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Abstract We present examples of exotic structures on pP 2
C#qP 2

C for some small p
and q obtained naturally from quotients of fake projective planes in complex geom-
etry, which are classified by the work of Prasad-Yeung [PY] and Cartwright-Steger
[CS1].

§1 Statements of results.

(1.1) An exotic structure on a differentiable manifold is a differentiable structure
homeomorphic but not diffeomorphic to the given one. A fundamental question
in differentiable topology is the existence and non-existence of exotic differentiable
structures on manifolds. In particular, one is interested in manifolds with relatively
simple topology. The first such example was constructed by Milnor [Mi] for exotic
spheres.

The first example in dimension 4 was found by Donaldson in [D1]. Recently
there have been a lot of activities related to exotic structures on compact four
dimensional manifolds, including the work of Szabo [S], Jongil Park [P], Stipsicz
and Szabo [SS], Fintushel and Stern [FS], Akhmedov [A], Akhmedov and B. Doug
Park [AP]. Most of the results are obtained through topological surgery.

(1.2) In this article we present some exotic structures obtained from a different
direction. We start with some projective algebraic manifolds equipped with some
natural finite group action, consider their quotient manifolds, resolve the singular-
ities and take some coverings if necessary. It is a direct consequence of the work of
Prasad and Yeung [PY], and Cartwright and Steger [CS1], on their classification of
fake projective planes. Our main purpose is to list all the possible exotic structures
of relatively small Euler Poincaré characteristics obtained from these surfaces. It is
our hope that the somewhat concrete constructions presented here and their rela-
tions to explicitly described arithmetic lattices may make the examples applicable
for other purposes.

Fake projective planes are surfaces with the same Betti numbers as the complex
projective plane P 2

C but not biholomorpic to P 2
C. It is known that such surfaces

are actually complex hyperbolic space-forms (cf. [Y], §2). In the study of Prasad
and Yeung [PY], the authors observed that most (though not all) of the examples
constructed are naturally equipped with a finite group action, such that the quotient
is not a smooth complex surface. For those fake projective planes with fundamental
group which is a proper subgroup of a maximal arithmetic lattice, the fake projective
plane covers a complex two ball quotient with isolated singularity named as a
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maximal ball quotient. The set of all possible maximal ball quotients associated
with fake projective planes are listed in [PY], where it is also shown that the
maximal ball quotient can be obtained as the quotient of some fake projective plane
by a finite subgroup corresponding to a proper congruence subgroup of the maximal
arithmetic lattice. However, we should mention that there are fake projective planes
whose fundamental groups are just the maximal arithmetic lattices and hence there
are no finite group actions according to [PY].

In the specific example constructed by Mumford earlier in [Mu], it was known
from [I] that the example covers a complex two ball quotient with trivial funda-
mental group. Hence for those quotients of the complex two ball by a maximal
arithmetic group containing a fake projective plane in its class in the notion of
[PY], one asks the question of whether the topological fundamental groups of the
quotients, which are necessarily singular, are finite. The answer is affirmative fol-
lowing the work of Cartwright and Steger [CS1]. This is the starting point of the
argument in this paper. The results of this paper follows by applying different tools
in geometric topology to the concrete complex ball quotients mentioned above. It
relies crucially on the computation in [CS1] (see also the weblink there) of the
topological fundamental groups of the quotient by the maximal arithmetic groups
studied in [PY].

(1.3) Related to the definition in §1.1, we define the notion of a complex exotic
structure. Let M be a complex manifold. A complex manifold N homeomorphic
but not biholomorphic to M is called a complex exotic structure on M . It is an
interesting question to see if there are complex exotic structure for a given manifold
M .

(1.4) The main result of this article is the following.

Theorem 1. A suitable unramified covering of the resolution of singularities of
quotients of fake projective planes gives rise to algebraic surfaces which are home-

omorphic but not diffeomorphic to pP 2
C#qP

2

C for the following pairs of (p, q).

(p, q) = (1, 6), (1, 8), (1, 9), (3, 13), (3, 17), (3, 19), (5, 20),

(7, 27), (11, 41), (13, 48), (15, 55), (25, 90), (27, 97).

Hence the above give rise to exotic structures on pP 2
C#qP

2

C with values of (p, q)
stated above. Moreover, in the case of p = 1, these give rise to complex exotic
structures on P 2

C blown up at q points.

(1.5) Here is the organization of the article. In §2, we collect some well-known
results in geometric topology which is to be used in the proof. In §3, we tabulate
the classification of fake projective planes from [PY] and [CS1]. The examples listed
in the table provides the basic structures to work with. The actual construction
and proof were given in §4.

(1.6) The author is grateful to Donald Cartwright and Tim Steger for communica-
tions related to their work. It is a pleasure for the author to thank Anar Akhmedov
for helpful comments on the paper.

§2. Preliminaries from geometric topology.
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(2.1) We recall several topological facts about a simply connected oriented compact
four dimensional real manifolds M . The cup product provides a unimodular bilinear
quadratic form QM to the lattice H2(M,Z). QM is said to be even if QM (x, x) is
even for all x ∈ H2(M,Z). Otherwise it is said to be odd.

To understand the homeomorphic structure, we need the following two facts.
The first one is a well-known result of Freedman [F] (cf. [BHPV], page 379)

(2.2) Theorem ([F]) Let M be a simply connected topological manifold of real
dimension 4.
(a). If QM is odd, M is homeomorphic to a connected sum pP 2

C#qP
2

C of the

projective plane P 2
C and P

2

C, the surface obtained by reversing the orientation of
P 2
C.

(b). If QM is even, QM = aH + b(±E8), where H is the intersection form for he
quadric P 1

C × P 1
C. Furthermore, if M is projective algebraic, M is homeomorphic

to a connected sum p(P 1
C × P 1

C)#qK, where K is a K3 surface with orientation
possibly reversed.

The second one is a result of Rochlin [R], see also [BHPV], page 378-379.

(2.3) Theorem ([R]) Suppose M is a differential manifold and QM is even. Then
the index τM of M is divisible by 16.

We need the following two results to distinguish the differentiable structures.
The first one is the following theorem of Donaldson [D2] (cf. [BHPV], page 391).

