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1. Introduction

An important and extensively investigated object in the study of the moduli
space Mg (and the Teichmüller space Tg) of compact Riemann surfaces of
genus g ≥ 1 is the Weil-Petersson metric. In particular, when g ≥ 2, Ahlfors
([Ah1], [Ah2]) showed that the Weil-Petersson metric on Tg is a Kähler metric
whose Ricci and holomorphic sectional curvatures are negative. Royden [R]
later proved that the holomorphic sectional curvature of the Weil-Petersson
metric is bounded away from zero. Subsequently Wolpert [Wo] showed that the
Weil-Petersson metric is of holomorphic sectional curvature bounded above by
− 1

2π(g−1)
. An immediate consequence of Royden’s or Wolpert’s result is that Tg

is Kobayashi hyperbolic. Similar results also hold in the case when g = 1, since
T1 (endowed with the Weil-Petersson metric) is known to be biholomorphically
isometric to the upper half plane H in the complex plane C (endowed with the
Poincaré metric of constant negative sectional curvature). It is interesting and
natural to ask whether analogous results hold for the moduli spaces of higher
dimensional manifolds (or more generally, those of orbifolds), and in particular,
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whether (and how) one can achieve negative curvature for such moduli spaces
within the context of Weil-Petersson geometry.

In this direction, Siu [Siu] made the first breakthrough and gave a compu-
tation of the curvature of the Weil-Petersson metric on (the smooth points
of) the moduli space of compact Kähler-Einstein manifolds of negative Ricci
curvature (or equivalently, canonically polarized manifolds). Based on Siu’s
approach, Nannicini [Na] computed the curvature of the Weil-Petersson met-
ric on the moduli space of compact polarized Ricci-flat Kähler manifolds (or
equivalently, polarized Kähler manifolds of zero first Chern class). In [Sch2],
Schumacher also obtained a simplified formula for the two cases under the ad-
ditional assumption that the Kodaira-Spencer map is surjective at a smooth
point of the moduli space under consideration. Unlike the case of Riemann
surfaces, the curvature tensors of the Weil-Petersson metrics in both higher
dimensional cases mentioned above (and as obtained in [Siu], [Na], [Sch2])
contain terms of different signs, and no conclusion can be made on the sign of
the holomorphic sectional curvature except in some restricted cases, say when
each fiber manifold M satisfies the condition H2(M,

∧2 TM) = 0. Recently by
modifying suitably the Weil-Petersson metric, To and Yeung [TY] constructed
on the base complex manifold of any effectively parametrized family of com-
pact canonically polarized manifolds a Finsler metric (which will be called an
augmented Weil-Petersson metric in this article) whose holomorphic sectional
curvature is bounded above by a negative constant. As an immediate con-
sequence, one can apply Schwarz lemma to conclude that such base complex
manifold is Kobayashi hyperbolic.

The main goal of this article is to study the Kähler Ricci-flat case, which is
the higher dimensional analogue of family of elliptic curves mentioned earlier.
We state our first result as follows:

Theorem 1. Let π : X → S be an effectively parametrized holomorphic family
of compact polarized Kähler manifolds of zero first Chern class over a complex
manifold S. Then S admits a C∞ Aut(π)-invariant augmented Weil-Petersson
metric whose holomorphic sectional curvature is bounded above by a negative
constant.

We refer the reader to Section 2 for the precise definitions of the various
terms in Theorem 1. Our approach is rather robust, and allows us to consider
the more general situation of a family of compact polarized Ricci-flat Kähler
orbifolds. We state our main result which generalizes Theorem 1 to such
situation:

Theorem 1’. Let π : X → S be an effectively parametrized holomorphic family
of compact polarized Ricci-flat Kähler orbifolds over a complex manifold S.
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Then S admits a C∞ augmented Weil-Petersson metric whose holomorphic
sectional curvature is bounded above by a negative constant.

The definitions needed for the more general setting of Theorem 1’ will be
given in Section 5. We remark that while Theorem 1’ covers the case of The-
orem 1, we state them separetely to facilitate our subsequent discussion as
well as for motivational purpose. As in [TY], Theorem 1 and Theorem 1’ lead
immediately to the following:

Corollary 1. Let π : X → S be as in Theorem 1 or Theorem 1’. Then S is
Kobayashi hyperbolic.

The proof of Theorem 1’ follows from suitable modifications from that of
Theorem 1, and both are parallel to the Ricci-negative case treated in [TY].
For simplicity, we describe here briefly our approach for the proof of The-
orem 1. Roughly speaking, we start with the curvature expression of the
usual Weil-Petersson metric h1 in [Na] (see also Section 2), which consists of a
good term which is negative and a bad term which is non-negative. The bad
term can be expressed as a ratio h2/h1, where h2 is (the restriction of) some
generalized Weil-Petersson pseudo-metric on the symmetric product S2(TS).
This process is repeated. For each 1 ≤ ` ≤ n, one constructs some gener-
alized Weil-Petersson pseudo-metric h` on S`(TS) (associated to an induced
Kodaira-Spencer map ρ` : S`(TtS)→ Hn(Mt,∧`TMt), t ∈ S) and obtain cur-
vature estimate of h` consisting of a good term involving h`/h`−1 and a bad
term involving h`+1/h`. Here n = dimCMt denotes the dimension of the fiber
manifold Mt. Then the augmented Weil-Petersson metric h in Theorem 1 is

constructed as a suitable finite linear combination of the h
1/`
` ’s. The required

curvature estimate for h is then derived from those of the h`’s by a telescopic
argument.

In both the results of [TY] for families of canonically polarized manifolds
and Theorem 1 (or more generally Theorem 1’) in this paper, we achieved the
goal of proving hyperbolicity using generalized or augmented Weil-Petersson
metrics. A natural question is whether the use of the augmented metric is
essential or just a technical convenience; in other words, one may ask whether
one can achieve the same goal using merely the Weil-Petersson metric itself
in the sense that the bad term in the curvature formula of the Weil-Petersson
metric might perhaps somehow be controlled by the good terms. It turns out
that a modification of the Weil-Petersson metric could not be avoided. In fact,
the holomorphic sectional curvature of the Weil-Petersson metric itself on the
moduli space of compact polarized Ricci-flat Kähler manifolds may actually
be positive at some points and negative at other points of the moduli space.
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Candelas et al [CDGP] showed that such property is possessed by the one-
dimensional moduli space of Calabi-Yau threefolds which are mirror manifolds
of the quintic hypersurfaces in CP4 (see [CDGP, p. 51, Fig. 10]). Hence the
example shows that, at least in the Ricci-flat case, one must modify the Weil-
Petersson metric in order to obtain negative curvature from the perspective of
Weil-Petersson geometry.

At this point, we would like to remark on an alternative approach to the
problem. Let π : X → S be as in Theorem 1. In the special case of families of
polarized Calabi-Yau manifolds (or slightly more generally, when the canon-
ical line bundle of each fiber manifold is holomorphically trivial), S actually
admits a Kähler metric (called the Hodge metric) with holomorphic sectional
curvature bounded above by a negative constant. The Hodge metric is due
to [Lu1], and its construction is based on Hodge theory and depends on Grif-
fiths’ results [Gri1] on the curvature properties of the invariant metrics of the
classifying spaces for polarized Hodge structures (see also [Gri2]). As such, at
least in this special case, one can give an alternative Hodge-theoretic proof of
Corollary 1 using the Hodge metric in place of the augmented Weil-Petersson
metric. Nonetheless, this alternative approach does not generalize to cover the
general orbifold case in Theorem 1’, and there appear to be some subtleties
for this alternative approach to apply to the case treated in Theorem 1 (cf.
Corollary 2, Remark 4 and Remark 5 in Section 6).

We remark that in general, the augmented Weil-Petersson metric in Theorem
1 (or Theorem 1’) is not unique, and its construction actually gives rise to a
continuous family of new Finsler metrics of negative holomorphic sectional
curvature bounded away from zero. In fact, for the moduli space of Calabi-
Yau threefolds considered by Candelas et al [CDGP] mentioned earlier, it is
easy to check that at least some of the augmented Weil-Petersson metrics are
not constant multiples of the Hodge metric (see Remark 2 in Section 4 and
Remark 3 in Section 6).

We also mention here that for the case of moduli space of polarized Calabi-
Yau manifolds of dimension n, Lu and Sun [LS] considered “partial Hodge
metrics” of the form gWP + c · Ric(gWP ) for appropriate positive constant
c, where gWP is the Weil-Petersson metric and Ric(gWP ) denotes its Ricci
tensor. In general, it is not known whether the partial Hodge metric has
negative holomorphic sectional curvature or not, except in the cases when
n = 3 and when n = 4. In those two cases, the partial Hodge metric (with
some appropriate choice of the constant c) coincides with the Hodge metric
(see [Lu2] and [LS]).

For a succint presentation of our main ideas, we will first consider only the
smooth case (as given in Theorem 1). Then in the subsequent treatment of
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the general orbifold case (as given in Theorem 1’), we will minimize repeating
the arguments from the smooth case by indicating only the necessary mod-
ifications, whenever appropriate. As such, the organization of this paper is
as follows. In Section 2, we give some background materials and introduce
some notations. In Section 3, we introduce the generalized Weil-Petersson
pseudometrics and computed their curvature. In Section 4, we finish the proof
of Theorem 1. In Section 5, we treat the orbifold case and give the proof of
Theorem 1’. In Section 6, we give a brief review of Lu’s Hodge metric for the
case of polarized families of Calabi-Yau manifolds and discuss the difficulty in
trying to generalize this alternative approach to the general Ricci-flat manifold
case or the more general orbifold case.

