 and c2 are virtual nodes.

it should be updated. We use tilded notation for the generators of H̃, with c1 not
merged to i yet. Call the subtrees rooted at nodes 9 and 14 left and right subtrees,
respectively. To get the HSS tree for H̃, we consider the following connections, where
by a connection we mean the product of the generators associated with the path
connecting two nodes.

- The connection between nodes 15 and c2 should be transferred to the con-
nection between 15 and 10.

- The connection between node c2 and each node k ∈ {1, 2, 3, 4, c1} that is
directly connected to the path p(c2, i) should be transferred to the connection
between nodes 10 and k.

- The connection between any two nodes k1, k2 ∈ {1, 2, 3, 4, c1} that are directly
connected to the path p(c2, i) should remain the same.

- The connections between node 15 and each node k ∈ {1, 2, 3, 4, c1} that is
directly connected to the path p(c2, i) should remain the same.

All these relations can be reflected by appropriate products of generators associ-
ated with the nodes; see [46] for the details. We can assemble all the matrix products
into one single equation⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 R̃T
14Ũ

T
14

R̃1(R̃9 B̃9Ũ
T
14)

R̃2(B̃
T
1 R̃8(R̃9 B̃9Ũ

T
14))

R̃3(B̃
T
2 R̃7(B̃

T
1 R̃8(R̃9 B̃9Ũ

T
14)))

R̃4(B̃
T
3 R̃6(B̃

T
2 R̃7(B̃

T
1 R̃8(R̃9 B̃9Ũ

T
14))))

R̃c1(B̃
T
4 R̃5(B̃

T
3 R̃6(B̃

T
2 R̃7(B̃

T
1 R̃8(R̃9 B̃9Ũ

T
14)))))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 RT
9 R

T
8 R

T
7 R

T
6 R

T
5 R

T
c2U

T
c2

R1R9 B1R
T
7 R

T
6 R

T
5 R

T
c2U

T
c2

R2(B
T
1 R8R9) B2R

T
6 R

T
5 R

T
c2U

T
c2

R3(B
T
2 R7(B

T
1 R8R9)) B3R

T
5 R

T
c2U

T
c2

R4(B
T
3 R6(B

T
2 R7(B

T
1 R8R9))) B4R

T
c2U

T
c2

Rc1(B
T
4 R5(B

T
3 R6(B

T
2 R7(B

T
1 R8R9)))) Bc1U

T
c2

⎞
⎟⎟⎟⎟⎟⎟⎠

,(4.4)

where Ũ14 ≡ Ũ10R̃10R̃11R̃12R̃13. Equation (4.4) is partitioned into four nonzero blocks
corresponding to the above four types of connection changes. It turns out that we
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7

R6R3 B3
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R2R1 B1
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D2, U2D1, U1

R5R4
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D5, U5D4, U4
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7

R6R3 B3
6

R2R1 B1

3

i2 41
D2, U2D1, U1

R4Ri
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D4, U4Di, Ui

5

D5, U5

B7

7

B3
6

R2R1 B1

3

p2 51
D2, U2D1, U1

R5Rp
Bp

D5, U5

i 4

R4Ri
Bi

D4, U4Di, Ui

(i) HSS tree example (ii) Inserting a node i (iii) Another way to insert i

Fig. 4.4. Inserting a node into an HSS tree in two different ways, where dark nodes and edges
should be updated or created.

can construct the generators on the left-hand side of (4.4) in the following sequential
way.

First, consider the last row in (4.4). Compute a QR factorization of the right-hand
side such that

(
R̃c1(B̃

T
4 R̃5(B̃

T
3 R̃6(B̃

T
2 R̃7(B̃

T
1 R̃8(R̃9 B̃9Ũ

T
14)))))

)
= Q1T1.

Then partition T1 = (T1;1 T1;2) such that T1;1 has the same column dimension as

BT
4 . Thus, we can let R̃c1 = Q1, B̃T

4 = T1;1 , and

(4.5)
(
R̃5(B̃

T
3 R̃6(B̃

T
2 R̃7(B̃

T
1 R̃8(R̃9 B̃9Ũ

T
14))))

)
= T1;2.