(2.4) Theorem ([D]) Suppose an algebraic surface M is diffeomorphic to M1#M2

with b2(Mi) > 0 for i = 1, 2. Then the intersection form of M1 or M2 is Z equivalent

to < −1 > ⊕ · · ·⊕ < −1 > . Hence an orientable differentiable manifold pP 2
C#qP

2

C
carries a complex structure only if p = 1.

The second one has been a conjecture of Van der ven that Kodaira dimension
of an algebraic surface is invariant under diffeomorphism. This was proved in
Friedman-Qin [FQ]. We refer the readers also to the expository in [BHPV].

(2.5) Theorem ([FQ]) The Kodaira dimension of a complex surface is invariant
under diffeomorphism.

§3. Classification of fake projective planes.

(3.1) The classification of fake projective planes is now complete following the
work of Prasad-Yeung [PY] and Cartwright-Steger [CS1]. Since the present article
depends on the explicit examples constructed in [PY] and [CS1], we recall the
naming system of the examples obtained.

Note that a fake projective plane M is the quotient of the complex hyperbolic
two space B2

C by a lattice Π in PU(2, 1). M is determined by Π as a Riemannian
manifold equipped with the Poincaré metric. But each such manifold supports two
distinct complex structures, one conjugate to each other, cf. [KK]. These well-
known facts can be found in [Ye]. Hence to list all fake projective planes, it suffices
to list all possible Π.
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In the following we recall the notations from [PY]. We refer the readers to [PY]
for all the unexplained notations. Let k be a totally real number field. Let ` be a
totally imaginary quadratic extension of k. Let D be a division algebra with center `
of degree 3 equipped with an involution σ of second kind, such that for the hermitian
form h0 on D defined by h0(x, y) = σ(x)y, the group SU(h0) is isotropic at vo, and
is anisotropic at every other real place of k. For x ∈ D×, let Int(x) denote the
automorphism z 7→ xzx−1 of D. Let Dσ = {z ∈ D |σ(z) = z}. Observe that for all
x ∈ Dσ, Int(x) ·σ is again an involution of D of the second kind, and any involution
of D of the second kind is of this form. Now for x ∈ Dσ, given an hermitian
form h′ on D with respect to the involution Int(x) · σ, the form h = x−1h′ is a
hermitian form on D with respect to σ, and SU(h′) = SU(h). Therefore it suffices
to work just with the involution σ, and to consider all hermitian forms h on D,
with respect to σ, of determinant 1, such that the group SU(h) is isotropic at vo,
and is anisotropic at all other real places of k. Let h be such a hermitian form.
Then h(x, y) = σ(x)ay, for some a ∈ Dσ. The determinant of h is Nrd(a) modulo
N`/k(`×). As the elements of N`/k(`×) are positive at all real places of k, we see
that the signatures of h and h0 are equal at every real place of k, which leads to the
isometry between the hermitian forms h and h0. Hence, SU(h) is k-isomorphic to
SU(h0). Thus D determines a unique k-form G of SU(2, 1), up to a k-isomorphism,
namely SU(h0), with the desired behavior at the real places of k. The group G(k)
of k-rational points of this G is

G(k) = {z ∈ D× | zσ(z) = 1 and Nrd(z) = 1}.

Let P = (Pv)v∈Vf
be a coherent collection of parahoric subgroups Pv for each

place v ∈ Vf , the set of all finite places of k, chosen as in [PY] (see also the
Addendum). Then there are twenty-eight distinct set {k, `,G, (Pv)v∈Vf

} which can
support fake projective planes in the following sense. Each of these twenty-eight
classes determines a unique principal arithmetic subgroup Λ (= G(k)∩

∏
v∈Vf

Pv),

whose normalizer in G(kvo) is denoted by Γ. Each Λ determines a class of fake
projective planes with fundamental group given by a lattice Π of PU(2, 1), where
Π is an element in

AΛ = {Π < Γ : [Γ : Π] =
3

χ(Γ)
, |Π/[Π,Π]| <∞, and Π is torsion-free}

(3.2) In [PY], it was shown that each of these classes is non-empty, and there can
at most be five more Λ with [D : `] = 1 supporting any fake projective planes.
These cases are eliminated by Cartwright and Steger in [CS1]. It is also shown in
[PY] that the values of [Γ : Π] in the twenty-eight cases can only take the values of
1, 3, 9 or 21. Cartwright and Steger determine in [CS1] the set AΛ by enumerating
all subgroups of the appropriate indices. This is achieved by writing down a set of
generators and relations for each Γ. This also allows them to determine π1(B2

C/Γ).
Among those fake projective planes M with π1(M) ∼= Π being a normal subgroup

in Γ, such as those found in [PY], the quotient group H = Γ/Π is a finite group with
order in {1, 3, 9, 21} acting on M. It is not difficult to see that the possible order
of a finite group H acting on any fake projective plane M lies in {1, 3, 7, 9, 21}. In
the process of listing all fake projective planes, Cartwright and Steger also listed
all possible finite quotients of fake projective planes in [CS1].

The above discussions are summarized in the following theorem.
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(3.3) Theorem ([PY], [CS1]) (a). There are one hundred fake projective planes
up to biholomorphism.
(b). These are classified into 28 classes. Within each class there exists a maximal
arithmetic group Γ.
(c). The order of a finite group H acting on a fake projective plane takes a value
in {1, 3, 7, 9, 21}.

(3.4) In the following, we tabulate fake projective planes and their finite quotients.
For each class AΛ considered in (3.1), we use the notation of [PY] and represent
it by the pair of number fields (k, `) and T , the set of non-Archimedean places v
of k which are unramified in ` and Pv is not a hyperspecial parahoric subgroup
of G(kv). We arrange the results in two tables, the first one with k = Q, and the
second one with degQ k > 2 and hence degQ k = 2 according to [PY].

In the following two columns, the first follows convention of [PY]. The second
column shows that there are altogether 28 classes of fake projective planes as ex-
plained in [PY]. The third column shows that altogether there are 50 classes of
fake projective planes when they are regarded as locally symmetric spaces identi-
fied up to isometry, as shown in [CS1]. The naming here follows the terminology of
Cartwright and Steger in [CS2], which is going to appear as an extended version of
[CS1]. The most important entry for our purpose in this paper is the fifth column,
which is a summary of some scattered information among the computer files of
Carwright and Steger in the website (http://www.maths.usyd.edu.au/u/donaldc/)
provided in [CS1]. Note again that there are precisely two fake projective planes
as complex surface within teach isometry class, corresponding to holomorphic and
anti-holomorphic structures (cf. [KK]).