The origin of this work can be traced with the authors’ indebtedness to a
conversation of late Professor Viehweg with the second author in 2006, during
which Professor Viehweg mentioned that the argument of [VZ] does not appear
to generalize to the case of polarized Ricci-flat Kähler manifolds, and asked
if the result there also holds in such case. The authors would like to thank
Professor Yum-Tong Siu for his inspirations and suggestions leading to the
approach adopted in this paper. The authors would also like to thank Professor
Ngaiming Mok for his comments and clarifications.

2. Background materials and generalized Weil-Petersson
pseudo-metrics

Let M be a compact complex manifold of zero first Chern class, i.e., one
has c1(TM)R = 0 ∈ H2(M,R). Let η ∈ H1,1(M,R) be a Kähler class on M ,
i.e., η can be represented by a Kähler form on M . Then (M, η) is said to be a
polarized Kähler manifold of zero first Chern class. By a result of Yau [Yau],
there exists a unique Ricci-flat Kähler metric g (with the associated Kähler
form ω) on M , whose Kähler class is η, i.e., [ω] = η ∈ H1,1(M,R).

Let π : X → S be a holomorphic family of compact complex manifolds of
zero first Chern class over a base complex manifolds S, i.e., π : X → S is a
surjective holomorphic map of maximal rank between two complex manifolds
X and S, and each fiber Mt := π−1(t), t ∈ S, is a compact complex manifold
of zero first Chern class. Let λ ∈ R1π∗ΩX|S, and let λt := λ

∣∣
Mt

for t ∈ S. Then

(π : X → S, λ) is said to be a holomorphic family of polarized Kähler manifolds
of zero first Chern class, if, in addition, (i) each λt is a Kähler class on Mt,
and (ii) under the natural map from R1π∗ΩX|S to R2π∗R arising from variation
of Hodge structure, the image of λ is a horizontal section of the local system
R2π∗R (or equivalently, for any to ∈ S, any open neighborhood U of to in S
and any underlying smooth family of diffeomorphisms it : Mto → Mt, t ∈ U ,
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such that ito is the identity map on Mto , one has i∗tλt = λto in H2(Mto ,R)).
For each t ∈ S, let g(t) and ω(t) denote the unique Ricci-flat Kähler metric
and its Kähler form on Mt. Then by [Sch1, Proposition 2.3], one knows that
such a family admits a d-closed (1, 1)-form ω on X satisfying

(2.1) ω
∣∣
TMt

= ω(t) for each t ∈ S.

We remark that in the special case (which we do not assume here) when the
polarization λ is given by the first Chern class of a holomorphic line bundle
over X which restricts to an ample line bundle over each Mt, and in such case,
the conditions (i) and (ii) above are automatically satisfied. Also, when no
confusion arises, the underlying polarization class λ will be dropped from our
notation for the family (as in Theorem 1). As usual, the family π : X → S
is said to be effectively parametrized if the Kodaira-Spencer map ρt : TtS →
H1(Mt, TMt) is injective for each t ∈ S.

Next we recall some notions in the Finsler geometry of complex manifolds.
A Finsler pseudo-metric h on a complex manifold S is simply a continuous
function h : TS → R such that h(u) ≥ 0 for all u ∈ TS and h(cu) = |c|h(u)
for all u ∈ TS and c ∈ C. If, in addition, h(u) > 0 for all 0 6= u ∈ TS, then we
say that h is a Finsler metric on S. A Finsler pseudo-metric h is said to be
C∞ (resp. C` for a non-negative integer `) if for any open subset U ⊂ S and
any non-vanishing C∞ section ut of TS

∣∣
U

, h(ut) is a C∞ (resp. C`) function

on U . For a C2 Finsler metric h on S, a point t ∈ S and a non-zero tangent
vector u ∈ TtS, the holomorphic sectional curvature K(u) of h in the direction
u is simply given by

(2.2) K(u) = sup
R
K(R, h

∣∣
R

)(t),

where the supremum is taken over all local one-dimensional complex subman-
ifolds R of S satisfying t ∈ R and TtR = Cu, and K(R, h

∣∣
R

)(t) is the sectional

curvature of (the Riemannian metric) (R, h
∣∣
R

) at t (cf. (4.9)). We say that the
holomorphic sectional curvature of the Finsler metric h on S is bounded above
by a negative constant if there exists a constant C > 0 such that K(u) < −C
for all 0 6= u ∈ TS.

For the rest of this section, we let (π : X → S, λ) be an effectively parametrized
holomorphic family of compact n-dimensional polarized Kähler manifolds of
zero first Chern class over an m-dimensional complex manifold S. First we
set up some notation. We will use (z, t) = (z1, · · · , zn, t1, · · · , tm) to denote
local holomorphic coordinate functions on some coordinate open subset of
X , so that π corresponds to the coordinate projection map (z, t) → t, and
t = (t1, · · · , tm) also forms local holomorphic coordinate functions on some co-
ordinate open subset of S. We will index components of tensors on Mt in the
holomorphic tangential directions by Greek alphabets α, β, etc (with the range
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1, 2, · · · , n), while those in the complexified tangential directions are indexed
by lower case Latin letters a, b, c, d, etc (with the range 1, 2, · · · , n, 1̄, 2̄, · · · , n̄).
On the other hand, the components of tensors along the base directions will be
indexed by the letters i, j (with the range 1, 2, · · · ,m), etc. We also adopt the
Einstein summation notation for indices along the fibers. We denote ∂α := ∂

∂zα

and ∂ᾱ := ∂
∂zα

for α = 1, · · · , n, and ∂i := ∂
∂ti

for i = 1, · · · ,m, etc. The
Ricci tensor of g(t) is locally given by Rαβ̄(t) = −∂α∂β̄ log(det(gγδ̄(t))), and
the Ricci-flat condition means that Rαβ̄(t) = 0 on each Mt. When no confu-
sion arises, we will drop the parameter t, and we simply write Rαβ̄ for Rαβ̄(t),

etc. In local coordinates, we also write ω =
√
−1gIJ̄(z, t)dwI ∧ dw̄J , where w

can be z or t and the indices I, J can be i or α, etc. In particular, one has
gαβ̄ = gαβ̄(t) along each fiber Mt.

Next we recall the ‘horizontal lifting’ of vector fields as defined by Schu-
macher in [Sch2], which is a special type of ‘canonical lifting’ in the sense of
Siu in [Siu]. For t ∈ S and a local tangent vector field u (of type (1, 0)) on an
open subset U of S, the horizontal lifting vu of u is the unique smooth vector
field vu (of type (1, 0)) on π−1(U) such that π∗vu = u and vu(z, t) is orthogonal
to T(z,t)Mt (with respect to ω) for each (z, t) ∈ π−1(U). By [Sch2, p. 342,

Proposition 1.1], one knows that Φ(u(t)) := ∂̄vu
∣∣
Mt
∈ A0,1(Mt) is the unique

harmonic Kodaira-Spencer representative of ρt(u(t)), i.e., ρt(u(t)) =
[
Φ(u(t))

]
in H1(Mt, TMt) for each t ∈ U . When u = ∂/∂ti is a coordinate vector field, we
will simply denote vi := v∂/∂ti and Φi := Φ(∂/∂ti). Write Φi = (Φi)

α
β̄
∂α ⊗ dz̄β.

It is easy to see that vi and the (Φi)
α
β̄
’s are given locally by

vi = ∂i + vαi ∂α, where vαi := −gβ̄αgiβ̄, and(2.3)

(Φi)
α
β̄ = ∂β̄v

α
i = −∂β̄(gγ̄αgiγ̄).(2.4)

(see [Sch2, p. 342, equation (1.2)]). Here gβ̄α denotes the components of the
inverse of gαβ̄. For a given tensor T of covariant degree 1 and of contravariant
degree 1, we recall that the components (along the fiber direction) of its Lie
derivative LviT with respect to vi are given locally by

(2.5) (LviT )ba = ∂i(T
b
a) + T bc ∂av

c
i − T ca∂cvbi

(see e.g. [Siu, p. 268]), and similar formula holds for tensors of higher degree.

We recall that the Weil-Petersson metric h(WP ) =
∑m

i,j=1 h
(WP )

ij̄
dti ⊗ dt̄j on S

is defined by

(2.6) h
(WP )

ij̄
(t) :=

∫
Mt

〈Φi,Φj〉
ωn

n!
, where 〈Φi,Φj〉 := (Φi)

γ
ᾱ(Φj)δβ̄gγδ̄g

ᾱβ

denotes the pointwise Hermitian inner product on tensors with respect to ω.
The injectivity of ρt means that h(WP ) is positive definite on each TtS. It



8 WING-KEUNG TO AND SAI-KEE YEUNG

follows from Koiso’s result [Koi] that h(WP ) is Kähler. We denote by V the
volume of Mt with respect to ω(t), which does not depend on t ∈ S because
ω is d-closed on X . For any smooth tensor Ψ on Mt, we denote by H(Ψ) the
harmonic projection of Ψ with respect to ω(t). Let R(WP ) denote the curvature
tensor of h(WP ). By Nannicini’s result [Na, p. 425], the components of R(WP )

with respect to normal coordinates (of h(WP )) at a point t ∈ S are given by

R
(WP )

ij̄k ¯̀ (t) = − 1

V
(h

(WP )

ij
h

(WP )

kl
+ h

(WP )

il
h

(WP )

kj
)−

∫
Mt

〈H(LviΦk), H(LvjΦ`)〉
ωn

n!