In this way, one layer (the last row) is removed from (4.4).
Next, combine (4.5) with the fourth row of (4.4):

(
R̃4

R̃5

)(
B̃T

3 R̃6(B̃
T
2 R̃7(B̃

T
1 R̃8(R̃9 B̃9Ũ

T
14)))

)
=

(
B4R

T
c2U

T
c2

T1;2

)
.

Again, compute a QR factorization Q2T2 of the right-hand side. Then partition
QT

2 = (QT
2;1 QT

2;2) such that Q2;1 has the same row dimension as B4, and partition

T2 = (T2;1 T2;2) such that T2;1 has the same column dimension as BT
3 . We can set

R̃4 = Q2;1, R̃5 = Q2;2, B̃T
3 = T2;1, and

(4.6)
(
R̃6(B̃

T
2 R̃7(B̃

T
1 R̃8(R̃9 B̃9Ũ

T
14)))

)
= T2;2.

Now, we can combine (4.6) with the third row of (4.4), and the above procedure
repeats.

Finally, it is trivial to merge node c2 into i. The overall process costs no more
than O(N) flops for an order-N matrix H .

4.2.3. Inserting and deleting HSS blocks. Sometimes, we need to insert a
block row/column to an HSS matrix or to remove one from it. To remove a block is
usually straightforward. For simplicity, in this subsection we consider symmetric HSS
matrices. To remove a node i from an HSS tree, we remove any generators associated
with the subtree rooted at i and merge the sibling node j of i into its parent p by
setting Up = UjRj and Dp = Dj if j is a leaf node.

To insert a block row/column into an HSS matrix, the result depends on the
desired HSS structure. For example, suppose Figure 4.4(i) is the original HSS tree for
an HSS matrix, and we insert a new node i between node 2 and 4 to get a new matrix
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with a tree structure as in Figure 4.4(ii) or Figure 4.4(iii). We need only to update a
few generators (shown in dark in Figure 4.4). Again, we can consider the connection
changes between nodes and use QR factorizations to find the new generators. The
details are similar to those in the previous subsection. Note that in Figure 4.4, the
HSS tree can be more general and that the node i to be inserted can also represent
another HSS tree. In all cases, we need only to update few generators to get the new
matrix. Thus the overall process is fast.

4.3. HSS structured extend-add. In this subsection, we use the previous
basic HSS operations to build the structured extend-add process, as outlined in sub-
section 3.2. We consider a general element and its two child elements, as shown in
Figure 2.3(ii) or 2.4, where i is the pivot separator in the assembly tree. The frontal
and update matrices in the extend-add Fi = F0

i ↔� Uc1↔� Uc2 ≡ F0
i + Ûc1 + Ûc2 have the

relationship as shown in Figure 3.2, where all matrices should now be in HSS forms.
The general HSS extend-add procedure is as follows. Assume that, before the

extend-add, the frontal matrices Fc1 and Fc2 for the left and right child elements,
respectively, are already in HSS forms. (These HSS forms come recursively from
lower level separators or from simple constructions at the starting level of structured
factorizations.) For simplicity, assume each separator is represented by one leaf of the
HSS tree, although each leaf can be potentially a subtree. There are then five leaf
nodes in each HSS tree. As we use full binary HSS trees, it is natural to use trees as
shown in the first row of Figure 4.5. A tree like that has the minimum depth among
all full binary trees. Note that the separators are ordered with the uniform ordering.

Following the uniform ordering of the separator pieces i, p1, p2, p3, p4, the HSS tree
of Fi has the form in Figure 4.6. Therefore, we should transform the tree structures
in the first row of Figure 4.5 to the structure in Figure 4.6 (also see Table 3.4).

Figure 4.5 shows the process of generating Ûc1 and Ûc2 from Fc1 and Fc2 , respec-
tively. The HSS trees of Fc1 and Fc2 are shown in the first row of Figure 4.5, with
their leaf nodes marked by the separators in Figure 2.4. Typically, there are five steps
as follows for an extend-add operation to advance from the level of c1 and c2 to the
level of i (for convenience, we also include the partial factorization of frontal matrices
at the beginning):

0. Eliminate c1 and c2 and get update matrices Uc1 and Uc2 in HSS forms.
1. Permute the trees for Uc1 and Uc2 , as in the third column of Table 3.4.
2. Insert appropriate zero nodes to the HSS trees of Uc1 and Uc2 to get Ûc1 and