In the cases that π1(M/H) = 1, these are the surfaces that we proposed to call
‘Cartwright-Steger surfaces’ in the addendum to [PY] and [Y].

In the following tables, the entry N means that it is not applicable, in other
words, there is no non-trivial natural finite group action on the surfaces involved.
In the last column, Zn is the cyclic group of order n, Q8 is the quaternionic group
of order 8, D8 is the dihedral group of order 8, and S3 is the symmetric group of
three elements.

Table (I): k = Q
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(k, `, T ) class M |H| M/H π1(M/H) exotic

(Q,Q(
√
−1), {5}) (a = 1, p = 5, ∅) (a = 1, p = 5, ∅, D3) 3 (a = 1, p = 5, ∅) Z2 × Z4 15P 2

C #55P
2
C

(a = 1, p = 5, {2}) (a = 1, p = 5, ∅, {2}, D3) 3 (a = 1, p = 5, {2}) Z4 7P 2
C #27P

2
C

(Q,Q(
√
−1), {2, 5}) (a = 1, p = 5, {2I}) (a = 1, p = 5, {2I}) N N N N

(Q,Q(
√
−2), {3}) (a = 2, p = 3, ∅) (a = 2, p = 3, ∅, D3) 3 (a = 2, p = 3, ∅) Z2 × Z2 7P 2

C #27P
2
C

(a = 2, p = 3, {2}) (a = 2, p = 3, ∅, {2}, D3)) 3 (a = 2, p = 3, {2}) Z4 7P 2
C #27P

2
C

(Q,Q(
√
−2), {2, 3}) (a = 2, p = 3, {2I}) (a = 2, p = 3, {2I}) N N N N

(Q,Q(
√
−7), {2}) (a = 7, p = 2, ∅) (a = 7, p = 2, ∅, D3, 27) 3 (a = 7, p = 2, ∅, 27) D8 15P 2

C #55P
2
C

7 (a = 7, p = 2, ∅, D3) Z2 3P 2
C #19P

2
C

21 (a = 7, p = 2, ∅) Z2 3P 2
C #19P

2
C

(a = 7, p = 2, ∅, 721) 21 (a = 7, p = 2, ∅) Z2 3P 2
C #19P

2
C

(a = 7, p = 2, ∅, D3, X7) 21 (a = 7, p = 2, ∅) Z2 3P 2
C #19P

2
C

(a = 7, p = 2, {7}) (a = 7, p = 2, {7}, D3, 27) 3 (a = 7, p = 2, {7}, 27) Z3 5P 2
C #20P

2
C

7 (a = 7, p = 2, {7}, D3) {1} P 2
C #9P

2
C

7 (a = 7, p = 2, {7}) {1} P 2
C #9P

2
C

(a = 7, p = 2, {7}, D3, 77) 3 (a = 7, p = 2, {7}, 77) Z2 3P 2
C #13P

2
C

(a = 7, p = 2, {7}, D3, 7
′
7) 3 (a = 7, p = 2, {7}, 7′

7) Z2 × Z2 7P 2
C #27P

2
C

(a = 7, p = 2, {7}, 721) N N N N

(Q,Q(
√
−7), {2, 3}) (a = 7, p = 2, {3}) (a = 7, p = 2, {3}, D3) 3 (a = 7, p = 2, {3}) Z2 × Z4 15P 2

C #55P
2
C

(a = 7, p = 2, {3}, 33) 3 (a = 7, p = 2, {3}) Z2 × Z4 15P 2
C #55P

2
C

(a = 7, p = 2, {3, 7}) (a = 7, p = 2, {3, 7}, D3) 3 (a = 7, p = 2, {3, 7} Z4 7P 2
C #27P

2
C

(a = 7, p = 2, {3, 7}, 33) 3 (a = 7, p = 2, {3, 7} Z4 7P 2
C #27P

2
C

(Q,Q(
√
−7), {2, 5}) (a = 7, p = 2, {5}) (a = 7, p = 2, {5}) N N N N

(a = 7, p = 2, {5, 7}) (a = 7, p = 2, {5, 7}) N N N N

(Q,Q(
√
−15), {2}) (a = 15, p = 2, ∅) (a = 15, p = 2, ∅, D3) 3 (a = 15, p = 2, ∅) Z2 × Z2 7P 2

C #27P
2
C

(a = 15, p = 2, ∅, 33) 3 (a = 15, p = 2, ∅) Z2 × Z2 7P 2
C #27P

2
C

(a = 15, p = 2, {3}) (a = 15, p = 2, {3}, D3) 3 (a = 15, p = 2, {3}) Z2 × Z3 11P 2
C #41P

2
C

(a = 15, p = 2, {3}, 33) 3 (a = 15, p = 2, {3}) Z2 × Z3 11P 2
C #41P

2
C

(a = 15, p = 2, {3}, 33, (D3)3) 3 (a = 15, p = 2, {3}) Z2 × Z3 11P 2
C #41P

2
C

(a = 15, p = 2, {5}) (a = 15, p = 2, {5}, D3) 3 (a = 15, p = 2, {5}) Z2 3P 2
C #13P

2
C

(a = 15, p = 2, {5}, 33) N N N N

(a = 15, p = 2, {3, 5}) (a = 15, p = 2, {3, 5}, D3) 3 (a = 15, p = 2, {3, 5}) Z3 5P 2
C #20P

2
C

(a = 15, p = 2, {3, 5}, 33) 3 (a = 15, p = 2, {3, 5}) Z3 5P 2
C #20P

2
C

(a = 15, p = 2, {3, 5}, (D3)3) 3 (a = 15, p = 2, {3, 5}) Z3 5P 2
C #20P

2
C

(Q,Q(
√
−23), {2}) (a = 23, p = 2, ∅) (a = 23, p = 2, ∅) N N N N

(a = 23, p = 2, {23}) (a = 23, p = 2, {23}) N N N N
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Table (II): degQ k = 2

(k, `, T ) class M |H| M/H π1(M/H) exotic

(C2, {v2}) (C2, p = 2, ∅) (C2, p = 2, ∅, d3, D3) 3 (C2, p = 2, ∅, D3) Z2 × Z7 27P 2
C#97P