(2.7)

+

∫
Mt

〈H(Φi ? Φk), H(Φj ? Φ`)〉
ωn

n!
.

Here Φi ? Φk is as in (2.8) below, and by normal coordinates of h(WP ) at the

point t ∈ S, we mean h
(WP )

ij̄
(t) = δij, and ∂kh

(WP )

ij̄
(t) = ∂k̄h

(WP )

ij̄
(t) = 0.

Now we construct some generalized Weil-Petersson pseudo-metrics on S sim-
ilar to those in the Ricci-negative case in [TY]. For integers p, q, r, s ≥ 0,
t ∈ S, Φ ∈ A0,p(∧rTMt) and Ψ ∈ A0,q(∧sTMt), we denote by Φ ? Ψ ∈
A0,p+q(∧r+sTMt) the (∧r+sTMt)-valued (0, p + q)-form obtained by taking
wedge product on the level of forms as well as that of tangent vectors. When
p = r and q = s, one easily sees that Φ ? Ψ = Ψ ? Φ. If Φ and Ψ are ∂-closed,
then Φ ? Ψ is also ∂-closed. If, in addition, either Φ or Ψ is ∂-exact, then
Φ ? Ψ is ∂-exact. In particular, the operator ? induces a homomorphism on
the associated cohomology groups, which we denote by the same symbol, i.e.,
we have

(2.8) [Φ] ? [Ψ] := [Φ ? Ψ] ∈ H0,p+q(∧r+sTMt)

for any classes [Φ] ∈ H0,p(∧rTMt) and [Ψ] ∈ H0,q(∧sTMt) represented by Φ
and Ψ respectively. (See [TY, Section 3] for the local expression for ? and its
properties mentioned above.) For a fixed integer ` satisfying 1 6 ` 6 n, let
Φ,Ψ ∈ A0,`(∧`TMt). Their pointwise inner product is given by

(2.9) 〈Φ,Ψ〉 :=
1

(`!)2
Φα1···α`
β1···β`

Ψ
α′1···α′`
β
′
1···β

′
`

gα1α′1
· · · gα`α′`g

β1β
′
1 · · · gβ`β

′
` ,

and their L2-inner product on Mt is given by

(2.10) (Φ,Ψ) =

∫
Mt

〈Φ,Ψ〉ω
n

n!
.

Here the Φα1···α`
β1···β`

’s denote the tensor components of Φ, etc. We denote by

‖Φ‖2 :=
√

(Φ,Φ) the fiberwise L2-norm of Φ. Then for each t ∈ S and
u1, . . . , u`, u

′
1, . . . , u

′
` ∈ TtS, we generalize (2.6) and define, in terms of (2.10),
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(u1 ⊗ · · · ⊗ u`, u′1 ⊗ · · · ⊗ u′`)WP(2.11)

:= (H(Φ(u1) ? · · ·? Φ(u`)), H(Φ(u′1) ? · · ·? Φ(u′`))).

Here each Φ(ui) is the harmonic Kodaira-Spencer representative of ρt(ui). It
is easy to see that (2.11) extends to a positive semi-definite Hermitian bilinear
form on ⊗`TtS, which varies smoothly in t. We simply call it the `-th general-
ized Weil-Petersson pseudo-metric on ⊗`TS. The associated `-th generalized
Weil-Petersson pseudo-metric on TS is given by

(2.12) ‖u‖WP,` := (u⊗ · · · ⊗ u︸ ︷︷ ︸
`−times

, u⊗ · · · ⊗ u︸ ︷︷ ︸
`−times

)
1
2`
WP for u ∈ TtS, t ∈ S.

Finally we define an augmented Weil-Petersson metric on S to be any Finsler
metric haWP of the form

(2.13) haWP (u) =
( n∑
`=1

a`‖u‖2N
WP,`

) 1
2N

for u ∈ TtS and t ∈ S

for some fixed numbers a1, · · · , an > 0 and fixed positive integer N (indepen-
dent of t and u). Since ‖ ‖WP,1 is non-degenerate on S, it follows that each
haWP is also non-degenerate on S.

Remark 1. For any given pair of automorphisms (F, f) ∈ Aut(X ) × Aut(S)
satisfying f ◦ π = π ◦ F and preserving the polarization λ (i.e. F ∗λ = λ),
one easily sees from the uniqueness of the Ricci-flat Kähler metric g(t) in the
Kähler class λt of each Mt that (F

∣∣
Mt

)∗g(f(t)) = g(t) for all t ∈ S. Then it

follows readily that each Finsler pseudo-metric ‖ ‖WP,` is Aut(π)-invariant in
the sense that f ∗‖ ‖WP,` = ‖ ‖WP,` for all pairs (F, f) as described above. As
such, every augmented Weil-Petersson metric haWP is also Aut(π)-invariant,
i.e., f ∗haWP = haWP for all pairs (F, f) as above. Furthermore, similar to
[TY, Lemma 16], one also easily checks that each haWP is C∞.

3. Curvature of generalized Weil-Petersson pseudo-metrics

Let π : X → S be as in Theorem 1. In this section, we are going to obtain
estimates for the holomorphic sectional curvatures of the restrictions of the
Finsler pseudo-metrics ‖ ‖WP,`’s to local one-dimensional complex submani-
folds of S (at those points where the restrictions are non-degenerate), which
will lead to estimate for that of the augmented Weil-Petersson metric in Sec-
tion 4. As most of the curvature computations are similar to the Ricci-negative
case in [TY], we will refer the reader to [TY] (and follow the notation there as
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well as that in Section 2) whenever possible, and work out only the necessary
changes in detail.

As in Section 2, we fix a coordinate open subset U ⊂ S with coordinate
functions t = (t1, . . . , tm). For each t ∈ S and each coordinate tangent vector
∂
∂ti

, we recall the horizontal lifting vi and the harmonic representative Φi of

ρt(
∂
∂ti

) on Mt as given in (2.3) and (2.4). Fix an integer ` satisfying 1 6 ` 6 n,
and let J = (j1, . . . , j`) be an `-tuple of integers satisfying 1 6 jd 6 m for each
1 6 d 6 `. We denote by

(3.1) ΨJ := H(Φj1 ? · · ·? Φj`) ∈ A0,`(∧`TMt)

the harmonic projection of Φj1 ? · · · ? Φj` . As t varies, we still denote the
resulting family of tensors by ΨJ (suppressing its dependence on t), when
no confusion arises. We are going to compute ∂i∂i log ‖ΨJ‖2

2 (as a function
on U) wherever ΨJ 6≡ 0 on Mt. For this purpose, we will need to consider
families of tensors on the fibers (or in short, relative tensors) arising from
restrictions of tensors on X to the fibers. We adopt the semi-colon notation
to denote covariant derivatives of tensors on Mt, so that (Φi)

β
α;γ := ∇γ(Φi)

β
α

(= (∇ ∂
∂zγ

Φi)
β
α), etc. We also denote (Φi)α,β = gγβ(Φi)

γ
α, etc. We recall the

following lemma in [TY, Lemma 1], which also holds in the present Ricci-flat
case:

Lemma 1. (i) [vi, ∂α] = −(Φi)
β
α∂β.

(ii) For a smooth (n, n)-form Υ on X , one has

∂

∂ti

∫
Mt

Υ =

∫
Mt

LviΥ and
∂

∂t
i

∫
Mt

Υ =

∫
Mt

LviΥ.

(iii) [vi, vj] = gγα∂γ(gvivj)∂α − gβγ∂γ(gvivj)∂β.
(iv) (Φi)α,β = (Φi)β,α for all α, β.

(v) Lvi(gαβdzα∧dzβ) = (Φi)β,γdz
β∧dzγ = 0. In particular, one has Lvi(ωn) =

0 (as relative tensor).
Here [·, ·] denote the Lie bracket of two vector fields.

Let TCMt = TMt⊗RC denote the complexified tangent bundle ofMt, and for
`, `′ ≥ 0, consider the space A`(∧`′TCMt) with decomposition A`(∧`′TCMt) =
⊕q+p=`,r+s=`′Aq,p(∧rTMt∧∧sTMt) and corresponding Weil operator CW given
by scalar multiplication by (

√
−1)q−p+r−s on each summand Aq,p(∧rTMt ∧

∧sTMt). As usual, we denote the (positive definite) L2-inner product and
the corresponding L2-norm on A`(∧`′TCMt) with respect to ω(t) by ( , ) and
‖ ‖2 respectively. Then it is well-known that there is a pointwise Hermitian
bilinear pairing 〈 , 〉 (of mixed signature) on A`(∧`′TCMt) such that for all
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Υ,Υ′ ∈ A`(∧`′TCMt), one has

Lvi〈Υ,Υ′〉 = 〈LviΥ,Υ′〉+ 〈Υ,LviΥ′〉, and(3.2)

(Υ,Υ′) =

∫
Mt

〈CW (Υ),Υ′〉ω
n

n!
;(3.3)

moreover, CW restricts to the identity map on A0,`(∧`TMt), and (3.3) agrees
with (2.10) (cf. e.g. [TY, Section 3]).