Ûc2 , respectively; see the fourth column of Table 3.4.
3. Split HSS blocks in Ûc1 and Ûc2 to handle overlaps in separators.
4. Write the initial frontal matrix F0

i in HSS form based on the tree structure

of Uc1↔� Uc2 ≡ Ûc1 + Ûc2 .
5. Get Fi by adding HSS matrices F0

i , Ûc1 , Ûc2 . Compress Fi when necessary.
Step 0 can be done by applying the generalized HSS Cholesky factorization in

subsection 4.1 to the leading principal blocks of Fcj corresponding to separator cj
for j = 1, 2 (first row in Figure 4.5). When separator cj is removed, the Schur
complement/update matrix Ucj is obtained by updating the rest tree nodes.

Step 1 is to permute some branches of the HSS tree of Ucj . Note that even if the
HSS tree has more levels, we still just need to update few top level nodes because we
need only to permute the four separator pieces. This means the cost of permutations
in the superfast multifrontal method is O(1), even if the update matrix has dimension
N . Specifically, to permute Uc1 (Figure 4.5, left column, from row 1 to row 2), we
exchange p2 and i, as shown in the third column of Table 3.4. We can set new
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7

63
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p4c2

9

p1
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p3
R

2

Fc1 Fc2
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Ûc1 Ûc2
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Fig. 4.5. Operations on child elements in the structured extend-add process (3.2).

generators (in tilded notation) of the permuted tree to be

B̃5 = BT
4 , R̃8 = BT

7 R
T
6 , B̃2 = R2R3B7, R̃2 = R2B3, B̃3 = I.

Similarly, to permute Uc2 (Figure 4.5, right column, from row 1 to row 2), we exchange
p4 and pR3 . The new generators of the permuted tree should satisfy

B̃2 = R2R3R
T
4 , B̃8 = BT

7 R
T
6 R

T
5 ,(

R̃2

R̃4

)
B̃3

(
R̃T

8 R̃T
5

)
=

(
R2R3B7 R2R3R

T
5

R4R6B7 B4

)
.
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i

p1
L

p1 p2

p3
Rp3

L

p3

Fig. 4.6. HSS tree structure of Fi, where the dark bars represent overlaps pL1 ∩pR1 and pL3 ∩pR3 ,
respectively.

An SVD of the right-hand side of the last equation can provide all the generators
on the left-hand side. Although these formulas look specific, they are sufficient for
general extend-add in the superfast multifrontal method.

At step 2, we insert zero blocks into the permuted update matrices to get Ûc1

and Ûc2 . For the left child element, a zero block (node) is attached to the matrix
(tree); see Figure 4.5, left column, row 3. This operation is trivial in that only certain
zero generators should be added. For the right child element, a zero node is inserted
between pR1 and pR3 . This has already been discussed in subsection 4.2.3.

After we get the HSS trees as shown in the last row of Figure 4.5, we use step 3
to handle the overlaps so that Ûc1 and Ûc2 will have the same HSS tree structure and
row/column indices. As discussed in section 3.2, overlaps occur in separators p1 and
p3; see Figures 2.3(ii) and 2.4. As an example, the overlap pL1 ∩ pR1 may correspond
to HSS blocks in both Ûc1 and Ûc2 or, more likely, parts of their HSS blocks. For the
latter case, in order to match the HSS structures of pL1 ∩ pR1 in Ûc1 and Ûc2 , we need
to cut pL1 ∩ pR1 from either pL1 , on the right end, or from pR1 , on the left end, and to
merge it with a nearby zero block. We use the splitting procedure in subsection 4.2.2.
Now, Ûc1 and Ûc2 have the same HSS tree structure, which becomes the structure of
Ûc1 + Ûc2 and also Fi (Figure 4.6).

Then at step 4, we convert the initial frontal matrix F0
i into an HSS form following

the HSS structure of Ûc1+Ûc2 . Because the original matrix A is sparse, F0
i is generally

sparse also. We are often able to write the HSS form of F0
i in advance. For example,

for Model Problem 1.1 with nested dissection ordering, F0
i in (2.1) has the sparsity

pattern where Aii is tridiagonal, Aip2 = 0, Aip4 = 0, and each of Aip1 and Aip3 has
only one nonzero entry. Such a matrix has HSS rank 2.