2
C

3 (C2, p = 2, ∅, d3) S3 11P 2
C#41P

2
C

3 (C2, p = 2, ∅, (dD)3) Z2 3P 2
C#13P

2
C

3 (C2, p = 2, ∅, (d2D)3) Z2 3P 2
C#13P

2
C

9 (C2, p = 2, ∅) Z2 3P 2
C#17P

2
C

(C2, p = 2, ∅, D3, X3) 3 (C2, p = 2, ∅, X3) Z2 × Z3 11P 2
C#41P

2
C

(C2, p = 2, ∅, (dD)3, X3) 3 (C2, p = 2, ∅, X3) Z2 × Z3 11P 2
C#41P

2
C

(C2, p = 2, ∅, (d2D)3, X3) 3 (C2, p = 2, ∅, X3) Z2 × Z3 11P 2
C#41P

2
C

(C2, p = 2, ∅, d3, X ′
3) N N N N

(C2, p = 2, ∅, X9) N N N N

(C2, p = 2, {3}) (C2, p = 2, {3}, d3, D3) 3 (C2, p = 2, {3}, D3) Z7 13P 2
C#48P

2
C

3 (C2, p = 2, {3}, d3) {1} P 2
C#6P

2
C

3 (C2, p = 2, {3}, (dD)3) {1} P 2
C#6P

2
C

3 (C2, p = 2, {3}, (d2D)3) {1} P 2
C#6P

2
C

9 (C2, p = 2, {3}) {1} P 2
C#8P

2
C

(C10, {v2}) (C10, p = 2, ∅) (C10, p = 2, ∅, D3) 3 (C10, p = 2, ∅) Z2 3P 2
C#13P

2
C

(C10, p = 2, {17−}) (C10, p = 2, {17−}, D3) 3 (C10, p = 2, {17−}) Z2 3P 2
C#13P

2
C

(C18, {v3}) (C18, p = 3, ∅) (C18, p = 3, ∅, d3, D3) 3 (C18, p = 3, ∅, d3) Q8 15P 2
C#55P

2
C

(C18, p = 3, ∅, D3) Z13 25P 2
C#90P

2
C

(C18, p = 3, ∅, (dD)3) {1} P 2
C#6P

2
C

(C18, p = 3, ∅, (d2D)3) {1} P 2
C#6P

2
C

9 (C18, p = 3, ∅) {1} P 2
C#6P

2
C

(C18, p = 3, {2}) (C18, p = 3, {2}, D3) 3 (C18, p = 3, {2}) Z2 × Z3 11P 2
C#41P

2
C

(C18, p = 3, {2}, (dD)3) 3 (C18, p = 3, {2}) Z2 × Z3 11P 2
C#41P

2
C

(C18, p = 3, {2}, (d2D)3) 3 (C18, p = 3, {2}) Z2 × Z3 11P 2
C#41P

2
C

(C18, p = 3, {2I}) (C18, p = 3, {2I}) N N N N

(C20, {v2}) (C20, {v2}, ∅) (C20, {v2}, ∅, D3, 27) 3 (C20, {v2}, ∅, 27) Z2 × Z2 7P 2
C#27P

2
C

7 (C20, {v2}, ∅, D3) {1} P 2
C#9P

2
C

21 (C20, {v2}, ∅) {1} P 2
C#9P

2
C

(C20, {v2}, {3+}) (C20, {v2}, {3+}, D3) 3 (C20, {v2}, {3+}) Z4 7P 2
C#27P

2
C

(C20, {v2}, {3+}, {3+}3) 3 (C20, {v2}, {3+}) Z4 7P 2
C#27P

2
C

(C20, {v2}, {3−}) (C20, {v2}, {3−}, D3) 3 (C20, {v2}, {3−}) Z4 7P 2
C#27P

2
C

(C20, {v2}, {3−}, {3−}3) 3 (C20, {v2}, {3−}) Z4 7P 2
C#27P

2
C

In the above, the pairs of number fields C2, C10, C18 and C20 follows the original
notation in [PY]. We recall the definition here. We use ζn to denote a root of unity
of order n.

(k, `) k `

C2 Q(
√

5) Q(
√

5, ζ3)

C10 Q(
√

2) Q(
√

2,Q(
√
−7 + 4

√
2))

C18 Q(
√

6) Q(
√

18, ζ3)

C20 Q(
√

7) Q(
√

7, ζ4)



8 SAI-KEE YEUNG

In the second table a prime vp in k of the above four pairs of number fields refers
to a prime ideal sitting above a rational prime p ∈ Q.

(3.5) We also recall the following information about the singularities of a finite
group action on a fake projective plane.

For each Γ mentioned above, we consider the set of all subgroups Λ of Γ so
that Π is a proper subgroup of Λ. Since B2

C/Π has the smallest Euler-Poincaré
characteristics, which is 3, among smooth surfaces of general type (cf. [Y] §2.4),
it follows that Λ cannot be torsion-free. Since Γ is an arithmetic lattice of type
[D : `] > 1, it is well-known that there cannot be a totally geodesic complex
hyperbolic space-form of complex dimension 1 in B2

C/Γ. Hence Λ acts with isolated
fixed points on B2

C and B2
C/Λ has isolated points as singularities. The set of all

possible Λ has been written down by Cartwright-Steger. The singularities of B2
C/Λ

were listed by Keum in [K], and by Cartwright and Steger, see the weblink in [CS1].

(3.6) Theorem(a)([K], [CS1]) Let H be a finite group acting on a fake projective
plane M . Let N = M/H.
(i). If |H| = 3, N has 3 singularities of type 1

3 (1, 2).

(ii). If |H| = 7, N has 3 singularities of type 1
7 (1, 3).

(iii). If |H| = 9, N has 4 singularities of type 1
3 (1, 2).

(iv). If |H| = 21, N has 3 singularities of type 1
3 (1, 2) and one singularity of type

1
7 (1, 3).
(b). ([K]) The Kodaira dimension of the minimal resolution of N is either 1 or 2.

We also note that the singularities of the quotient of the original Mumford’s fake
projective plane in [Mu] was first found by Ishida [I], who also studied the minimal
resolution and the fundamental group in this case. Mumford’s fake projective plane
is the one denoted by (a = 7, p = 2, {7}, 721) in the table of the last subsection.

