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Abstract The smallest topological Euler-Poincaré characteristic supported on a
smooth surface of general type is 3. In this paper, we show that such a surface
has to be a fake projective plane unless h1,0(M) = 1. Together with the classifica-
tion of fake projective planes given by Prasad and Yeung [PY], the recent work of
Cartwright and Steger [CS], and a proof of the arithmeticity of the lattices involved
in the present article, this gives a classification of such surfaces.

This paper is a corrected version of the paper [1]. Changes comparing to [1] are
summarized in the last section.

1. Introduction

1.1 The main purpose of this article is to prove the following result on classification
of smooth surfaces of general type with the smallest possible topological Euler-
Poincaré characteristic. The topological Euler-Poincaré characteristic, denoted by
e(M), is the same as the second Chern number c2(M) of the surface M . It is also
simply called the Euler-Poincaré characteristic or the Euler number in this paper.

Theorem 1. (a). Let M be a smooth surface of general type. Then the Euler-
Poincaré characteristic e(M) of M is at least 3.
(b). Suppose e(M) = 3. Then M = B2

C/Γ is the quotient of a complex hyperbolic
space by a torsion free lattice of PU(2, 1). Furthermore, unless h1,0(M) = 1, M is
a fake projective plane.
(c). Up to biholomorphism, there are only two examples of M with e(M) = 3 and
h1,0(M) = 1. The two examples are complex conjugate of one another.
(d). The moduli space of minimal surfaces of general type with e(M) = 3 is reduced
and consists of 101 points. 100 of such points correspond to fake projective planes
with h1,0 = 0. One of such points correspond to surfaces with h1,0 = 1.

1.2 The main examples of smooth surfaces of general type with Euler-Poincaré
characteristic 3 are provided by fake projective planes, which are smooth surfaces
with the same Betti numbers as the projective plane but are not biholomorphic
to the projective plane. An example of fake projective plane was first constructed
by Mumford [Mu3], followed by constructions of Ishida-Kato [IK] and Keum [Ke].
Recently fake projective planes have been classified by Prasad and Yeung [PY] into
twenty-eight classes, each of which was shown to consists of at least of two fake
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projective planes up to biholomorphism. Subsequently, Cartwright and Steger [CS]
showed that there were precisely 50 non-isometric fake projective planes among the
twenty eight classes. It is known that for each fake projective plane as a Riemann-
ian manifold, it supports precisely two different conjugate complex structures (cf.
[KK]).

It is natural to ask whether fake projective planes exhaust all possibilities of
smooth surfaces of general type with Euler-Poincaré characteristic 3. In their work
[CS] to enlist all the fake projective planes in the twenty-eight classes classified
in [PY], Cartwright and Steger come up with an interesting surface with Euler-
Poincaré characteristic 3 and the first Betti number 2. The results of this article
show that fake projective planes as classified in [PY] and [CS], and the examples of
Cartwright-Steger in [CS] mentioned above, exhaust all smooth surfaces of general
type with Euler-Poincaré characteristic 3. The detailed computations are located
in the weblink provided in [CS].

1.3 The following is an outline of proof of Theorem 1. Part (a) follows from classical
results in geometry, as explained in §1. The main part of the article is in the proof of
the statement of (b) and (c). (b) and (c) are proved using combination of classical
methods from algebraic geometry as well as techniques of harmonic mappings into
appropriate Bruhat-Tits buildings. Finally, the classification of Prasad-Yeung [PY]
and Cartwright-Steger [CS] is applied to conclude the proof.

1.4 The author would like to thank Jungkai Chen, Matteo Penegini and Wing
Keung To for reading an early draft of the paper and pointing out some errors,
to thank Jiu-Kang Yu for helpful discussions, and to thank the referees for various
suggestions. The author would also like express his appreciation to Domingo Toledo
for pointing out a gap in Archimedean rigidity in the original argument and for
helpful discussions.

2. Preliminaries

2.1 Let us denote by ci = ci(M) the Chern numbers, bi = bi(M) the Betti numbers
of M and hi,j = hi,j(M) = dimCH

j(M,ΩiM ) the corresponding Hodge numbers.
c2(M) is just the Euler-Poincaré characteristic of M. For our convenience, let us
recall some standard identities.

c2 = 2b0 − 2b1 + b2(1)

1

12
(c21 + c2) = h0,0 − h1,0 + h2,0(2)

b1 = 2h1,0,(3)

b2 = 2h2,0 + h1,1,(4)

hi,j = hj.i,(5)

where the second one is the Noether formula and the third one comes from Hodge
decomposition.