Now at step 5, we are ready to get Fi by computing the HSS sum of F0
i , Ûc1 ,

and Ûc2 with formulas in [11]. The sizes of the generators of Fi increase after this
addition, although the actual HSS rank of Fi will not. Thus usually the HSS addition
is followed by a compression step [11]. Now Fi is in compact HSS form, and we can
continue the factorization along the elimination tree.

4.4. Algorithm and performance. Based on the previous discussions, we
present the main superfast multifrontal algorithm and its analysis. Before that, we
first clarify a few implementation issues for the HSS operations.
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4.4.1. Implementation issues. One issue is related to the mesh boundary. For
convenience, we can assume the mesh boundary corresponds to empty separators. We
may then have empty nodes in HSS trees. Empty nodes do not accumulate or change
and are not associated with any actual operation.

Another issue is to predetermine the HSS structures before the actual factoriza-
tions. Similar to other sparse direct solvers, we can have a symbolic factorization stage
which is used after nested dissection to approximately predict the HSS structures of
the frontal/update matrices in the elimination.

Finally, for the purpose of computational performance, we usually avoid too large
or too small HSS block sizes.

4.4.2. Factorization algorithm. We provide the superfast multifrontal method
and analyze its performance.

Algorithm 4.1 (Superfast multifrontal method with HSS structures).
1. Use nested dissection to order the nodes in the n× n mesh. Build an elimi-

nation tree with separator ordering. Assume the total number of separators
to be k and the total number of levels to be l = �log2 n�.

2. Decide l0, the number of bottom levels of traditional factorizations (see The-
orem 4.2 below).

3. For separators i = 1, . . . , k
(a) If separator i is at level li > l− l0, do traditional Cholesky factorization

and extend-add.
i. If i is a leaf node in the elimination tree, obtain the frontal matrix

Fi from A and compute Ui as in (2.1). Push Ui onto an update
matrix stack.

ii. Otherwise, pop two update matrices Uc1 and Uc2 from the update
matrix stack, where c1 and c2 are the children of i. Use extend-add
to form the frontal matrix Fi as in (2.2). Factorize Fi and get Ui as
in (2.2). Push Ui onto the update matrix stack.

(b) If separator i is at the switching level li = l− l0,
i. Following step 3(a), build Fi, factorize its pivot block, and get Ui .
ii. Construct a simple HSS form for Ui with few blocks (1, 2, or 4, etc.).

Push the HSS form of Ui onto the update matrix stack.
(c) Otherwise (separator i is at level li < l− l0), do structured factorization

and extend-add at upper levels.
i. Pop two HSS matrices Uc1 and Uc2 from the stack. Use HSS extend-

add to form the frontal matrix Fi, as in Figure 3.2.
ii. Compute the generalized HSS Cholesky factorization of the leading

principal blocks of Fi and compute the Schur complement which is
Ui (in HSS form). Push the HSS form of Ui onto the stack.

About the complexity and storage requirement of the algorithm, we have the
following theorem.

Theorem 4.2. Assume p is the maximum of all HSS ranks of the frontal and
update matrices throughout the multifrontal method. Then the optimal complexity of
Algorithm 4.1 is O(pn2). In this situation, the number of bottom levels of traditional
Cholesky factorizations is l0 = O(log2 p), the bottom level traditional Cholesky fac-
torizations and upper level structured factorizations take the same amount of work,
the storage required for the factors is O(n2 log2 p), and the update matrix stack size is
O(pn).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1402 J. XIA, S. CHANDRASEKARAN, M. GU, AND X. S. LI

Table 4.1

Traditional factorization Structured factorization

l = O(log(n)) levels l0 bottom levels l− l0 upper levels

Each level (i = 1, . . . , l) 4i−1 subproblems, each of dim O(2l−i)

Cost (subtotal)
∑l

i=l−l0+1 4
i−1(O(2l−i))3

∑l−l0
i=1 4i−1O(p22l−i)

Cost (total) O(4l2l0 ) + O
(
4l p2

2l0

)

Proof. Consider the costs before and after the switching level (see Table 4.1).
Choose l0 such that 2l0 ≈ p. Then the total cost is O(4lp) = O(pn2). In this case,

the costs before and after the switching level are approximately the same. Similarly,
the total storage required for the HSS factors is

l∑
i=l−l0+1

4k−1
(
O
(
2l−i

))2
+

l−l0∑
i=1

4i−1O
(
p2l−i

)
= O

(
l04

l
)
+O

( p

2l0
4l
)
= O(n2 log2 p).