(3.7) Since N is a normal surface with isolated singularities, we recall the facts
related to calculations of Chern numbers as studied by Laufer [L] and Brenton [B].
According to Theorem 1 of [B], there is a rational cohomology class c1 ∈ H2(N,Q)
so that for every holomorphic line bundle L on N, the Riemann-Roch equation

χ(L) =
1

2
(c21(L) + c1(L) · c1) + χ(O).

In our case the rank of the group of all cycles of complex dimension in N is 1, since
the same is true on M. Suppose N is the quotient of M by a finite group G. Then
c21 = 1

|G|c
2
1(M). Let π : Y → N be the minimal resolution of singularities of N.

Then the first chern class of Y is given by

(1) c1(Y ) = π∗(c1) +

s∑
i=1

ti[Ci],

where Ci, i = 1, . . . , s, are all the irreducible components of the exceptional divisors
on Y. In our case, each Ci is a rational curve and ti can be found by applying
Adjunction Formula. In this way, c21(Y ) can be easily calculated. The Euler-
Poincaré characteristic of N can be found from the corresponding one on M by
definition, from which the Euler-Poincaré characteristic of Y can be computed
since the resolution of singularities are explicit. In this way, c2(Y ) can be computed
rather easily.
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(3.8) In Theorem 1, all the exotic pP 2
C#qP

2

C have values p in odd number. This
follows from the following simple observation.

Lemma 1. Suppose M is an algebraic surface with the same Euler number and

index as pP 2
C#qP

2

C for some non-negative integers p and q with trivial first Betti
number. Then p is odd.

Proof Since both the first and the third Betti numbers are trivial from Duality,
the value of (p, q) are related to the Euler number e and index σ by the following
system of equations.

p+ q = e(M)− 2(2)

p− q = σ(M)(3)

Since e(M) = c2(M) and σ(M) = 1
3 (c2(M)− 2c21(M)), we solve easily from the

above that

p = (
1

6
(c21 + c2)− 1).

Since c21 + c2 ≡ 0 (mod 12) from Noether’s Formula (cf. [BHPV]), it follows that p
is odd.

(3.9) We also need the following fact in our proof. Suppose that N is a singular
complex surface with isolated singularities. Suppose M is a resolution of N in
which each isolated singularity is resolved to a chain of rational curves. Then
π1(M) = π2(N).

The observation follows from the fact that the subvariety of M to be collapsed
by the projection has trivial fundamental group. Hence the projection from M to
N does not kill any element in π1(M).

§4. Proof of the Main Theorem.

(4.1) We are going to list case by case the construction. Even though the general
idea is the same, each case needs a somewhat different treatment. The candidate is
obtained by considering the universal covering of the minimal resolution of a finite
quotient of a fake projective plane according to the list of [PY] and [CS]. In each
case, there are two basic steps of proof. The first is to show that the candidate is

homeomorphic to some appropriate pP 2
C#qP

2

C, using Theorem (2.2), Theorem (2.3)
and some explicit geometric facts of the manifold. The second step is to show that

the candidate cannot be diffeomorphic to the same pP 2
C#qP

2

C, using Theorem (2.5)
and (3.6)(a) in case that p = 1, and Theorem (2.4) in case that p > 1. We denote
by e(Y ) and σ(Y ) the Euler-Poincaré characteristic and the index respectively.

(4.2) (p, q) = (1, 6). To illustrate the idea taken, we are going to explain this case
in details essentially from scratch. Consider a fake projective plane M given by
(C2, p = 2, {3}, d3, D3) in the class of (C2, p = 2, {3}) listed in the table in (3.3).
There is finite group H of order 3 acting on M, giving rise to a quotient manifold
N denoted by (C2, p = 2, {3}, d3) as shown in the table. N has three isolated
singularities of type 1

3 (1, 2) as mentioned in Theorem (3.6). Since the singularities
are rational and the minimal resolution consists of only rational curves of self-
intersection (−2), the canonical line bundle KN is Q-Cartier and KN · KN = 3.
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Since the Euler-Poincaré characteristic of M is 3 and there are three fixed points
in the covering group of M → N, the Euler-Poincaré characteristic of N is given
by e(N) = 3. Resolution of each singularity 1

3 (1, 2) of N gives rise to a chain of
two rational curves of self-intersection −2 (cf. [BHPV]). Again denote by Y the
minimal resolution of singularity of N . Since N has Picard number 1, it follows that
σ(Y ) = 1−6 = −5. Since each of the three singularities of N are replaced by chains
of two rational curves, we conclude that e(Y ) = 3 + 6 = 9. As the Picard number
of M is 1, so is N . It follows that KN is Q-Cartier and K2

N = K2
M/3 = 3 > 0 and

KN is effective.
The Riemann-Roch formula for surface implies that

h0(Y, lKY ) = h1(Y, lKY )− h2(Y, lKY ) +
l(l − 1)

2
(c21(Y )) +

1

12
(c21(Y ) + c2(Y )) > 1.

From Serre Duality, H2(Y, lKY ) = H0(Y, (1 − l)KY ). Suppose there exists a non-
trivial ϕ ∈ H0(Y, (1 − l)KY ) for l > 1. Then the intersection of the cohomology
class represented by ϕ satisfies [ϕ] · π∗KN = (1− l)KN ·KN . The left hand side is
non-negative as KN is nef, but the right hand side is negative as KN ·KN > 0. The
contradiction implies that h2(Y, lKY ) = 0. Hence we conclude that KY is big and
Y is a projective algebraic manifold of general type.

It is also shown by [CS1] that π1(N) = 1 according to the Table (II) in (3.4).
We conclude that π1(Y ) = 1 as well. Since the singularities of N resolve to (−2)
curves, we conclude that KY = π∗KN and hence KY · KY = KN · KN = 3 is
odd. It follows that the intersection matrix of Y is of odd type. It follows from

Theorem (2.2), the result of Freedman, that Y is homeomorphic to pP 2
C#qP

2

C for
some pair of (p, q). We may now solve (p, q) directly equations (2) and (3). Here
the first equation follows from the fact that the first and third Betti numbers of N
are trivial since π1(N) = {1}.