Let ΨJ be as in (3.1) . First one easily checks that

(3.4) ∂i∂i log ‖ΨJ‖2
2 =

∂i∂i‖ΨJ‖2
2

‖ΨJ‖2
2

− (∂i‖ΨJ‖2
2)(∂i‖ΨJ‖2

2)

‖ΨJ‖4
2

.

We note that [TY, Lemma 3] also holds in the present Ricci-flat case, so that
the component of LviΨJ in A0,`(∧`TMt) is ∂-exact on Mt. Together with the
harmonicity of ΨJ , it follows that

(3.5) (LviΨJ , ΨJ) = 0

as a function on the base manifold. Together with a direct computation using
Lemma 1, (3.2) and (3.3), one has, as in [TY, equations (4.7)-(4.9)],

∂i‖ΨJ‖2
2 = (LviΨJ ,ΨJ).(3.6)

By taking ∂i of (3.5), taking ∂i of (3.6), and using the identity LviLvi =
LviLvi + L[vi,vi], one gets, as in [TY, equations (4.9)-(4.12)],

∂i∂i‖ΨJ‖2
2 = I + II + III, where(3.7)

I : = −(LviΨJ ,LviΨJ),(3.8)

II : = (L[vi,vi]ΨJ ,ΨJ), and

III : = (LviΨJ ,LviΨJ).

We are going to compute the terms I, II and III in the next three propositions.
First we consider I. As in [TY, equations (5.6) and (5.10)], we let Let Φi ·ΨJ ∈
A0,`−1(∧`−1TMt), Φi ↘ ΨJ ∈ A1,`−1(∧`TMt) and Φi ↗ ΨJ ∈ A0,`(∧`−1TMt ∧
TMt) be the relative tensors with components given by

(Φi ·ΨJ)
α1···α`−1

β1···β`−1
:= (Φi)σγ · (ΨJ)

γα1···α`−1

σβ1···β`−1
,(3.9)

(Φi ↘ ΨJ)α1···α`
δβ1···β`−1

:= (Φi)σδ (ΨJ)α1···α`
σβ1···β`−1

and(3.10)

(Φi ↗ ΨJ)
α1···α`−1γ

β1···β`
:= (Φi)

γ
σ(ΨJ)

α1···α`−1σ

β1···β`
.

For a relative tensor Υ ∈ ⊕p,q,r,sAq,p(∧rTMt∧∧sTMt), we denote by Υ
(q,p)
(r,s) the

component of Υ in Aq,p(∧rTMt ∧ ∧sTMt). Moreover, for Υ ∈ A0,p(∧rTMt),
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we denote D2
∗
Υ ∈ A0,p(∧r−1TMt), given by

(D2
∗
Υ)

α1···αr−1

β1···βp
= −∇σΥ

σα1···αr−1

β1···βp
.

(cf. [Siu, p.288] and [TY, Section 5]). As usual, we denote by � := ∂̄∂̄∗ + ∂̄∗∂̄
the ∂̄-Laplacian on Mt with respect to ω(t), and denote its associated Green’s
operator by G.

Lemma 2. Let Φi and ΨJ be as in (3.1).

(i) There exists K ∈ A0,`−1(∧`TMt) such that ∂K = (LviΨJ)
(0,`)
(`,0).

(ii) For any Υ ∈ A0,`−1(∧`−1TMt), we have 〈Φi ·ΨJ ,Υ〉 = 〈ΨJ ,Φi ? Υ〉.
(iii) We have ∂

∗
(Φi ·ΨJ) = 0.

(iv) The tensor D2
∗
((LviΨJ)

(0,`)
(`,0)) is ∂-exact. Explicitly, we have

(3.11) ∇σ(LviΨJ)
σα1···α`−1

β1···β`
= (∂(Φi ·ΨJ))

α1···α`−1

β1···β`
.

(v) Let K be as in (i) above. Suppose that ∂
∗
K = 0. Then

D2
∗
K = −�G(Φi ·ΨJ),

Proof. The proofs of (i)-(iv) are the same as those in Lemma 3, Lemma 4,
Lemma 5 and Lemma 6 of [TY] respectively. The proof of (v) follows mutatis
mutandis from that of [TY, Lemma 7], and we just remark that the arguments
leading to [TY, equation (5.20)] in the proof of [TY, Lemma 7] show that

in our present case, D2
∗
K is ∂

∗
-exact, and there exists a harmonic tensor Q

satisfying Q = Φi ·ΨJ +D2
∗
K, which readily imply (v). We also remark that

as in [TY], the proof of (v) depends on (iii) and (iv), while that of (iv) depends
on (ii) and (iii). �

Parallel to [TY, Proposition 1], we compute I in (3.8) as follows:

Proposition 1. We have

(LviΨJ ,LviΨJ) = (�G(Φi ·ΨJ),Φi ·ΨJ)

− (Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).

Proof. As in [TY, equation (5.11)], one easily checks that

(LviΨJ ,LviΨJ) = ((LviΨJ)
(0,`)
(`,0), (LviΨJ)

(0,`)
(`,0))

− (Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).(3.12)

Then following the proof of [TY, Proposition 1] with [TY, Lemma 7] replaced
by Lemma 2(v), one has

((LviΨJ)
(0,`)
(`,0), (LviΨJ)

(0,`)
(`,0)) = (�G(Φi ·ΨJ),Φi ·ΨJ),

which together with (3.12), lead to the proposition. �

Parallel to [TY, Proposition 2], we also compute II in (3.8) as follows:
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Proposition 2.

(L[vi,vi]ΨJ ,ΨJ) = −(�G〈Φi,Φi〉, 〈ΨJ ,ΨJ〉).

Proof. In the present Ricci-flat case, the proof of [TY, Proposition 2] still gives

(3.13) (L[vi,vi]ΨJ ,ΨJ) = −(�〈vi, vi〉, 〈ΨJ ,ΨJ〉).
On the other hand, using identity �2(〈vi, vj〉) = �〈Φi,Φj〉 given in [Sch2,
equation (2.9)], we have

(�〈vi, vi〉, 〈ΨJ ,ΨJ〉) = ((H +G�)�〈vi, vi〉, 〈ΨJ ,ΨJ〉)
= (�2〈vi, vi〉, G〈ΨJ ,ΨJ〉) (since H� = 0)(3.14)

= (�〈Φi,Φj〉, G〈ΨJ ,ΨJ〉)
= (�G〈Φi,Φj〉, 〈ΨJ ,ΨJ〉),

which gives the proposition. �

Next we proceed to compute III. Similar to [Siu, p. 288] and as in [TY,
Section 7], for 1 6 ` 6 n, we denote by X(`) the space of (relative) tensors Ξ ∈
A(⊗`T ∗Mt ⊗ ⊗`T ∗Mt) with components Ξα1···α`,β1···β` satisfying the following
three properties:

(P-i) Ξα1···α`,β1···β` is skew-symmetric in any pair of indices αi, αj for i < j;

(P-ii) Ξα1···α`,β1···β` is symmetric in the two `-tuples of indices (α1, · · · , α`) and

(β1, · · · , β`), and

(P-iii) for given indices α1, · · · , α`−1, and β1, · · · , β`+1, one has

`+1∑
ν=1

(−1)νΞ
α1···α`−1βν ,β1···β̂ν ···β`+1

= 0,

where β̂ν means that the index βν is omitted.

As in [Siu, p. 289] and [TY, Section 7], for s = 1, 2, we let Ds denote
the operator X(`) given by taking ∂ to the s-th `-tuple of skew-symmetric
indices, and we let Ds

∗
denote the adjoint operator of Ds. Also, we denote

�s = Ds
∗
Ds +DsDs

∗
, and we denote by Hs the harmonic projection operator

on X(`) with respect to �s. The Green’s operator on X(`) with respect to �s
is denoted by Gs.

Lemma 3. For any Ξ ∈ X(`), we have

(a) D1D2Ξ = D2D1Ξ,

(b) D1
∗
D2Ξ = D2D1

∗
Ξ,

(c) D1
∗
D2
∗
Ξ = D2

∗
D1
∗
Ξ,

(d) D1D2
∗
Ξ = D2

∗
D1Ξ,

(e) �1Ξ ∈ X(`) and H1(Ξ) ∈ X(`),
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(f) �1Ξ = �2Ξ, H1(Ξ) = H2(Ξ), G1Ξ = G2Ξ, and

(g) if D1Ξ = 0, then G1D2
∗
Ξ = D2

∗
G2Ξ.

Proof. The proofs of the above properties (a) to (f) of X(`) (resp. (g)) follow
mutatis mutandis from those in [Siu, p. 289-292] (resp. [Na, p.422-424]), which
treated the case when ` = 2. We will leave the details to the reader. �

Let Φi,ΨJ (with |J | = `) be as in (3.1). By lowering indices of these ob-
jects, we obtain corresponding covariant tensors, which will be denoted by the
same symbols (when no confusion arises). For example, ΨJ also denotes the
covariant tensor with components given by

(ΨJ)α1···α`,β1···β` = gγ1β1 · · · gγ`β`(ΨJ)γ1···γ`α1···α` .

We will skip the proof of the following simple lemma, which is the same as
that in [TY, Lemma 10].

Lemma 4. For each 1 6 ` 6 n, we have ΨJ ∈ X(`) and Φi ? ΨJ ∈ X(`+1).

We will also skip the following lemma, whose statement and proof are the
same as in [TY, Lamma 11] (and similar to that given in [Siu, pp. 286-288]).