For Theorem 1(a), let first M be a minimal surface of general type so that c21 > 0.
It is clear from Miyaoka-Yau inequality that c21 6 3c2. Noether’s Formula implies
that

0 <
1

12
(c21(M) + c2(M)) 6

1

3
c2(M).

It follows that e(M) = c2(M) > 3.
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Suppose now that M is an arbitrary surface of general type. Let M ′ be a
minimal surface of general type obtained by contracting some −1 curves on M.
Since contracting a −1 curve decreases the Euler Poincaré characteristic by 1, we
know that e(M) > e(M ′) > 3. In particular, if e(M) = 3, the above discussions
imply that M = M ′. This concludes the proof of Theorem 1(a).

Since the far right hand side of the above sequence of inequalities is 1, it follows
that the inequality sign 6 is actually an equality. We conclude that c21(M) = 9 =
3c2(M). It is well known that a compact complex surface M with c21(M) > 0 is
projective algebraic (cf. [BHPV], page 161). The results of Aubin [A] and Yau
[Ya] on the Calabi Conjecture in the case of negative scalar curvature implies the
existence of Kähler-Einstein metric, see also [Mi]. This in turn implies that the
metric is the standard hyperbolic metric using the fact that c21(M) = 3c2(M), see
for example the survey in [Y2], page 391. Hence M is a compact complex ball
quotient.

We summarize the observation above as follows.

Proposition 1. Let M be a smooth surface of general type. Then the Euler-
Poincaré characteristic e(M) > 3. Moreover, the equality occurs if and only if
M = B2

C/Γ is the quotient of a complex hyperbolic space by a torsion free lattice of
PU(2, 1).

2.2 The moduli space of such surfaces M with e(M) = 3 is well-known to come
with a natural scheme structure. The infinitesimal deformation of any such M in a
local Kuranishi family of deformation is given by an element in H1(M,Θ), where
Θ is the sheaf of holomorphic vector fields on M. Since any such M is a locally
Hermitian symmetric space, according to the local rigidity of Calabi and Vesentini
[CV], H1(M,Θ) = 0. It follows that the virtual dimension of any deformation space
is zero, which implies that the actual deformation space is of dimension 0. As the
dimension of the virtual deformation is the same as the dimension of the actual
deformation, we conclude that the moduli space is reduced. As the dimension is
zero, the moduli space consists of a finite number of points.

Hence to prove Theorem 1, our working assumption from this point on is that
M is a compact complex two ball quotient. From Noether’s formula (0.2),

h0,0(M)− h1,0(M) + h2,0(M) =
1

12
(c21(M) + c2(M)) = 1.

We conclude that h1,0(M) = h2,0(M). The purpose of §3-5 is to employ classical
algebraic geometric method to prove that h1,0(M) 6 2. The case h1,0(M) = 0
corresponds to fake projective plane and has been classified in [PY] and [CS]. For
the cases h1,0(M) = 1 and 2, we show that the arguments in [Ye2] and [Ye3] can
be modified to prove the arithmeticity of the lattice involved in §6, from which the
classification results in [PY] and [CS] can be applied again.

2.3

Lemma 1. The canonical line bundle KM of a smooth surface M of general type
with e(M) = 3 satisfies c21(KM ) = 9

∫
M

Θ(H
M̃

) ∧ Θ(H
M̃

), where Θ(H
M̃

) is the

curvature form of an ample line bundle H
M̃

on M̃ , and
∫
M

Θ(H
M̃

) ∧Θ(H
M̃

) ∈ Z.

Proof Denote by H
M̃

the SU(2, 1)-equivariant line bundle discussed in §10.4 of

[PY] as well as in [Ko]. Let π : M̃ → M = M̃/Π be the uniformization map. On
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M̃ , H
M̃

is a third root of π∗KM as an SU(2, 1) line bundle, but may not descend
to M as a holomorphic line bundle since Π in general only lives in PU(2, 1). We
only know that H

M̃
descends as a multivalued line bundle with ambiguity lying in

Z3. However, the curvature form Θ(H
M̃

) descends as a genuine (1, 1) form on M .

Let F be a fundamental domain of M in M̃ , It follows that∫
M

Θ(H
M̃

) ∧Θ(H
M̃

) =

∫
F

Θ(H
M̃

) ∧Θ(H
M̃

) =
1

9
c1(KM ) · c1(KM ).