Since (e(Y ), σ(Y )) = (9,−5), we conclude that (p, q) = (1, 6).

Since Y is of general type and P 2
C#6P

2

C as blow-up of P 2
C at six points is a

rational surface, we conclude from Theorem (2.5) that Y cannot be diffeomorphic

to P 2
C#6P

2

C. Hence Y gives rise to an exotic P 2
C#6P

2

C.

Exotic P 2
C#6P

2

C are also obtained from (C10, p = 2, {17−}) and (C18, p =
3, ∅, (dD)3) in Table 2 in (3.4) by the above argument.

(4.3) (p, q) = (1, 8).
Consider M in the class of (C2, p = 2, {3}, d3, D3) in Table 2 in (3.4), and an

order 9 quotient N of M which gives rise to C2, p = 2, {3}). N has four isolated
singularities of type 1

3 (1, 2) from Theorem (3.6). Again, since the minimal resolution
consists of curves with self-intersection (−2), the canonical line bundle KN is Q-
Cartier and KN · KN = KM · KM/9 = 1. Since there are four singularities in N
and the order of the covering group of M → N is 3, we see that there are 12 fixed
points of the covering group. As the Euler-Poincaré characteristic of M is 3, the
Euler-Poincaré characteristic of N is given by e(N) = 4 + (3 − 12)/9 = 3. Again,
the resolution of each singularity 1

3 (1, 2) of N gives rise to a chain of two rational
curves of self-intersection −2 (cf. [BHPV]). Hence the minimal resolution of N
is a projective algebraic surface Y. Since N has Picard number 1, it follows that
σ(Y ) = 1− 8 = −7. Since the four singularities of N are replaced by chains of two
rational curves, we conclude that e(Y ) = 3 + 8 = 11.
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In this case, it is shown by Cartwright and Steger that N is simply-connected,
according to tables (I) and (II).. Since (e(Y ), σ(Y )) = (11,−7), we conclude from
equation (2) and (3) that (p, q) = (1, 8). Applying (3.6)(b) or the argument in
(4.2), we obtain an algebraic surface of general type which is homeomorphic but

not biholomorphic to P 2
C#8P

2

C.

(4.4) (p, q) = (1, 9).
ConsiderM given by (a = 7, p = 2, {7}, D3, 27) in the class of (k, `) = (Q,Q(

√
−a)

according to Table 1 in (3.4). There is a finite group action H of order 7, giving rise
to a quotient N of M denoted by (a = 7, p = 2, {7}, D3) in the Table 1. According
to Theorem (3.6), N has three isolated singularities p1, p2 and p3 of type 1

7 (1, 3).
Resolution of the singularity at pi gives rise to a chain of three rational curves
Ei1, Ei,2, Ei,3 of self-intersections −3,−2,−2 respectively. We can now compute
K2
Y according ot the discussions in (3.7).

KY = π∗c1 −
3∑
i=1

(
3

7
Ei1 +

2

7
Ei2 +

1

7
Ei3).

The expression c1 used in equation (1) can be computed by c21 = 1
7K

2
M = 9

7 . Hence

from the above expression of KY , we conclude that K2
Y = 0. It is also clear that

e(N) = 3 and hence e(Y ) = 3 + 3 · 3 = 12. Moreover, σ(Y ) = −8.
In this case, it is also shown in [CS1] that N is simply-connected. From Theorem

(2.3) and the fact that σ(Y ) is not divisible by 16 we conclude that the intersec-
tion form QY is of odd type. Hence from (e(Y ), σ(Y )) = (12,−8), we conclude
from equations (2) and (3) that (p, q) = (1, 9). Hence from Theorem (2.2), Y is

homeomorphic to P 2
C#9P

2

C, which is rational and has Kodaira dimension −∞.
Again, (3.6) and (2.5) implies that M is not diffeomorphic to P 2

C#9P
2

C. This
follows from the fact that c21(Y ) = 3σ(Y ) + 2e(Y ) = 0

Exotic P 2
C#9P

2

C are also obtained from quotient of order 21 of the above M ,
the case of (a = 7, p = 2, {7}, D3, 27). Similarly, if we consider a fake projective
plane M given by (C20, {v2}, ∅, D3, 27) in Table 2 in (3.4), there are still order 7
and order 21 finite group actions on M . M/H in these two cases are denoted by
(C20, p = 2, ∅, D3) and (C20, p = 2, ∅) in the Table 2. For these two case, resolution

of singularities as above yields examples of exotic P 2
C#9P

2

C.

(4.5) (p, q) = (3, 13).
Consider M the fake projective plane denoted by (a = 7, p = 2, {7}, ∅, D3, 27) in

Table 1 in (3.4). There exists a Z3 action on M , giving rise to an order 3 quotient
N of M denoted by (a = 7, p = 2, {7}, ∅, 27) in Table 1.

As discussed in (4.2), N has three isolated singularities of type 1
3 (1, 2). The

same argument as in (4.2) leads to a desingularization Y of N with (e(Y ), σ(Y )) =
(9,−5),

In this case, it is also shown in [CS1] that π1(Y ) = Z2. Let Ỹ be the universal
covering of Y. Since both e and σ are multiplicative with respect to unramified

coverings, we conclude that (e(Ỹ ), σ(Ỹ )) = (18,−10), From Theorem (2.3) and the

fact that σ(Ỹ ) is not divisible by 16 we conclude that the intersection form QY is
of odd type. We conclude from equations (2) and (3) that (p, q) = (3, 13). Hence

from Theorem (2.2) and the fact that Ỹ is simply connected, Ỹ is homeomorphic

to 3P 2
C#13P

2

C.
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Clearly Ỹ is algebraic since Y is algebraic. In fact, the argument of (4.2) shows

that Ỹ is of general type as well. On the other hand, from the result of Donaldson

in Theorem (2.4), we know that 3P 2
C#13P

2

C as a differentiable manifold does not

support any complex structure. Hence Ỹ gives rise to an exotic 3P 2
C#13P

2

C and Ỹ
is a surface of general type.