Lemma 5. We have
(i) D2

∗
(Φi ? ΨJ) = D1(LviΨJ),

(ii) ∂(Φi ? ΨJ) = 0, and

(iii) ∂
∗
(LviΨJ) = 0.

Parallel to [TY, Proposition 3], we give the computation of III in (3.8) as
follows:

Proposition 3. We have

(LviΨJ ,LviΨJ) =(H(LviΨJ),LviΨJ) + (�G(Φi ? ΨJ),Φi ? ΨJ).

Proof. The proof is similar to that of [TY, Proposition 3], involving generalizing
the arguments in [Siu, p. 292-293]. First we have

(3.15) (LviΨJ ,LviΨJ) = (H(LviΨJ),LviΨJ) + (G�(LviΨJ),LviΨJ).
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Now we consider the last term of (3.15). Upon lowering indices, it is given by

(G1�1(LviΨJ),LviΨJ)

= ((G1D1
∗
D1(LviΨJ),LviΨJ)

(since D1
∗
(LviΨJ) = 0 by Lemma 5(iii))

= (D1
∗
G1D2

∗
(Φi ? ΨJ),LviΨJ) (by Lemma 5(i))

= (G1D2
∗
(Φi ? ΨJ), D1(LviΨJ))

= (D2
∗
G2(Φi ? ΨJ), D2

∗
(Φi ? ΨJ))

(by Lemma 4, Lemma 5(i), (ii) and Lemma 3(g))

= (D2D2
∗
G2(Φi ? ΨJ),Φi ? ΨJ)

= (�2G2(Φi ? ΨJ),Φi ? ΨJ) (since G2D2 = D2G2

and D2(Φi ? ΨJ) = 0 (by Lemma 5(ii))).

Upon raising indices and using (3.15), one obtains Proposition 3 readily.

Next we recall from [TY] the following pointwise identity:

Lemma 6. ([TY, Lemma 12]) One has

(Φi ? ΨJ ,Φi ? ΨJ) = (Φi ·ΨJ ,Φi ·ΨJ) + (〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)
−(Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).

Similar to ([TY, Proposition 4]), we have

Proposition 4. We have

∂i∂i log ‖ΨJ‖2
2 =

1

‖ΨJ‖2
2

(
H(Φi ·ΨJ),Φi ·ΨJ) + (H(〈Φi,Φi〉), 〈ΨJ ,ΨJ〉)

+ ((H(LviΨJ),LviΨJ)−
∣∣(LviΨJ ,

ΨJ

‖ΨJ‖2

)
∣∣2

− (H(Φi ? ΨJ), H(Φi ? ΨJ))
)
.

Proof. Similar to ([TY, Proposition 4]), the proposition follows immediately by
combining (3.4), (3.6), (3.7), (3.8), Proposition 1, Proposition 2, Proposition
3 and Lemma 6. �

Proposition 5. We have

∂i∂i log ‖ΨJ‖2
2 >

1

‖ΨJ‖2
2

(
(H(Φi ·ΨJ),Φi ·ΨJ) + ((H(〈Φi,Φi〉), 〈ΨJ ,ΨJ〉)

− (H(Φi ? ΨJ), H(Φi ? ΨJ))
)
.
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Proof. Similar to [TY, Proposition 5], by considering the spectral decomposi-
tion of LviΨJ with respect to � and using the fact that ΨJ is harmonic, one
clearly has

(3.16) ((H(LviΨJ),LviΨJ) = ‖H(LviΨJ)‖2
2 >

∣∣(LviΨJ ,
ΨJ

‖ΨJ‖2

)
∣∣2.

By combining (3.16) and Proposition 4, one obtains Proposition 5 easily. �

Now we state the main result in this section which is to be used to construct
the augmented Weil-Petersson metric in the next section. For a positive integer
`, we define the relative tensor

(3.17) H(`) := H(Φi ? · · ·? Φi︸ ︷︷ ︸
`−times

),

so that H(`) = ΨJ with J given by the `-tuple (i, i, · · · , i). Note that H(`)

actually depends on i, but for simplicity, this is suppressed in the notation.
We also adopt the convention that H(0) is the constant function 1. Parallel to
[TY, Proposition 6], we have

Proposition 6. Let i, `,H(`) be as in (3.17). Suppose ‖H(`)‖2 > 0 (so that
‖H(`−1)‖2 > 0 (cf. (3.20)). Then we have

(3.18) ∂i∂i log ‖H(`)‖2
2 ≥

‖H(`)‖2
2

‖H(`−1)‖2
2

− ‖H
(`+1)‖2

2

‖H(`)‖2
2

.

Proof. To deduce (3.18) from Proposition 5 (with ΨJ there given by H(`)),
one first observes that H(〈Φi,Φi〉) is a positive constant function (say, with
constant value c > 0). Then the second last term of Proposition 5 satisfies

(3.19) ((H(〈Φi,Φi〉), 〈H(`), H(`)〉) = c · ‖H(`)‖2
2 > 0.

Next for ` ≥ 0, we recall from [TY, Lemma 13] the following two equalities,
whose proofs also hold in the present case:

H(Φi ?H(`−1)) = H(`), and(3.20)

(Φi ·H(`), H(`−1)) = ‖H(`)‖2
2.(3.21)

Then by considering the spectral decomposition of Φi ·H(`) with respect to �,
one has, from (3.21),

(3.22) (H(Φi ·H(`)),Φi ·H(`)) ≥
∣∣(Φi ·H(`),

H(`−1)

‖H(`−1)‖2

)∣∣2 =
‖H(`)‖4

2

‖H(`−1)‖2
2

.

By combining Proposition 5, (3.19), (3.20) and (3.22), one obtains Proposition
6 readiy. �
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4. Curvature of the augmented Weil-Petersson metric

Let π : X → S be an effectively parametrized family of polarized Ricci-flat
Kähler manifolds as in Theorem 1. As before, we let Mt = π−1(Mt) for t ∈ S,
and denote n = dimCMt and m = dimC S. Without loss of generality, we
assume that n ≥ 2. Following the arguments in [TY, Section 9], we are going
to construct an augmented Weil-Petersson metric on S, whose holomorphic
sectional curvature is bounded above by a negative constant.

First we let N = n!, and let V be the volume of (Xt, ωt) (which is inde-
pendent of t) as in (2.7). We consider the following two sequences of positive
numbers {C`}1≤`≤n and {a`}1≤`≤n given by

C1 : = min
{

1,
1

V

}
, C` =

C`−1

3
=

C1

3`−1
, 2 ≤ ` ≤ n,(4.1)

a1 : = 1, a` =
(3a`−1

C1

)N
=
( 3

C1

)N(N`−1−1)
N−1 , 2 ≤ ` ≤ n.(4.2)

First we recall from [TY, Lemma 14] (with the constant A there replaced
by V ) the following inequality:

Lemma 7. ([TY, Lemma 14]) Let N ≥ n ≥ 2, V and {C`}1≤`≤n and {a`}1≤`≤n
be as above, and let κ be an integer satisfying 1 ≤ κ ≤ n. Then for all real
numbers x1, · · · , xκ > 0, we have

(4.3)
a1x

N+1
1

V
+

κ∑
`=2

(a`
`
· x

N+`
`

x`−1
`−1

− a`−1

`− 1
· xN−`+1

`−1 x``
)
≥ Cκ ·

κ∑
`=1

xN+1
` .

(When κ = 1, the first summation in (4.3) is understood to be zero.)

With the above choice of the a`’s, we define an augmented Weil-Petersson
metric haWP on S to be the Finsler metric given by

(4.4) haWP (u) =
( n∑
`=1

a`‖u‖2N
WP,`

) 1
2N

for u ∈ TtS and t ∈ S.

Here ‖ ‖WP,` is as defined in (2.12). Next we recall the following well-known
simple lemma:

Lemma 8. ([Sch2, Lemma 8] or [TY, Lemma 15]) Let U be a complex mani-
fold, and φ`, 1 ≤ ` ≤ r, be positive C2 functions on U . Then

(4.5)
√
−1∂∂ log(

r∑
`=1

φ`) ≥
∑r

`=1 φ`
√
−1∂∂ log φ`∑r
j=1 φj

.
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Let u ∈ TS and ` be an integer satisfying 1 ≤ ` ≤ n. Similar to (3.17), we
denote

(4.6) H(`)(u) := H(Φ(u) ? · · ·? Φ(u)︸ ︷︷ ︸
`−times

),

where Φ(u) is the harmonic representative of ρt(u) as in Section 2. This gives
rise to a function r : PTS → Z given by

(4.7) r([u]) := max{`
∣∣H(`)(u) 6= 0} for 0 6= u ∈ TS,

where [u] denotes the class of u in PTS. Since ρt is injective for each t ∈ S, it
follows that 1 ≤ r([u]) ≤ n for each [u] ∈ PTS. Now we let R be a local one-
dimensional complex submanifold of S. Then it is easy to see that r induces
a function rR : R→ Z given by

(4.8) rR(t) := r([ut]) for t ∈ R,

where ut is any non-zero vector in TtR. Let κ be an integer satisfying 1 ≤ κ ≤
n. Following [TY, Section 9], we say that a point to ∈ R is a κ-stable point of
R if there exists an open neighborhood Uto of to in R such that rR(t) = κ for
all t ∈ Uto . We also recall that for a C∞ Finsler metric h on S, the sectional
curvature K(R, h

∣∣
R

)(to) of h
∣∣
R

at a point to ∈ R is given by

(4.9) K(R, h
∣∣
R

)(to) = −
∂t∂t̄ log((h( ∂

∂t
))2)

(h( ∂
∂t

))2

∣∣∣
t=to

,

where t denotes a local holomorphic coordinate function on some open subset
of R containing to.