However, we observe from Chern number equality c21(M) = 3c2(M) and the Noether
Formula that c2(M) = 1

4 (c21(M)+ c2(M)) = 3χ(OM ). Hence c21(M) = 9χ(OM ) and∫
M

Θ(H
M̃

) ∧Θ(H
M̃

) ∈ Z. �

3. Case of irregularity > 3.

3.1 We note that for any two linearly independent holomorphic one forms ω1 and
ω2 on M, the wedge product ω1 ∧ ω2 cannot be identically zero on M . Otherwise
Castelnuovo-de Franchi Theorem implies that there is a fibration π : M → S of M
over a Riemann surface S of genus at least 2 (cf. [BPHV], page 157). Let g(S) be
the genus of S and g(Ms) be the genus of a generic fiber Ms of π. Denote by e(M)
the Euler-Poincaré characteristic of a manifold M. It follows that

(6) e(M) = e(S)e(Ms) +
∑
so

nso ,

where the sum is taken over the finite number of singular fibers Mso of π, of which
each nso = e(Mso)− e(Ms) is a non-negative integer, and is positive unless Mso is
a multiple fiber with (Mso)red nonsingular elliptic (cf. [BHPV], page 118). Hence
e(M) > (2g(S)−2)(2g(Ms)−2) > 4. This contradicts our assumption that c2(M) =
3. Hence ω1 ∧ ω2 is a non-trivial holomorphic two form on M whenever ω1 and ω2

are linearly independent.
Since ω1 ∧ ω2 6= 0, this implies that h2,0 > 2h1,0 − 3 by considering ω1 ∧ ωi

and ωi ∧ ω2, where {ωi}16i6h1,0(M) is a basis of H0(M,Ω). Since we know that

h1,0(M) = h2,0(M), we conclude that h1,0(M) = h2,0(M) 6 3.

3.2 The case of h1,0(M) = h2,0(M) = 3 was ruled out from the classification of
Hacon and Pardini ([HP], Theorem 2.2, see also [CCM]).

Denote by A = A(M) the Albanese variety of M and α : M → A the Albanese
mapping. We are going to eliminate the case of h1,0 = 1 and 2 in §5.

4. Example of M with irregularity 1 and e(M) = 3

4.1 In trying to enumerate the set of all fake projective planes in the class C11

according to [PY], Cartwright and Steger [CS] came across a torsion free lattice
of Euler-Poincaré characteristic 3 and h1,0(M) = 1. This is surprising since before
their work, it was generally expected that smooth surfaces of general type with
c2 = 3 were fake projective planes. To describe the example, we need to explain
the scheme of classification in [PY] briefly. We will refer the readers to [PY] for all
the unexplained notations in the following discussions.

An arithmetic lattice Λ for PU(2, 1) is described as follows (cf. [PY]). We refer
the readers to [PY] for all the unexplained notations. Let k be a totally real number
field. Let ` be a totally imaginary quadratic extension of k. Let D be a division
algebra with center ` of degree 3 equipped with an involution σ of second kind, such
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that for the hermitian form h0 on D defined by h0(x, y) = σ(x)y, the group SU(h0)
is isotropic at vo, and is anisotropic at every other real place of k. For x ∈ D×, let
Int(x) denote the automorphism z 7→ xzx−1 of D. Let Dσ = {z ∈ D |σ(z) = z}.
Observe that for all x ∈ Dσ, Int(x) · σ is again an involution of D of the second
kind, and any involution of D of the second kind is of this form. Now for x ∈ Dσ,
given an hermitian form h′ on D with respect to the involution Int(x) · σ, the
form h = x−1h′ is a hermitian form on D with respect to σ, and SU(h′) = SU(h).
Therefore it suffices to work just with the involution σ, and to consider all hermitian
forms h on D, with respect to σ, of determinant 1, such that the group SU(h) is
isotropic at vo, and is anisotropic at all other real places of k. Let h be such a
hermitian form. Then h(x, y) = σ(x)ay, for some a ∈ Dσ. The determinant of h
is Nrd(a) modulo N`/k(`×). As the elements of N`/k(`×) are positive at all real
places of k, we see that the signatures of h and h0 are equal at every real place of k,
which leads to the isometry between the hermitian forms h and h0. Hence, SU(h)
is k-isomorphic to SU(h0). Thus D determines a unique k-form G of SU(2, 1), up
to a k-isomorphism, namely SU(h0), with the desired behavior at the real places of
k. The group G(k) of k-rational points of this G is

G(k) = {z ∈ D× | zσ(z) = 1 and Nrd(z) = 1}.