The maximum update matrix stack size is

l∑
i=l−l0+1

(
O
(
2l−i

))2
+

l−l0∑
i=1

O
(
p2l−i

)
= O

(
4l0−1

)
+O

(
p2l

)
= O(pn).

Similar to the traditional multifrontal method, a frontal matrix Fi can use the stack
space of Uc1 and Uc2 , and O(pn) extra space may be needed.

4.5. System solution. The system solution using generalized HSS Cholesky
factors have overall structures similar to the standard multifrontal method, except
in two major places. One is that for each node of the elimination tree, the standard
triangular solver is replaced by an HSS solver [11], and another is that the forward and
backward substitutions are now done via generators and solution vectors associated
with the HSS tree nodes and elimination tree nodes (separators). For example, we
want to solve the following system:

(
Lii 0
LiB LBB

)(
xi

xB

)
=

(
bi
bB

)
,

where the coefficient matrix is a lower triangular HSS matrix and xi and xB are
associated with separator i and its neighbors, respectively. First, we solve an HSS
system Liixi = bi to get xi. Then we compute b̂B = bB−LiBxi. Here LiBxi is usually
computed via the products of certain generators (associated with the neighbors of i)
and xi. This solution process is highly efficient using HSS representations.

Theorem 4.3. With the same conditions as in Theorem 4.2, the cost to solve the
linear system with the HSS factors is O(n2 log p).

Notice that the standard multifrontal method solution process costs O(n2 logn)
with the Cholesky factor. Stability results for each individual component of the
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(i) One level partition (ii) More partitions

Fig. 4.7. Nested dissection ordering of a general mesh.

superfast multifrontal method can be possibly obtained similar to [14]. However,
it can be quite complicated to analyze the entire algorithm. Thus instead, we use
numerical experiments to show that the method is stable in practice.

4.6. Generalizations. We have used Model Problem 1.1 in some discussions
of the algorithm. In fact, the method can be used to solve various other problems
discretized on general meshes. The previous discussions do not specifically depend on
the matrix pattern or entries in (1.2). Once the low-rank property is verified for the
problem, the new method can be applied similarly. In general, the mesh just needs to
be well shaped [37, 38, 42]. The low-rank property usually arises in some PDEs with
Green’s functions smooth away from the diagonal singularity and even more general
problems; see [1, 2, 8, 24, 25, 45].

In nested dissection, graph partitioning algorithms or tools such as Metis [36]
applied to mesh pieces can be used to generate the separators. The graph partition
can also be done based on the sparsity pattern of A without a specific grid. Although
it is possible to find a uniform ordering similar to Definition 3.1, more straightfor-
ward orderings can be used for simplicity. (It is an open problem to find nearly
optimal ordering of the separator pieces and mesh points within an element.) Once
the separators are obtained, the multifrontal method apply similar to before.

During the levels of structured eliminations of separators, the structured factor-
ization algorithm is the same as before, with the frontal and update matrices in HSS
forms. The structured extend-add operation can be done similar to before, although
the connectivity between separator pieces can be more complicated, and the number
of neighbors of a separator can be arbitrary; see Figure 4.7 for an example.

The major tasks in the extend-add process are still to handle overlaps between sep-
arator pieces and to align indices. The HSS permuting/splitting/merging/deleting/
inserting operations summarized in subsections 4.2 and 4.3 can be similarly used.

Although our current preliminary implementation of the algorithm is based on 2D
rectangular regular meshes, we expect to develop codes for more general meshes and
more general sparsity patterns of A. Also, we expect to find more practical problems
with the low-rank property.

5. Numerical experiments. We show some numerical results for the model
problem and a linear elasticity problem.

5.1. Example 1: The model problem. Here, we factorize A in (1.2) of Model
Problem 1.1 with our superfast multifrontal method implemented in Fortran 90. We
run the code on a 2.33 GHz Intel E5410 server. The superfast multifrontal method
is compared with other methods in various aspects (computation time, flop counts,
memory usage, errors, etc.) and with different parameters (mesh dimension, tolerance,
number of elimination levels, switching level, etc.). The following notation is used
below.
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Fig. 5.1. Numerical results of MF and New MF for solving Model Problem 1.1 with different
number of elimination levels l, where n = 1023 and τ = 10−6.