Proposition 7. Let haWP be as in (4.4). Let R be a local one-dimensional
complex submanifold of S, and let to ∈ R be a κ-stable point of R for some
integer 1 ≤ κ ≤ n. Then we have

K(R, haWP

∣∣
R

)(to) ≤ −
Cκ

κ
1
N a

1+ 1
N

κ

,

where aκ and Cκ are as in (4.2) and (4.1).

Proof. The proof follows from a calculation exactly as that in [TY, Proposition
7]. For convenience of the reader, we will sketch the calculation here and
refer the reader to [TY, Proposition 7] for details. First since to is a κ-stable
point of R, there exists an open coordinate neighborhood U of to in R (with
coordinate tangent vector ∂/∂t) such that the terms on the right hand side of
(4.4) corresponding to ` = κ+ 1 to ` = n are all identically zero on U , so that
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one may write (4.4) as

(4.10) haWP (
∂

∂t
) =

( κ∑
`=1

a`‖H(`)‖
2N
`

2

) 1
2N

on U , where H(`) := H(`)(
∂

∂t
)

(cf. (4.6)). Together with Lemma 8 and Proposition 6, one gets

(4.11) ∂t∂t̄ log((h(
∂

∂t
))2) ≥

∑κ
`=1

a`
`
· ‖H(`)‖

2N
`

2 ·
( ‖H(`)‖22
‖H(`−1)‖22

− ‖H
(`+1)‖22
‖H(`)‖22

)
∑κ

`=1 a`‖H(`)‖
2N
`

2

=:
B

C
.

By rearranging the terms of B telescopically (so that the first expression of the
`-th term is grouped with the second expression of the (` − 1)-th term) and
using that fact that ‖H(κ+1)‖2 = 0, one deduces readily from Lemma 7 (with

x` given here by ‖H(`)‖
2
`
2 ) that

(4.12) B ≥ Cκ ·
κ∑
`=1

‖H(`)‖
2(N+1)

`
2 ,

From (4.10), (4.11) and using the fact that a` ≥ a`−1, one has

(4.13) C · (h(
∂

∂t
))2 ≤

( κ∑
`=1

aκ‖H(`)‖
2N
`

2

)N+1
N ≤

(
κaN+1

κ

) 1
N ·

κ∑
`=1

‖H(`)‖
2(N+1)

`
2 ,

where the last inequality follows from Hölder inequality. By combining (4.9),
(4.11), (4.12) and (4.13), one obtains the proposition readily. �

We are ready to give the proof of Theorem 1 as follows:

Proof of Theorem 1. Let π : X → S be as in Theorem 1, and let n := dimMt.
Let haWP be as in (4.4). As mentioned in Remark 1, haWP is Aut(π)-invariant
and C∞. Take a point t ∈ S, and let R be a local one-dimensional complex
submanifold of S passing through t (i.e. t ∈ R). As in [TY, Lemma 17], the
set

(4.14) QR := {t ∈ R
∣∣ t is a κ-stable point of R for some 1 ≤ κ ≤ n}

is easily seen to be a dense subset of R (with respect to the usual topology).
Thus there exists a sequence of points {tj}∞j=1 in QR such that limj→∞ tj = t in
R. In particular, each tj is a κj-stable point of R for some integer κj satisfying
1 ≤ κj ≤ n. By Proposition 7, we have, for each j,

(4.15) K(R, haWP

∣∣
R

)(tj) ≤ −
Cκj

κ
1
N
j a

1+ 1
N

κj

≤ − Cn

n
1
N a

1+ 1
N

n

,

where the last inequality follows from the facts that Cκ decreases with κ while
aκ increases with κ. Together with the fact that haWP

∣∣
R

is C∞, one concludes
readily that (4.15) also holds at t (i.e., with tj there replaced by t). Together
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with (2.2), it follows that the holomorphic sectional curvature of haWP on S is
bounded above by a negative constant. �

Remark 2. We remark that in general, the augmented Weil-Petersson metric
in Theorem 1 is not unique, and its construction actually gives rise to a con-
tinuous family of Finsler metrics of negative holomorphic sectional curvature
bounded away from zero. One way to see this is as follows: for any ε satisfying
0 ≤ ε < 1, if one replaces the constant a1 = 1 by 1−ε in (4.4) while keeping the
other a`’s unchanged, one gets a family of augmented Weil-Petersson metrics
parametrized by ε given by

(4.16)

haWP,ε(u) =
(

(1− ε)‖u‖2N
WP,1 +

n∑
`=2

a`‖u‖2N
WP,`

) 1
2N

for u ∈ TtS and t ∈ S.

It is easy to see that there exists εo > 0 such that for each ε satisfying 0 ≤
ε < εo, the holomorphic sectional curvature of haWP,ε is bounded above by some
negative constant. Next we consider the one-dimensional moduli space M of
Calabi-Yau threefolds which are mirror manifolds of the quintic hypersurfaces
in CP4. As mentioned in Section 1, Candelas et al [CDGP] showed that the
holomorphic sectional curvature of the Weil-Petersson metric (i.e. ‖ ‖WP,1)
on M is positive at some points of M and negative at other points of M.
Using this fact and the negativity of the holomorphic sectional curvature of the
haWP,ε’s, one easily sees that haWP,ε is not a constant multiple of haWP,ε′ on
M (and we simply say that they are inequivalent) whenever 0 ≤ ε < ε′ < εo
(in fact, for 0 ≤ ε < ε′, the equation haWP,ε = c · haWP,ε′ for some constant
c > 0 implies readily that both haWP,ε and haWP,ε′ are constant multiples of
‖ ‖WP,1). It follows thatM admits a continuous family of pairwise inequivalent
augmented Weil-Petersson metrics.

5. The general case of families of polarized Ricci-flat Kähler
orbifolds

In this section, we are going to consider the general case of a family of
polarized Ricci-flat Kähler orbifolds and give the proof of Theorem 1’. When
the arguments or calculations given in the previous sections also work in the
present orbifold case, we will often avoid repeating them here and only indicate
the necessary modifications. First we recall some definitions.

An n-dimensional complex orbifold is a complex analytic space M of complex

dimension n together with a basis of open subsets {Ûα}α∈A covering M such

that for each open set Ûα ∈ A, there exist an associated open set Uα ⊂ Cn,
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a finite subgroup Γα ⊂ Aut (Uα) (here Aut (Uα) denotes the group of self-

biholomorphisms on Uα) and a holomorphic map pα : Uα → Ûα which is
Γα-invariant (i.e., pα ◦ γ = pα for all γ ∈ Γα) and induces a biholomorphism

between Ûα and Uα/Γα (so that we may write Ûα = Uα/Γα); furthermore, if

Ûα ⊂ Ûβ (with α, β ∈ A), then there exist a group homomorphism ταβ : Γα →
Γβ and an injective holomorphic map φαβ : Uα → Uβ such that

pβ ◦ φαβ = pα, and ταβ(γ) ◦ φαβ = φαβ ◦ γ for all γ ∈ Γα.(5.1)

(A complex orbifold is also called a complex V -manifold à la Satake and Baily
(cf. [Ba1], [Ba2], [Sa]).) Each local holomorphic covering projection map

pα : Uα → Ûα = Uα/Γα is known as an orbifold chart of M , and the collection
orbifold charts is called an orbifold atlas of M . The orbifold singular set M s of
M is the subset {x ∈ M

∣∣ γ(y) = y for some y ∈ p−1
α (x), e 6= γ ∈ Γα with α ∈

A} (here e denotes the identity element of Γα). Note that M s is a complex
analytic subvariety of M and M \ M s lies in the smooth part M◦ of (the
underlying complex space) M , but it may happen that M \M s $M◦.

A differential form η on a complex orbifold M (with an orbifold atlas {pα :

Uα → Ûα = Uα/Γα}α∈A) is a collection of differential forms {ηα}α∈A, where
each ηα is a differential form on Uα invariant under Γα (i.e., γ∗ηα = ηα for all

γ ∈ Γα), and φ∗αβηβ = ηα whenever Ûα ⊂ Ûβ. The differential η on M is said
to possess a certain property (such as being an (r, s)-form, or being d-closed)
if each ηα possesses such property on Uα. (Alternatively, a differential form
(with a certain property) on the complex orbifold M can also be defined as
a differential form η on M \M s such that p∗αη extends to a differential form
(with the same property) on Uα for each α ∈ A.) In particular, a differential
fom ω on M is said to be a Kähler form if ωα is a Kähler form on Uα for each
α ∈ A. A (Ricci-flat) Kähler orbifold is a complex orbifold M equipped with
a (Ricci-flat) Kähler form ω. We remark that when M is smooth and M s is
a smooth divisor of M , then ω gives an example of a conical Ricci-flat Kähler
form on the pair (M,M s) (see [Br] for the definition and existence results of
conical Ricci-flat Kähler forms).