Let P = (Pv)v∈Vf be a coherent collection of parahoric subgroups Pv for each
place v ∈ Vf , the set of all finite places of k, chosen as in [PY] (see also the
Addendum). In [PY], the set of all possible arithmetic lattices Γ with e(B2

C/Γ) = 3
was classified into a small number of classes. Each of these classes determines a
unique principal arithmetic subgroup Λ (= G(k)∩

∏
v∈Vf Pv), whose normalizer in

G(kvo) is denoted by Γ. Each Λ determines a class of fake projective planes with
fundamental group given by a lattice Π of PU(2, 1), where Π is an element in

AΛ = {Π < Γ : [Γ : Π] =
3

χ(Γ)
, |Π/[Π,Π]| <∞, and Π is torsion-free}

It follows that from the work of [PY] that there are twenty-eight distinct set
{k, `,G, (Pv)v∈Vf } which can support fake projective planes. Five more classes
which may contain smooth surfaces of Euler number 3 are listed in [PY] but are
not expected to support fake projective planes. The latter was confirmed by [CS]
which also shows that there is precisely one class containing Γ with e(B2

C/Γ) = 3
and h1,0(B2

C/Γ) = 1, and there is only one such Γ. The defining number fields

(k, `) for the example of h1,0(M) = 1 found in [CS] are given by k = Q(
√

3) and
` = Q(ζ12), the cyclotomic field associated to the 12th root of unity. The pair of
number fields is denoted by C11 in [PY]. The division algebra in the definition of
the lattice is chosen to be D = `. There is a maximal arithmetic lattice Γ defined
over C11 which may contain a torsion free lattice of Euler number 3 as explained in
page §8.2 of [PY]. It follows from the volume formula of Prasad [P], (see the table
on page 354 of [PY]), that orbifold characteristic e(B2

C/Γ) = 1/288. Cartwright and
Steger showed in [CS] that indeed a torsion-free subgroup Γ of index 864 existed in
Γ. Moreover, Γ is in fact a congruence subgroup of Γ. This is obtained by writing
down explicitly a set of generators for Γ, from which a torsion-free subgroup of
index 864 is found.

From explicit computation, Cartwright and Steger verify that the first Betti
number of B2

C/Γ is 2.
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In the next section, we will sketch a proof that the example constructed by
Cartwright and Steger is unique in the sense that the fundamental group of any
such example has to be conjugate to the one constructed by Cartwright and Steger.

5. Arithmeticity and integrality

5.1 In this and the next section, we approach the remaining cases, h1,0 = 1 and 2,
by a method very different from §4. It is a modification of the approach developed
in [Kl], [Ye2], [PY] and [CS] for the classification of fake projective planes. Before
we go to the actual proof, we would like to outline the principle involved and the
idea of proof.

Here are the main steps, working under the assumption that the smooth surface
M satisfies the conditions that KM ·KM = 9.
Step 1: To show that M is a complex two ball quotient B2

C/Γ, where Γ is a torsion-
free lattice in PU(2, 1).
Step 2: To show that the lattice Γ is an arithmetic lattice in PU(2, 1).
Step 3: To classify all possible torsion-free arithmetic lattices Γ for which the
corresponding M satisfies the topological condition above.

Step 1 was already achieved in §2. Step 2 is the key step in this section and is
a modification of the argument used in [Ye2]. Step 3 has already been achieved by
the results in [PY] and [CS], since the setting of [PY] actually aims at classification
of all torsion-free arithmetic lattices in PU(2, 1) with Euler number 3. As explained
in §5, it is shown in [PY] and [CS] that among all such arithmetic lattices, there is
only one lattice with h1,0 = 1. All the others have h1,0 = 0 and are fake projective
planes.

5.2 Step 2 is consists of two steps, integrality and Archimedean rigidity. We would
study integrality in this section, and consider Archimedean rigidity in the next
section.

Proposition 2. Let M = B2
C/Γ be a smooth compact complex two ball quotient

with e(M) = 3 and h1(M) 6 2. Then Γ is an integral lattice.

Proof The structure of proof will be similar to the approach we took in [Ye2],
which was originally designed for a lattice corresponding to a fake projective plane.
In [Ye2], we need the assumptions that the Picard number is 1 and h1,0 = 0.
The argument of the original article of [Ye2] and its corrections in the erratum
was presented in a self-contained and coherent way in [Ye3], stated as Theorem
7 in [Ye3]. For Proposition 4, M = B2

C/Γ is a torsion free compact complex ball
quotient with e(M) = 3. Comparing to the conditions required for the results in
[Ye2] or [Ye3], the only modification needed is that the Picard number may not be
equal to 1.

Before we go to the actual places of [Ye3] where modification is needed, we would
like to outline the main idea of proof.