Notation Meaning
MF traditional multifrontal method
New MF superfast multifrontal method with HSS structures
τ relative tolerance
l total number of elimination levels in nested dissection
l0 number of bottom levels (l − l0: switch level)
time (s) time in seconds
x numerical solution
x∗ exact solution

5.1.1. Choices of parameters. For simplicity, we consider Model Problem 1.1
on square regular meshes with mesh dimensions n = 2k−1. Before giving comprehen-
sive comparisons, we first run the tests in various aspects in terms of the parameters.

(1) Total number of elimination levels l. The maximum possible number of levels
in the elimination tree is l = 2k − 1. Theoretically, we should use as many levels
as possible. But practically, a large l leads to small bottom level matrices, and
the computations get slower. We test different choices of l in MF and New MF; see
Figure 5.1. The optimal computation time generally occurs for certain l smaller than
2k − 1.

(2) Optimal number of bottom levels l0. For New MF with a fixed l, different num-
bers of bottom levels l0 lead to highly different performance. According to Theorem
4.2 and its proof, the optimal complexity occurs when the costs before the switch-
ing level (bottom level standard Cholesky factorization cost) and after the switching
level (HSS structured factorization cost) are approximately the same. For the model
problem, we fix l and record the flop counts and computation time for different l0
in Figure 5.2. The left plot in Figure 5.2 is also marked with the percentage of the
cost before the switching level over the total cost. We can see that the approximately
optimal flop count is achieved when this percentage is closest to 50%.

(3) Tolerance τ . Different tolerances τ can be used, depending on the accuracy
requirements. The cost decreases when τ increases. The decreasing rate varies for
different l0; see Figure 5.3 for an example. These results indicate that with different
purposes, we may use different tolerances, and the corresponding l0 should also vary.
This gives the flexibility to control the accuracy of direct solutions of linear systems.
When only modest accuracy is desired, the method is very attractive. High accuracy
and good efficiency can also be achieved when the method is combined with iterative
refinement (subsection 5.1.4) or other iterative schemes.
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5.1.2. Factorization complexity and timing comparison. Now we give a
comparison of New MF, MF, and SuperLU [15]. For mesh dimensions n ranging from 127
to 4095, Table 5.1 lists the factorization flop counts with different l0, and Table 5.2
lists the timing. Note that MF has complexity O(n3), which is the current optimal
count in exact arithmetic (ignoring special techniques such as Strassen’s algorithm).
New MF has complexity O(pn2) and starts to outperform MF and SuperLU for n = 255.

Remark 5.1. The break-even size n can be smaller if a larger l is used. However, as
discussed above, a too large l is not preferred in practice. Here, New MF demonstrates
the potential of structured supernodal multifrontal factorizations, although it can be
further improved.

To check the complexity, we calculate the flop scaling factor flops2n/flopsn, that
is, the ratio of the flop count with mesh dimension 2n over the flop count with mesh
dimension n, and also the time scaling factor time2n/timen defined similarly. Fig-
ure 5.4 shows the numerical results with the scaling factors marked. The experimental
scaling factors are consistent with the theoretical complexity. When n doubles, the
matrix size quadruples. The scaling factors of New MF approach 4 when n is large.
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Table 5.1

Flop counts of MF, SuperLU, and New MF with τ = 10−6, where the count 829
42

n3 is the leading
term of the theoretical count of MF [20].

Mesh dimension n 127 255 511 1023 2047 4095
l 11 13 15 17 19 21

New MF l0

6 1.20E8 7.69E8 3.98E9 1.84E10 7.95E10 3.32E11
7 7.12E7 4.96E8 2.70E9 1.28E10 5.64E10 2.38E11
8 5.31E7 3.77E8 2.11E9 1.02E10 4.53E10 1.92E11

9 4.56E7 3.25E8 1.83E9 8.90E9 3.97E10 1.69E11
10 / 3.29E8 1.87E9 9.06E9 4.03E10 1.71E11
11 / 3.42E8 2.08E9 1.02E10 4.57E10 1.93E11
12 / / 2.42E9 1.25E10 5.68E10 2.32E11
13 / / 2.67E9 1.54E10 7.27E10 3.14E11

MF 4.11E7 3.30E8 2.64E9 2.12E10 1.67E11 1.33E12
829
42

n3 4.04E7 3.27E8 2.63E9 2.11E10 1.69E11 1.36E12

SuperLU 4.05E7 3.95E8 3.89E9 3.19E10 2.77E11 2.39E12

Table 5.2

Computation time of MF, SuperLU, and New MF with τ = 10−6.