An orbifold vector bundle E over a complex orbifold M (with an orbifold

atlas {pα : Uα → Ûα = Uα/Γα}α∈A) is a collection of vector bundles {Eα}α∈A,
where Eα is a vector bundle over Uα (with the projection map denoted by
qα : Eα → Uα) for each α ∈ A, and for each α ∈ A, there is an associated
group homomorphism να : Γα → Aut(Eα) (here Aut(Eα) denotes the group
of vector bundle automorphisms of Eα) such that qα ◦ να(γ) = γ ◦ qα for all

γ ∈ Γα; furthermore, if Ûα ⊂ Ûβ for some α, β ∈ A, then there exists a bundle
map ραβ : Eα → Eβ such that (νβ ◦ ταβ)(γ) ◦ ραβ = ραβ ◦ να(γ) for all γ ∈ Γα
(here ταβ is as in (5.1)), and one has ραβ ◦ ρβδ = ραδ if Ûα ⊂ Ûβ ⊂ Ûδ. Note
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that E descends to a vector bundle on M \M s (in the usual sense). A typical
example of an orbifold vector bundle is the orbifold tangent bundle TM given
by the collection of tangent bundles {TUα}α∈A with the action of γ ∈ Γα given
by the jacobian of γ, i.e., να(γ) = γ∗. Hermitian metrics on orbifold vector
bundles over complex orbifolds are defined in the obvious way.

Let ϕ = {ϕα}α∈A be an (n, n)-form on an n-dimensional complex orbifold

M with an orbifold atlas {pα : Uα → Ûα = Uα/Γα}α∈A. For each α ∈ A, the

integral of ϕ over Ûα is given by

∫
Ûα

ϕ :=
1

|Γα|

∫
Uα

ϕα, where |Γα| denotes the

order of the group Γα. Then the integral

∫
M

ϕ is defined by using a partition

of unity in the obvious manner. We remark that by well-known results of Baily
(cf. [Ba1], [Ba2]), many natural differential operators on manifolds (such as the
de Rham operator d (and its decomposition d = ∂+ ∂) and associated objects
(such as de Rham and Dolbeault cohomology classes) generalize to orbifolds
in the obvious manner, and many standard results on these operators (such as
Stokes’ Theorem) also hold for orbifolds. In particular, Hodge decomposition
theorem also holds for orbifold vector bundles over compact Kähler orbifolds;
and under such setting, the harmonic projection operator and Green’s operator
make sense in the obvious manner (see [Ba1, Section 2 and Section 7]).

Let π : X → S be a holomorphic map from an (n + m)-dimensional com-

plex orbifold X (with an orbifold atlas {pα : Uα → Ûα = Uα/Γα}α∈A) to an
m-dimensional complex manifold S. Then π : X → S is said to form a holo-
morphic family of complex orbifolds over S if (i) π is surjective and of maximal
rank (here π is of maximal rank means that for each α ∈ A, π◦pα is of maximal
rank at all points of Uα; and (ii) for each α ∈ A, Uα is of the form Uα ×Wα,
where Uα is an open subset of Cn and Wα ⊂ Cm is an open coordinate subset
of S, so that π ◦ pα is given by the coordinate projection map onto the second

factor Wα; furthermore, each γ ∈ Γα(⊂ Aut(Uα)) is of the form

(
γ′ 0
0 em

)
for

some γ′ ∈ Aut(Uα), where em denotes the identity map on Wα. (Note that
under the identification γ ←→ γ′, we may regard Γα as a subgroup of Aut(Uα),
and we may write

(5.2) Ûα = Uα/Γα = (Uα ×Wα)/Γα = (Uα/Γα)×Wα = Ûα ×Wα.

Note that with the above identification, we may write pα : Uα → Ûα as

(p′α, em) : Uα × Wα → Ûα × Wα, where p′α : Uα → Ûα is the projection
map under the induced action of Γα on Uα. It is easy to see that under these
two conditions, for each t ∈ S, the fiber Mt := π−1(t) is a complex orbifold

with an orbifold atlas given by {p′α : Uα → Ûα = Uα/Γα}α∈A). Note that the
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fibers Mt’s are all homeomorphic to each other. Finally a holomorphic family
of complex orbifolds π : X → S over a complex manifold S is said to form a
holomorphic family of compact polarized Ricci-flat Kähler orbifolds if the fiber
Mt is compact for each t ∈ S, and the complex orbifold X is endowed with
a d-closed (1, 1)-form ω such that its restriction ωt := ω

∣∣
Mt

to each fiber Mt,

t ∈ S, is a Ricci-flat Kähler form on the complex orbifold Mt.

We proceed to consider the deformation theory of compact complex orb-
ifolds. Let π : X → S be a holomorphic family of compact complex orbifolds
over a complex manifold S (satisfying conditions (i) and (ii) in the above para-
graph). We fix a point to ∈ S, and let W be an open coordinate neighborhood
of to in S. Then shrinking W and replacing A by a subset if necessary, we
may assume that the restricted family π

∣∣
π−1(W )

: π−1(W ) → W admits an

orbifold atlas {pα : Uα → Ûα = Uα/Γα}α∈A and the fiber Mto = π−1(to) admits

a corresponding orbifold atlas {p′α : Uα → Ûα = Uα/Γα}α∈A, where for each
α ∈ A, we may write, as in (5.2),

(5.3) Ûα = Uα/Γα = (Uα ×W )/Γα = (Uα/Γα)×W = Ûα ×W,

and one has an associated decomposition of pα given by pα = (p′α, eW ). Here eW
denotes the identity map onW . Now we take a homeomorphism Ξ : Mto×W →
π−1(W ) such that Ξ

∣∣
Mto×{to}

is the identity map on Mto , π ◦ Ξ(x, t) = t for all

t ∈ W and x ∈ Mto , and for α, β ∈ A such that Ξ(Ûα ×W ) ⊂ Ûβ, one has
a lifting of Ξ

∣∣
Ûα×W

to a diffeomorphism Ξαβ : Uα ×W → Uβ from Uα ×W

into Uβ such that ταβ(γ)(Ξαβ(z, t)) = Ξαβ(γ(z), t) for all (z, t) ∈ Uα ×W and
γ ∈ Γα (here ταβ is as in (5.1)). Such a Ξ corresponds to a lifting of a vector
field u on W to a vector field vu on (X \ X s) ∩ π−1(W ) (so that π∗vu = u)

such that for each orbifold chart pα : Uα → Ûα = Uα/Γα with π(Ûα) ⊂ W ,
vu lifts (and then extends) to a Γα-invariant vector field vu,α on Uα (so that
(pα)∗vu,α = vu on (X \ X s) ∩ π−1(W ) and γ∗vu,α = vu,α for all γ ∈ Γα).

As in the smooth case and with the identification given in (5.3), by taking
∂ of vu,α along the fiber directions on Uα × {to} (which is identified with Uα),

one gets a Γα-invariant ∂-closed TUα-valued (0, 1) form on Uα. As such, we
get a ∂-closed TMto-valued (0, 1)-form on Mto , which is simply denoted by
∂vu
∣∣
Mto

. As in the smooth case, it is easy to see that if ∂v′u
∣∣
Mto

is another

∂-closed TMto-valued (0, 1)-form on Mto corresponding to another lifting of
u, then ∂vu

∣∣
Mto
− ∂v′u

∣∣
Mto

is ∂-exact on Mto . Thus, we have a well-defined

Kodaira-Spencer map ρ : TtoS → H0,1(Mto , TMto) given by ρto(v) = [∂vu
∣∣
Mto

],

where [∂vu
∣∣
Mto

] denotes the Dolbeault cohomology class of ∂vu
∣∣
Mto

. As in the

smooth case, a holomorphic family π : X → S of complex orbifolds is said to
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be effectively parametrized if the Kodaira spencer map ρt is injective for each
t ∈ S.

For the remainder of the section and as in Theorem 1’, we let π : X → S
be an effectively parametrized holomorphic family of n-dimensional compact
polarized Ricci-flat Kähler orbifolds over an m-dimensional complex manifold
S. Let ω be the associated d-closed (1, 1)-form on X such that its restriction
ωt := ω

∣∣
Mt

is a Ricci-flat Kähler form on the complex orbifold Mt for each

t ∈ S, and let g be the associated metric tensor of type (1, 1) on X . Let

{pα : Uα → Ûα = Uα/Γα}α∈A be an orbifold atlas of X which gives rise to an

associated orbifold atlas {p′α : Uα → Ûα = Uα/Γα}α∈A on Mt for each t ∈ S as
given in (5.2). For a local tangent vector field u of type (1, 0) on an open subset
W of S, one obtains the horizontal lifting vu of u on (X \ X s) ∩ π−1(W ) with
respect to ω as described in Section 2 for the smooth case. Alternatively, for

each orbifold chart pα : Uα → Ûα = Uα/Γα such that Ûα ⊂ π−1(W ), recall that
ω lifts to a Γα-invariant form ωα on Uα. Then one can consider the horizontal
lifting vu,α of u to Uα with respect to ωα (and the projection map π ◦ pα). It is

easy to see that each vu,α is Γα-invariant, and (pα)∗vu,α = vu on Ûα∩ (X \X s).