A result of Weil tells us that any cocompact lattice Γ of PU(2, 1) is locally rigid,
from which it follows that Γ can be defined over a number field, that is, there
exists an injective homomorphism ρ : Γ → G(k), G an algebraic group defined
over a number field k with a Archimedean place vo such that G(kvo)

∼= PU(2, 1).
We say that Γ is integral if there exists a subgroup Γ′ of finite index in Γ so that
ρ(Γ′) ⊂ G(Ok). The details of the above can be found in §1 of [Ye2].
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5.3 As in the proof of [Ye2], [Ye3], there are two main steps for Step 2 above.

Step 2A, to prove that Γ is integral, and
Step 2B, to prove an analogue of archimedean superrigidity as in §4.7 of [Ye3], in
the sense that there is ρ as above satisfying the condition that G(kv) is compact
for all v 6= vo.

Let us first give an overview of the proofs of Step 2A and Step 2B before we
work on the details.

Step 2A is a modification of the proof of Integrality in §4.4 and §4.5 of [Ye3] (§2-4
of [Ye2]). For the sake of proof by contradiction, assume that Γ is not integral so
that there exists for a finite place v a non-trivial unbounded representation ρv : Γ→
G(kv). Then there exists a faithful energy minimizing ρv-equivariant harmonic map

f : M̃ → X, the Bruhat-Tits building associated to G(kv), as explained in the first
two paragraphs of §4.4 in [Ye3], using a result of Gromov and Schoen. The Bruhat-
Tits building is either of rank 1 or 2, from which the pull back of the differentials
of the affine coordinate functions on an apartment by the harmonic map leads to
harmonic forms on a finite sheeted cover M1, namely a spectral covering, of M.
The covering group is given by W 1, a subgroup of the Weyl group associated to
the root system of G(kv). Bochner formula implies the existence of non-trivial
holomorphic one forms ω on M1, from which we construct a non-trivial Albanese
map associated to ω’s from A1 to an abelian variety AlbW 1,ω

, to be explained in
more details below. The key point of the argument is to use properties of the
Albanese map, its relation to the original harmonic map into the buildings and the
geometry of the Bruhat-Tits building to prove that M1 is an unramified covering
of M, from which we conclude a contradiction as explained in [Ye2] or page 406 of
[Ye3]. The details are given in this sections.

For Step 2B, the idea is a substantial modification of §4.7 of [Ye3] (§5 of [Ye2]).
Let vi, i = 2, . . . , n be the other Archimedean places of k so that we may consider
Rk/Q(G)(R) = G(kvo) × G(kv2) × · · ·G(kvn). From the type of Lie algebra and a
result of Simpson on complex variation of Hodge structure, we conclude that G(kvi)
for i > 2 is either PU(2, 1) or PU(3). The key point is to rule out the possibility
that G(kvi) = PU(2, 1) for some i > 2. Assume that such an i exists. It follows

that there exists a Γ-equivariant harmonic map Φ from M̃ = B2
C to B2

C, the latter
corresponding to the symmetric space associated to G(kvi), i > 2. In case that the
real rank of the mapping Φ is at least 3, Bochner type argument implies that Φ
gives rise to a holomorphic mapping. To rule out the case that the real rank of Φ
is 2, we have to modify some argument of Carlson and Toledo in [CT] and study
some natural foliation associated to Φ to show that Φ descends to a fibration of M
over a curve, from which a contradiction is derived readily. Once we have proved
that Φ is holomorphic of complex rank 2, the idea then is to show that Φ has no
ramification divisor and hence is biholomorphic, making use of c1(M)2 = 9. This
would then lead to a contradiction as in §4.7 of [Ye3]. The details in this step is
given in the next section.

To carry out the scheme of proof of [Ye3] in our situation, we need to get rid
of the use of Picard number 1 in both steps 2A and 2B above. For Step 2A, this
is achieved by Lemma 4 below and the two paragraphs near the end of 5.4, which
will be used in the proof of Step 2A in [Ye3] to replace the restriction on the Picard
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number 1. For Step 2B, we get rid of Picard number 1 by a more skillful use of the
fact that KM ·KM = 9.

5.4 In this subsection, we will provide a more detailed exposition of Step 2A par-
allel to the discussions in [Ye2] and [Ye3]. We will also provide the details of the
modification required for our case when it is needed.

Lemma 2. Let V be a proper algebraic subvariety in a compact complex ball quo-
tient M . Let i : V →M be the embedding. Let π1(V ) be the fundamental group of
V . Then i∗(π1(V )) ⊂ π1(M) is non-trivial.