Exotic 3P 2
C#13P

2

C are also obtained from quotient of order 3 of fake projective
planes from the case of (a = 7, p = 2, {7}, D3, 77), (a = 15, p = 2, {5}, D3) and
(C2, p = 2, ∅, d3, D3) according to Table 1 and Table 2 in (3.4). The corresponding
quotients are denoted by (a = 7, p = 2, {7}, 77) and a = 15, p = 2, {5}) for the
first two fake projective planes above respectively, and (C10, p = 2, ∅, (dD)3) or
(C10, p = 2, ∅, (d2D)3) for the third one. Each of these N has fundamental group
given by Z2. Hence the same argument as above gives rise to surfaces of general

type which are exotic 3P 2
C#13P

2

C.

(4.6) (p, q) = (3, 17).
Consider M the fake projective plane given by (C2, p = 2, ∅, d3, D3) in Table 2 in

(3.4). There exists a Z2
3 action on M , giving rise to an order 3 quotient N of M

denoted by (C2, p = 2, ∅). π1(N) = Z2 according to tables (I) and (II).
From Theorem (3.6), N has 4 singularities of type 1

3 (1, 2). As discussed in (4.2),
each singularity can be resolved to a chain of two (−2)-curves. Discussion as in
(4.3) implies that the minimal resolution Y of singularities of N have numerical
invariants given by (e(Y ), σ(Y )) = (11,−7), Moreover, Y is a surface of general
type.

By considering the universal covering Ỹ of Y , which is a two-fold covering, as

in (4.4), we conclude that (e(Ỹ ), σ(Ỹ )) = (22,−14), As σ is not divisible by 16,
Theorem (2.3) again implies that the cup form QỸ is an odd form. It follows form

equations (2) and (3) that Ỹ is homeomorphic to 3P 2
C#17P

2

C.
Same argument as in (4.5) making use of (2.4) implies that M cannot be dif-

feomorphic to 3P 2
C#17P

2

C. We get an exotic 3P 2
C#17P

2

C.

Exotic 3P 2
C#17P

2

C are also obtained from quotient N of order 9 of the fake
projective planes denoted by (C2, p = 2, {3}, d3, D3) in Table 2 in (3.4). The
corresponding quotient N is denoted by (C2, p = 2, {3}). N has fundamental group
given by Z2. Hence the same argument as above gives rise to surfaces of general

type which are exotic 3P 2
C#17P

2

C.

(4.7) (p, q) = (3, 19).
Consider M to be the fake projective plane denoted by (a = 7, p = 2, ∅, D3, 27)

according to Table 1 in (3.4). There exists a group H action of order 7 on M , giving
rise to an order 7 quotient N of M denoted by (a = 7, p = 2, ∅, D3). π1(N) = Z2

according to tables (I) and (II).
Since |H| = 7, the discussion in the first paragraph of (4.4) implies that N has

three isolated singularities of type 1
7 (1, 3), each of those gives rise to a chain of

three rational curves of self-intersection −3,−2,−2 respectively, and that the min-
imal resolution Y of N has numerical invariants given by (e(Y ), σ(Y ) = (12,−8).

It follows that the universal covering Ỹ of Y has numerical invariants given by

(e(Ỹ ), σ(Ỹ )) = (24,−16). Since Ỹ contains an exceptional curve of self-intersection

−3, the same is true on Ỹ , which can be obtained as the resolution of a 3-fold

unramified covering of N. Hence the cup form on Ỹ is odd. We may now apply
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Theorem (2.2) and equations (2) and (3) to conclude that Ỹ is homeomorphic to

3P 2
C#19P

2

C.

Theorem (2.4) implies that Ỹ is not diffeomorphic to 3P 2
C#19P

2

C. Hence we get

an exotic 3P 2
C#19P

2

C.

Similar exotic 3P 2
C#19P

2

C are obtained from (a = 7, p = 2, ∅, D3) by similar
arguments.

(4.8) (p, q) = (5, 20).
Let M be the fake projective plane denoted by (a = 15, p = 2, {3, 5}, D3) in

Table 1 in (3.4). There exists a group H action of order 3 on M , giving rise to an
order 3 quotient N of M denoted by (a = 15, p = 2, {3, 5}). π1(N) = Z3 according
to tables (I) and (II).

Since the order of the group H is 3, the argument of (4.2) leads to (e(Y ), σ(Y ) =
(9,−5) and Y is of general type. Hence the numerical invariants of the universal

covering Ỹ of Y is given by (e(Ỹ ), σ(Ỹ )) = (27,−15). As σ(Ỹ ) is not divisible by

16, the intersection form of Ỹ is odd according to Theorem (2.3). Hence we may

apply equations (2) and (3) to conclude that Ỹ is homeomorphic to 5P 2
C#20P

2

C.

The result of Donaldson in Theorem (2.4) again implies that Ỹ is not diffeomor-

phic to 5P 2
C#20P

2

C. Hence Ỹ is an exotic 5P 2
C#20P

2

C.
Observe that according to Table 1 in (3.4), M may be chosen to be (a = 15, p =

2, {3, 5}, 33) or (a = 15, p = 2, {3, 5}, (D3)3), but order 3 quotients give rise to
the same N given by (a = 15, p = 2, {3, 5}) studied above. Hence no new exotic

5P 2
C#20P

2

C is found apart from the one above.

(4.9) (p, q) = (7, 27).
Consider M to be the fake projective plane denoted by (a = 7, p = 2, ∅, D3) as in

Table 1 in (3.4). There exists a group H of order 3 acting on M , giving rise to an
order 3 quotient N of M denoted by (a = 2, p = 3, ∅). π1(N) = Z2 × Z2 according
to tables (I) and (II).

Since |H| = 4, the discussion in the first paragraph of (4.1) implies that N
has three isolated singularities of type 1

3 (1, 2), each of those gives rise to a mini-
mal resolution Y of N with numerical invariants given by (e(Y ), σ(Y ) = (9,−5).

It follows that the universal covering Ỹ of Y has numerical invariants given by

(e(Ỹ ), σ(Ỹ )) = (36,−20). Since σ(Ỹ ) is not divisible by 16, Theorem (2.3) implies

that the cup form of Ỹ is an odd form. We may now apply Theorem (2.2) and

equations (2) and (3) to conclude that Ỹ is homeomorphic to 7P 2
C#27P

2

C.

Again Theorem (2.4) applies to conclude that Ỹ is not diffeomorphic to 7P 2
C#27P

2

C.