As in the smooth case in Section 2, one easily sees that Φ(u) := ∂vu
∣∣
Mt

is

the unique harmonic Kodaira-Spencer representative of ρt(u) for t ∈ W ⊂ S.
When W is a coordinate open subset of S with coordinates given by t =
(t1, · · · tm) and u = ∂/∂ti is a coordinate vector field, it is easy to see that its
horizontal lifting vi of ∂/∂ti and the correspnding harmonic Kodaira-Spencer
representative Φi := ∂vi

∣∣
Mt

are such that their Γα-invariant liftings on the

orbifold charts Uα’s (and thus also vi and Φi on Ûα ∩ (X \ X s)) are given
locally by the same expressions as in (2.3) and (2.4) respectively. Then the
Weil-Petersson metric h(WP ) on S is given by the same expression as in (2.6).
For integers p, q, r, s ≥ 0, t ∈ S, Φ ∈ A0,p(∧rTMt) and Ψ ∈ A0,q(∧sTMt),
one defines Φ ? Ψ ∈ A0,p+q(∧r+sTMt) in the obvious manner, namely by first
lifting Φ, Ψ to corresponding bundle-valued forms Φα, Ψα on each Uα (for

each orbifold chart p′α : Uα → Ûα = Uα/Γα) and considering the Γα-invariant
bundle-valued form Φα ? Ψα on Uα (as described in Section 2). Then for
each 1 ≤ ` ≤ n, one can define the `-th generalized Weil-Petersson pseudo-
metric on S as given in (2.11) and (2.12). Finally one can define augmented
Weil-Petersson metrics on S as given in (2.13).

Proof of Theorem 1’. Let π : X → S be an effectively parametrized holo-
morphic family of n-dimensional compact polarized Ricci-flat Kähler orbifolds
over a complex manifold S. Using the finite set of positive numbers {a`}1≤`≤n
as given in (4.1) and (4.2), we define the associated augmented Weil-Petersson
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metric haWP on S as given in (4.4) (and as discussed above). Then by fol-
lowing mutatis mutandis the arguments and computations in Section 3 and
Section 4, one sees that haWP is a C∞ Finsler metric whose holomorphic sec-
tional curvature is bounded above by a negative constant. We only indicate
the new ingredients and the modifications needed for the proof in the orbifold
case. First the Lie derivative LviT of a relative tensor T with respect to the
horizontal lifting vi of some coordinate tangent vector field ∂/∂ti on some coor-
dinate open subset of S makes sense as a relative tensor in the obvious manner,
namely by first lifting vi and T to corresponding Γα-invariant objects on each

Uα (for each orbifold chart pα : Uα → Ûα = Uα/Γα) and considering the corre-
sponding Lie derivative there, which is easily seen to be Γα-invariant. Similar
remark holds for the operations on tensors (and the tensors themselvers) that
appear in Section 3 and Section 4, so that they also make sense (and have the
same properties) for the case of orbifolds. Also, at various places in Section
3 and Section 4 where integration by part arguments are involved, the usual
Stokes’ theorem for manifolds will be replaced here by Stokes’ theorem for
orbifolds (see e.g. [Ba1, p. 866]). As mentioned earlier, one knows from [Ba1,
Section 2 and Section 7] that the Hodge decomposition theorem also holds for
orbifold vector bundles over compact Kähler orbifolds; and under such setting,
the harmonic projection operator and Green’s operator make sense in the ob-
vious manner. These will replace the Hodge decomposition theorem and the
harmonic projection operator and Green’s operator (for manifolds) used in
various parts of Section 3 and Section 4. The rest of the arguments in Section
3 and Section 4 prevail verbatim in the present orbifold case. �

Proof of Corollary 1. Let π : X → S be as in Theorem 1 or Theorem 1’. By
Theorem 1 and Theorem 1’, S admits an augmented Weil-Petersson metric
haWP whose holomorphic sectional curvature is bounded above by a nega-
tive constant. Together with standard arguments involving the usual Ahlfors
lemma, the existence of the Finsler metric haWP on S with the above curvature
property implies readily that S is Kobayashi hyperbolic (cf. e.g. [Kob, p. 112,
Theorem 3.7.1]). �

6. Alternative approach from period mappings in the smooth case

In this section, we discuss in the smooth case an alternative approach of
constructing a Kähler metric (called the Hodge metric) on the base manifold
S with holomorphic sectional curvature bounded above by a negative constant.
This alternative approach is more classical and could be found in [Lu1] (see
also [Gri1], [Gri2], [Ti]), and it is based on Hodge-theoretic considerations.
The alternative approach will work for at least the case of families of Calabi-
Yau manifolds (or slightly more generally, when the canonical line bundle of
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each fiber manifold is holomorphically trivial), although it does not appear
to generalize readily to the general Ricci-flat manifold (or orbifold) case. For
convenience of the reader, we recall briefly Lu’s approach as follows:

Let π : X → S be an effectively parametrized holomorphic family of com-
pact n-dimensional polarized Kähler manifolds of zero first Chern class over
a complex manifold S, and such that KMto

= OMto
for some to ∈ S. From

the deformation invariance of the Hodge number hn,0 and the fact that a holo-
morphic n-form on an n-dimensional compact Ricci-flat Kähler manifold is
automatically parallel with respect to the Levi-Civita connection, it follows
readily that KMt = OMt for all t ∈ S. For each t ∈ S, let P n(Mt,C) :=
{η ∈ Hn(M,C)

∣∣ η ∧ ωt = 0} denotes the primitive cohomology classes in
Hn(Mt,C). By considering the Hodge decomposition of Hn(Mt,C), one ob-
tains a well-defined holomorphic period mapping p : S → D from S to the
classifying space D of certain polarized Hodge structures given by

(6.1) t→ {Hp,q(Mt) ∩ P n(Mt,C)}p+q=n.
By a result of Griffiths ([Gri1, Proposition 3.6]), when each KMt is trivial,
the period mapping p is an immersion (this follows from the fact that if one
takes a nonzero Kodaira-Spencer class η ∈ H1(Ms, TMt) and a nonzero n-
form Ωt ∈ Hn,0(Mt), then the interior product ηyΩt is a nonzero element in
Hn−1,1(Mt)). The classifying space D is a homogeneous complex manifold
admitting a certain invariant two form ωD. In [Lu1], Lu showed that p∗ωD
is a Kähler form whose holomorphic sectional curvature is bounded above
by a negative constant. This Kähler metric was called the Hodge metric in
[Lu1]. We remark that in his proof, Lu needed to use the fact that p(S) lies in
certain ‘horizontal slice’ of D due to Griffiths transversality, and he also made
essential use of Griffiths’ results [Gri1] on the curvature properties of ωD (see
also [Gri2]). In summary, Lu obtained the following result:

Theorem 2. ([Lu1]) Let π : X → S be an effectively parametrized holomorphic
family of compact polarized Kähler manifolds of zero first Chern class over a
complex manifold S. Suppose that KMto

= OMto
for some to ∈ S (and hence

KMt = OMt for all t ∈ S). Then S admits a well-defined Hodge metric whose
holomorphic sectional curvature is bounded above by a negative constant.

Remark 3. Let M and the haWP,ε’s on M be as in Remark 2. Since the
haWP,ε’s are pairwise inequivalent, it follows that apart from one possible ex-
ception, each of the haWP,ε’s is not a constant multiple of the Hodge metric on
M.

An immediate consequence of Theorem 2 is the following

Corollary 2. Let π : X → S be as in Theorem 1. Suppose the family π : X →
S is diffeomorphically trivial, in the sense that there exists a diffeomorphism
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f : X → Mto × S such that π = pr2 ◦ f , where pr2 : Mto × S → S denotes the
projection onto the second factor, and Mto = π−1(to) for some to ∈ S. Then
S admits a Kähler metric whose holomorphic sectional curvature is bounded
above by a negative constant.

Proof. First we note that the diffeomorphism f : X → Mto × S induces the
following isomorphism of fundamental groups:

(6.2) π1(X ) ∼= π1(Mto)× π1(S).

It follows from a result of Beauville [Bea] that there exists a finite cover M ′
to of

the fiber Mto corresponding to some subgroup G ⊂ π1(Mto) of finite index such
that KM ′to

is holomorphically trivial. Then via the isomophism in (6.2), one

may regard G × π1(S) as a subgroup of π1(X ) of finite index. Then one gets
an associated finite cover X ′ of X . Denote the associated covering projection
map by q : X ′ → X , and let π′ = π ◦ q : X ′ → S. Then it is easy to see
that π′ : X ′ → S forms an effectively parametrized holomorphic family of
compact polarized Kähler manifolds of zero first Chern class over S (with the
polarization provided by q∗λ, where λ denotes the polarization of the family
π : X → S), and one has (π′)−1(to) = M ′

to . Hence one may apply Theorem 2
to the family π′ : X ′ → S to yield the desired conclusion on S. �

Remark 4. Let π : X → S be as in Theorem 1. For any to ∈ S, one easily sees
that there exists some open neighborhood U of to in S such that the restricted
family π

∣∣
π−1(U)

: π−1(U) → U over U is diffeomorphically trivial, shrinking

U if necessary. As such, one may apply Corollary 2 to get a Kähler metric
hU on U with holomorphic sectional curvature bounded above by some negative
constant. However, the ‘local Hodge metrics’ hU ’s are not uniquely defined, as
they depend on the choices of the local finite coverings, and it is not clear that
the hU ’s will patch together to form a well-defined Kähler metric on S.

Remark 5. The Hodge theoretic approach described in this section does not
apply to the general orbifold case treated in Theorem 1’, since in that case (and
in addition to Remark 4), each fiber Mt is only an orbifold, and the orbifold
charts of Mt may not lead to a finite (ramified or unramified) cover M ′

t of Mt

such that M ′
t is a compact Kähler manifold with trivial canonical line bundle.
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