Proof Suppose on the contrary that i∗(π1(V )) ⊂ π1(M) is trivial. Let p : M̃ →M
be the universal covering map. Let Vo be a connected component of p−1(V ). The
restriction p : Vo → V is an unramified covering. Let ` be any closed loop on V
based at p ∈ V. Since i∗(π1(V )) is trivial, the lift ˜̀of ` to Vo has to be a contractible
loop on Vo. Hence p : Vo → V is a one-sheeted cover of V and therefore is a

diffeomorphism since it is a covering map. Hence Vo is a compact subvariety of M̃.

However on M̃ = BnC , there exists a strictly plurisubharmonic function given by
|z|2 =

∑n
i=1 |zi|2, the restriction of which to Vo is still plurisubharmonic. As Vo is

compact, the plurisubharmonic function has to attain a maximum. This however
contradicts the Submean Value Inequality for a plurisubharmonic function, thereby
concludes the proof of the Lemma.

In the following we will go through the structure of proof in [Ye3], explain in
details places that need to be modified under our new weakened assumption, while
refer the readers to [Ye3] for details that were already written there.

As mentioned in the brief overview above, if the lattice Γ involved is not integral

in k, there exists a finite place v and a Γ equivariant harmonic map from M̃, the
universal covering of M, to X, the Bruhat-Tits building associated to the induced
representation of Γ in the corresponding group G(kv). Pulling back the coordinate
differentials on X by the harmonic map, we get some multivalued harmonic one

forms on M̃ , which after descending to M and considering the (1, 0) part provide
multivalued holomorphic one forms. The fact that the one forms are multivalued
follows from the construction, since there is an action of the affine Weyl group on
X. The multivalued one forms become a set of single valued holomorphic one forms
denoted by {ωi} after going to a finite spectral covering M1 of M, with the covering
group W 1 being a subgroup of the Weyl group of the root system of X involved.
The details are given in the first seventh paragraphs in §4.4 of [Ye3].

The dimension of X may be 1 or 2 depending on the rank of G over kv. Suppose
first that rankkv (G) = 1 so that X is a tree. This corresponds to the argument given
in page 400 of [Ye3]. In this case, there is a mapping α : M1 → AlbW 1,{ωi}(M1),

which is the quotient of the Albanese variety by the W 1-invariant abelian subvariety
annihilated by all the ωi obtained earlier. We also know that AlbW 1,{ωi}(M1) has

complex dimension 1 in this case. Let xo be a fixed point and x be an arbitrary point
on M1. As in the proof of Lemma 3 in §4.6 of [Ye3], a generic fiber of the mapping

hR : M̃1 → R given by x→
∫ x
xo
Re(ω) is a generic fiber of f̃1 : M̃1 → M̃

α→ X. Since

hR can be considered as the real part of the universal covering of α, it follows that
a generic fiber Vx of α̃, where x is generic point in AlbW 1,{ω}i(M1), is mapped to

a point by f̃1. Hence for a generic x, ρv(i∗(π1(Vx)) is acting trivially at f ◦ π(Vx)),
where i is the inclusion mapping. Since f is ρ-equivariant, we know that for each
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y ∈ M̃, (ρv(γ))(f(y)) = f(γ(y)) for each y ∈ M̃ and γ ∈ π1(M). It follows that
ρv(i∗(π1(Vx)) acts trivially on X. Hence ρv(i∗(π1(Vx)) is trivial. As ρv is one to
one, i∗(π1(Vx)) is trivial for a generic x ∈ AlbW 1,{ωi}(M1). This however contradicts

Lemma 4. The claim is proved. The above is the first modification needed in Step
2A.

The more difficult case is that rankkv (G) = 2 so that the dimension of X is 2. In
this case, an apartment in X can be written as Σ = {(x1, x2, x3) ∈ R3|x1+x2+x3 =
0} ∼= R2, and there are three holomorphic one forms ωi, i = 1, 2, 3 on M1 coming
from pulling back of coordinate differentials by the harmonic map f into X as
mentioned earlier. The Weyl group of the root system is the symmetric group of
three elements S3 and the spectral covering group W 1 is a subgroup of the Weyl
group S3. In this case, the corresponding Albanese map α as defined earlier may
have dimension one or two image in AlbW 1,{ωi}(M1). First we claim that α(M1)

cannot be a dimension one subvariety in AlbW 1,{ωi}(M1). Assume on the contrary

that α(M1) is of complex dimension one. In such case, for a generic point on α(M1),

the inverse image in M1 is a curve. Consider the mapping h̃R : M̃1 → R2 defined
by

h̃R(z) = (

∫ z

zo

(f ◦ π)∗dx1,

∫ z

zo

(f ◦ π)∗dx2,

∫ z

zo

(f ◦ π)∗dx3)