Mesh dimension n 127 255 511 1023 2047 4095
l 11 13 15 17 19 21

New MF l0

6 0.273 1.703 8.707 40.18 174.0 726.7
7 0.168 1.113 6.011 28.30 124.1 524.0
8 0.133 0.875 4.828 23.23 103.4 438.0

9 0.113 0.758 4.227 20.46 91.54 388.9
10 / 0.781 4.395 21.32 94.95 403.7
11 / 0.813 4.805 23.67 106.2 452.0
12 / / 5.543 28.68 130.5 559.7
13 / / 6.125 34.80 163.9 712.6

MF 0.105 0.789 6.188 49.05 405.3 3321.3

SuperLU 0.110 0.940 7.950 60.37 508.7 4364.2

This demonstrates that New MF has nearly linear complexity. On the other hand, the
scaling factors of MF and SuperLU are about 8 or larger. In addition, New MF is also
significantly faster than iterative methods such as the straightforward CG.

5.1.3. Storage usage. According to Theorem 4.2, the superfast multifrontal
method is also memory efficient. Figure 5.5 shows the storage requirements for the
stacks and the factors. Notice that the traditional multifrontal method needs an
O(n2) size stack, while the HSS multifrontal method requires only O(pn). When we
use a larger τ in NEW MF, the storage is reduced accordingly.

5.1.4. System solution, accuracy, and iterative refinement. It is also ef-
ficient to solve the linear systems with the structured Cholesky factors obtained from
New MF. The cost of system solution is usually insignificant as compared with the
factorization cost and is not reported here. The errors in the New MF solutions are
listed in Table 5.3. The results indicate that the method is stable in practice.

Since the solution process is very efficient, we can use relatively large tolerances
in the factorization and then use iterative refinements to improve the solution. Here
for different tolerances we did a simple test; see Figure 5.6 for the error results after
selected numbers of iterative refinement steps. For a modest tolerance, high accuracy
can be achieved with very few steps of iterative refinement.
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Table 5.3

Errors in system solution with the structured factors from New MF, where τ = 10−6, l0 = 9, and
each b is obtained from Ax∗ with a random x∗.

n 255 511 1023 2047 4095

||x−x∗||∞
||x∗||∞ 4.58E − 6 2.01E − 5 3.85E − 5 8.45E − 5 3.60E − 4

||Ax−b||∞
|||A||x|+|b|||∞ 7.58E − 8 9.84E − 8 1.21E − 7 1.59E − 7 2.41E − 7

||x−x∗||
2

||x∗||2 2.31E − 6 1.25E − 5 2.21E − 5 5.47E − 5 2.58E − 4

||Ax−b||2
|||A||x|+|b|||2 4.73E − 9 5.83E − 9 6.31E − 9 6.88E − 9 6.95E − 9

Also note that when large tolerances are used, our superfast multifrontal method
has great potential to work as an effective preconditioner. As a preliminary test,
for a 1023 × 1023 exact frontal matrix F with 2-norm condition number 845.5, we
approximate it by an HSS matrix F̃ with bottom level HSS block sizes about 32 and
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Fig. 5.6. Errors after some steps of iterative refinement with different tolerances τ for n = 1023
and l0 = 9.

Table 5.4

Flops counts for solving (5.1) with λ/μ = 105, where each flop ratio is calculated when the
matrix order nearly quadruples and New MF uses τ = 10−6 and l0 = 6.

Matrix order 31, 250 124, 002 498, 002 1, 996, 002 7, 992, 002 31, 984, 002
l 10 12 14 16 18 20

MF flops 2.44E9 2.06E10 1.70E11 1.38E12 1.12E13 8.99E13
New MF flops 2.23E9 1.13E10 5.68E10 2.75E11 1.23E12 5.24E12

MF flop ratio 8.44 8.25 8.12 8.12 8.03 /
New MF flop ratio 5.07 5.03 4.84 4.45 4.26 /

τ = 0.2. F̃ is used to precondition F . The preconditioned matrix has condition
number 17.6.