Hence we get an exotic 7P 2
C#27P

2

C.
Similar examples can be obtained with N given by (a = 2, p = 3, {2}), (a =

7, p = 2, {7}, 7′7), (a = 2, p = 3, {3, 7}), (a = 15, p = 2, ∅) and (C20, p = 2, {3−})
according to the two tables in (3.5). Note again only |H| matters.

(4.10) (p, q) = (11, 41).
Consider M to be the fake projective plane denoted by (a = 15, p = 2, {3}, D3)

in Table 1 in (3.4). There exists a group H action of order 3 on M , giving rise
to an order 3 quotient N of M denoted by (a = 15, p = 2, {3}). π1(N) = Z2 × Z3

according to tables (I) and (II).
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The argument of the first paragraph of (4.2) implies that N has a minimal res-
olutiion Y with numerical invariants given by (e(Y ), σ(Y ) = (9,−5). The universal

covering Ỹ of Y has numerical invariants given by (e(Ỹ ), σ(Ỹ )) = (54,−30). As

σ(Ỹ ) is not a multiple of 16, Theorem (2.3) implies that the cup form of Ỹ is an
odd form. We may now apply Theorem (2.2), equations (2) and (3) to conclude

that Ỹ is homeomorphic to 11P 2
C#41P

2

C.

On the other hand, Theorem (2.3) applies to conclude that Ỹ is not diffeomorphic

to 11P 2
C#41P

2

C. Hence we get an exotic 11P 2
C#41P

2

C.

Exotic 11P 2
C#41P

2

C are also obtained with N given by (C2, p = 2, ∅, d3) and
(C18, p = 3, {2}) as listed in Table 2 in (3.4).

(4.11) (p, q) = (13, 48).
Consider M to be the fake projective plane denoted by (C2, p = 2, {3}, d3, D3) as

in Table 2 in (3.4). There exists a group H of order 3 acting on M , giving rise to
an order 3 quotient N of M denoted by (C2, p = 2, {3}, D3). π1(N) = Z7 according
to tables (I) and (II).

The argument of the first paragraph of (4.1) implies that N has a minimal reso-
lutiion Y with numerical invariants given by (e(Y ), σ(Y )) = (9,−5). The universal

covering Ỹ of Y has numerical invariants given by (e(Ỹ ), σ(Ỹ )) = (63,−35). As

σ(Ỹ ) is not a multiple of 16, Theorem (2.3) implies that the cup form of Ỹ is an

odd form. Hence Theorem (2.2), equations (2) and (3) implies that Ỹ is homeo-

morphic to 13P 2
C#48P

2

C. Again, Theorem (2.4) shows that Ỹ is not diffeomorphic

to 13P 2
C#48P

2

C. Hence we get an exotic 13P 2
C#48P

2

C.

(4.12) (p, q) = (15, 55).
Consider M to be the fake projective plane denoted by (a = 1, p = 5, ∅, D3) in the

notation of Table 1 in (3.4) There exists a group H of order 3 acting on M , giving
rise to an order 3 quotient N of M denoted by (a = 15, p = 2, ∅). π1(N) = Z2×Z4,
as shown in the Tables (I) and (II).

The argument of the first paragraph of (4.2) implies that N has a minimal reso-
lutiion Y with numerical invariants given by (e(Y ), σ(Y )) = (9,−5). The universal

covering Ỹ of Y has numerical invariants given by (e(Ỹ ), σ(Ỹ )) = (72,−40). As

σ(Ỹ ) is not a multiple of 16, Theorem (2.3) implies that the cup form of Ỹ is an
odd form. We may now apply Theorem (2.2), equations (2) and (3) to conclude that

Ỹ is homeomorphic to 15P 2
C#55P

2

C. Theorem (2.4) can now be applied to conclude

that Ỹ is not diffeomorphic to 15P 2
C#55P

2

C. Hence we get an exotic 15P 2
C#55P

2

C.

Exotic 15P 2
C#55P

2

C are also obtained with N given by (a = 7, p = 2, {3}) in
Table 1 and (C18, p = 3, {2}) in Table 2. The same argument also applies to
(C18, p = 2, {3}, D3).

(4.13) (p, q) = (25, 90).
Consider M to be the fake projective plane denoted by (C18, p = 3, ∅, {3}, d3, D3)

in Table 2 in (3.4). There exists a group H of order 3 acting on M , giving rise to
an order 3 quotient N of M denoted by (C18, p = 2, ∅, D3). π1(N) = Z13 according
to Tables (I) and (II).

The argument of the first paragraph of (4.1) implies that N has a minimal reso-
lutiion Y with numerical invariants given by (e(Y ), σ(Y )) = (9,−5). The universal

covering Ỹ of Y has numerical invariants given by (e(Ỹ ), σ(Ỹ )) = (117,−65). As
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σ(Ỹ ) is not a multiple of 16, Theorem (2.3) implies that the cup form of Ỹ is an odd

form. We may now apply Theorem (2.2), equations (2) and (3) to conclude that Ỹ

is homeomorphic to 25P 2
C#90P

2

C. Again, Theorem (2.4) can be applied to conclude

that Ỹ is not diffeomorphic to 25P 2
C#90P

2

C. Hence we get an exotic 25P 2
C#90P

2

C.

(4.14) (p, q) = (27, 97). Consider M to be the fake projective plane denoted by
(C2, p = 2, ∅) in Table 2 in (3.4). There exists a group H of order 3 acting on M ,
giving rise to an order 3 quotient N of M denoted by (C2, p = 2, ∅, D3). π1(N) =
Z2 × Z7 according to tables (I) and (II).

The argument of the first paragraph of (4.1) implies that N has a minimal reso-
lutiion Y with numerical invariants given by (e(Y ), σ(Y )) = (9,−5). The universal

covering Ỹ of Y has numerical invariants given by (e(Ỹ ), σ(Ỹ )) = (126,−70). As

σ(Ỹ ) is not a multiple of 16, Theorem (2.3) implies that the cup form of Ỹ is an odd

form. We may now apply Theorem (2.2), equations (2) and (3) to conclude that Ỹ

is homeomorphic to 27P 2
C#97P

2

C. Again, Theorem (2.4) can be applied to conclude

that Ỹ is not diffeomorphic to 27P 2
C#97P

2

C. Hence we get an exotic 27P 2
C#97P

2

C.

This concludes the proof of Theorem 1.
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