∈ {(w1, w2, w3) ∈ R3|
3∑
i=1

wi = 0} ∼= R2,

where f is the harmonic map into the building, and xi’s are the affine functions

defining an apartment of X, cf. [Ye3], §4.4. Clearly h̃R(z) is just the projection of

α̃ onto the real part of C2. Again, fibers of h̃R correspond to fibers of f̃ . Similar to
the argument in the last paragraph, ρv(i∗(π1(Vx)) is trivial. As ρv is one to one,
i∗(π1(Vx)) is trivial for a generic x ∈ AlbW 1,ω

(M1). This again contradicts Lemma
4. The claim is proved. The argument of this paragraph is a replacement of a
similar argument on page 400 of [Ye3] and is the second modification required.

Hence we know that α(M1) has complex dimension 2. The key point of the argu-
ment is to show that in such a case, the spectral mapping π : M1 →M is unramified.
This is achieved via proof by contradiction. Hence assume that π is ramified. Let D
be an irreducible codimension one component of the ramification divisor on M1 cor-
responding to ωi−σωi = 0 for some ωi and σ ∈W 1 in the construction of the spec-
tral covering. There is at least one such component whose image on M is a branch-
ing divisor, otherwise π would be unramified. Since α is the Albanese map defined
by the one forms {ωi}, the image α(D) is an algebraic curve in AlbW 1,{ωi}(M1)

and is an Abelian subvariety in AlbW 1,{ωi}(M1), following from the same argument

as in §4.5 of [Ye3]. To derive a contradiction, we relate α to the harmonic map f
as given in §4.5 of [Ye3] so that the geometry of X comes into play. Consider a

generic fiber Ca of the projection M1
α→ AlbW 1,{ωi}((M1)→AlbW 1,{ωi}(M1)/α(D).

The contradiction is achieved by proving the following two statements. On the one
hand, p∗(π(Ca)), the Zariski closure of p∗(π(Ca)), is a non-trivial normal subgroup
of the group G. Since G as a real Lie group is isomorphic to PU(2, 1), it is simple.

We conclude that p∗(π(Ca)) = G. On the other hand, f(π(Ca)) is a tree lying in
X, of which the stabilizer is given by a proper subgroup of G. The two statements



10 SAI-KEE YEUNG

contradict each other. Hence we conclude that π : M1 →M is unramified once the
above two statements are proved.

The proof of the two statements is given in details in §4.5 (page 400-405) of
[Ye3], where no further assumption is used, except that we need to explain line 13
on page 403 of [Ye3], which corresponds to Sublemma on page 284 of the Erratum
of [Ye2]. In the case that the Picard number of M is one in the setting of [Ye2]
and [Ye3], Sublemma follows from the following observation. Suppose that D is a
divisor contracted by α to a point on AlbW 1,{ωi}(M1). It follows that D lies in the

kernel of ωi for i = 1, 2, 3 from definition of the Albanese map, and hence in the
kernel of σ∗ωi for each σ ∈ W. Since W induces an action on AlbW 1,{ωi}(M1) and

α induces a map β : M → AlbW 1,{ωi}/W, this implies that π(D) is contracted by

β : M → AlbW 1,{ωi}/W , which contradicts the assumption that the Picard number

of M is 1. In our current situation we do not know if the Picard number of M is
1. However the Sublemma is only used to make sure of the assertion on line 20 of
page 284 in Erratum of [Ye2] that α∗EQ does not contain a contracted curve, where
Q ∈ AlbW 1,{ωi}(M1)/α(D). In the setting, Q is parametrized by α(S), where S is

a component of the the singularity set of f at which Ca meet on M1. Note that
as mentioned in [Ye2], [Ye3], there is nothing to be proved if Ca does not meet
any singularity set of f on M1, and when such a singularity set S is present, it
is defined as ωj − σkωj = 0 for some σk ∈ W 1, and AlbW 1,{ωi}(M1) is isogeneous

to α(D) × α(S). With a slight abuse of notation, we may consider Q ∈ α(S).
It cannot be true that α∗EQ contains a contracted divisor for all Q ∈ α(S), for
otherwise α(M1) would be of complex dimension 1. Hence for a generic choice of Ca
corresponding to a generic choice of Q, α∗EQ does not contain a contracted curve.
We choose such a Q and the associated Ca. The rest of the arguments in [Ye2] as
well as §4.5 of [Ye3] can then be applied to conclude the proof of the statements.
This is the third modification required.