5.2. Example 2: A linear elasticity problem. As another example, we con-
sider solving a linear elasticity equation

−(μ
−→
Δu+ (λ+ μ)∇−−−→∇ · u) = −→

f in Ω,(5.1)

−→u =
−→
0 on ∂Ω,

where Ω is a rectangular domain, −→u is the displacement vector field, and λ and μ are
the Lamé constants. The problem is discretized on a rectangular grid. This PDE is
very ill conditioned when λ/μ is large. For situations near the incompressible limit,
classical iterative methods including multigrid may diverge or converge very slowly
when no effective preconditioner is used.

Here, we use our superfast multifrontal method to factorize the discretized matrix
A. Performance and accuracy results similar to the model problem are observed. For
example, the dense intermediate frontal and update matrices also have the off-diagonal
low-rank property. With modest accuracy in the factorization, the flop counts are
consistent with the nearly linear complexity, as shown in Table 5.4.

In system solutions, accuracy similar to Table 5.3 is observed. To get higher
accuracy, we can use iterative refinements or the precoditioned conjugate CG (PCG)
with NEW MF as the preconditioner. For example, for a system where the A matrix
has order 124, 002, a relative residual of 2.2E − 14 is reached after 44 steps of PCG
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iterations. As a simple comparison, CG without preconditioning needs over 2.3E5
iterations to reach the same accuracy. The total cost (flop count) of CG without
preconditioning is about 120 times of the PCG cost. Even with the initial factorization
cost included for generating the preconditioner, PCG is still about 30 times faster than
CG. The matrix A has 2-norm condition number 6.8E9.

In future work, more comprehensive comparisons with other methods such as
multigrid and other preconditioning techniques are expected to be done.

6. General remarks. In this paper, we have presented our superfast multi-
frontal method with HSS structures. Sparse matrix techniques (nested dissection,
etc.) are integrated into the multifrontal method. Low-rank properties in the multi-
frontal method for solving discretized problems are exploited. Some fast HSS matrix
operations are developed based on tree techniques. Both the multifrontal method
and HSS structures have some nice features. They take good advantage of dense
matrix computations (frontal/update matrices in the multifrontal method vs. gener-
ators in HSS forms). They both have efficient storage, nice data locality, and natural
adaptability to parallel computations. The multifrontal method reorganizes the fac-
torization of a large sparse matrix into a series of small dense matrix factorizations,
and then the HSS representations approximate the dense matrices by a sequence of
compact generators. There is a good potential for the method to apply to different
problems. It remains open to discover the low-rank property in more applications.
Some potential examples include seismic-imaging problems, flow problems in porous
and fractured media, integral equations of scattering theory, time harmonic Maxwell
equations, etc.

A major difference between our method and existing ones is in that we fully
integrate sparse matrix techniques with dense structured matrix operations by using
two layers of trees: an elimination tree for the supernodal multifrontal factorization
and an HSS tree for each node (separator) of the elimination tree corresponding to
dense intermediate frontal and update matrices. The multifrontal scheme brings good
data locality, since separators only directly communicate with their parents, instead of
all connected neighbors. The use of HSS matrices further makes dense intermediate
matrices data sparse and enables convenient conversion of complicated algorithms
such as extend-add into structured ones. Our new solver can also work as an effective
preconditioner by using large tolerances in the semiseparable approximations.

A thorough analysis can be done on how the rank p, the accuracy, the cost, and the
storage requirement are related. Detailed flop and storage counts can be conducted.
We refer the reader to the details of counting the cost of nested dissection in [20] and
the costs of some HSS operations in [11, 13, 14].

Finally, we point out that the current algorithm is based on 2D problems with
known low-rank property. The present implementation is also preliminary. Improve-
ment of the algorithm, parallelization, and extension to complicated meshes and three-
dimensional (3D) problems are expected to appear in future work. For 3D problems,
nested dissection can be possibly performed by algorithms such as the geometric sep-
arator algorithm [21, 37, 38]. We also expect to develop a black-box package which
can use A as the input and does not necessarily depend on the mesh.

Acknowledgments. Many thanks to the anonymous referees for their valuable
comments. The authors are also very grateful to James Demmel and Panayot Vas-
silevski for their help in the development of the solver.
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