Hence the spectral mapping π : M1 → M is unramified. However, unless W 1 is
trivial, this will contradict topological consideration arising from the action of W 1

on M1 as well as α(M1) induced from the action of the affine Weyl group on an
apartment of X. We refer the readers to §4.6 of [Ye3] for details of the argument.
Hence W 1 is trivial and therefore M = M1. In such case, h1,0 > 2 as α(M) = α(M1)
is of complex dimension 2, our working assumption. Hence the case of h1,0 = 1 is
eliminated. The only remaining case is h1,0 = 2. Here we are going to utilize more
the structure of the Bruhat-Tits building involved (cf. [Br]). Since W 1 is trivial,
ρ(Γ) can only act on each fixed apartment Σ by translation. We observe that the
only subgroup G1 of G(Qp) which acts by translation on each apartment of the
Bruhat-Tits building X is trivial. To prove the claim, we note that the stabilizer
GΣ of an apartment Σ in G(kv) is precisely the normalizer of the split torus T
associated to Σ. Moreover, g ∈ GΣ acts by translation if and only if g ∈ ZG(T ),
the centralizer of T. Hence G1 ⊂ H := ∩TZG(T ), where T ranges over the set of
all maximal split torus T. Now H is normalized by G(Kp). Since G is simple, H is

trivial. The observation is proved. It follows from the observation that ρ∗γ(f̃(Σi))
is trivial, contradict to our assumption from the very beginning of proof of Theorem.
This is the fourth modification required.

The contradiction above completes the proof for Step 2A, and in particular,
Proposition .
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�

6. Archimedean rigidity

6.1 Recall that M is a smooth complex two ball quotient with h0(M,Ω) 6 2.

Lemma 3. Let Φ : M̃ → M̃σ be the harmonic map induced by the conjugate
representation ρσ. Then Φ is holomorphic of real rank 4.

Proof We are going to break the proof into several stages.

6.1.1 Suppose that rankR(Φ) > 3. We may apply the result of Siu [Siu] to conclude
that f is holomorphic or conjugate-holomorphic. In the second case, we take the
complex conjugate of the image so that f becomes holomorphic. It follows that Φ
is a holomorphic mapping of complex rank 2.

Suppose that rankR(Φ) = 1. Then Φ(M̃) is a totally geodesic curve ` in Nσ ∼= B2
C

according to a result of Sampson. From the fact that Π is Zariski dense and the
action at ∂B2

C does not have fixed points, we conclude that it cannot happen that
rankR(Φ) = 1.

Hence it suffices to out out the case that rankR(Φ) = 2.

6.1.2 Our first step is to show that a generic fiber of Φ is a complex curve on M̃ .

To see this, there exists a Π-equivariant holomorphic map Φ : M̃ → M̃ obtained as
follows. Lemma 4.5 of [Sim] implies that ρσ has to come from a complex variation of
Hodge structure, which means that ρσ induces an equivariant holomorphic mapping

Ψ : M̃ → S̃ such that Φ = p ◦ Ψ, where S̃ is a Griffith’s Period Domain over

Nσ = B2
C and p : S̃ → Nσ is the projection map. The only choices of S̃ above

B2
C
∼= PU(1, 2)/P (U(1)×U(2)) are PU(1, 2)/P (U(1)×U(2)) or PU(1, 2)/P (U(1)×

U(1) × U(1)). In the second case, the image of Φ(M̃) lies in a horizontal slice of
U(1, 2)/U(1)× U(1)× U(1). Since the only horizontal slice in PU(1, 2)/P (U(1)×
U(1)× U(1)) is PU(1, 2)/P (U(1)× U(2)), we conclude that

Ψ(M̃) ⊂ PU(1, 2)/P (U(1)× U(2)) ⊂ PU(1, 2)/P (U(1)× U(1)× U(1)).

Hence in either case, the fiber of Ψ and hence of Φ is a complex curve on M̃ .

The fibration given by Φ or Ψ :M→ C := Ψ(M̃) is equivariant with respect to

the action of Γ. When projected to M = M̃/Γ, the fibers given by Ψ gives rise to a
holomorphic foliation on M . The idea of our proof is to show that such a foliation
leads to a fibration under our assumption of complex two ball quotient with c2 = 3
and h1(M) 6 2. In the following we would just regards Ψ as Φ.

6.1.3 First of all, we consider the special case that the foliation on M is a fibration
over an algebraic curve of genus at least 2. Applying (6), we conclude that e(M) >
4, which contradicts our assumption that c2(M) = 3.

6.1.4 Observe now that if a fiber η of ψ has multiplicity more than 1, the image of
the fiber η must be a closed curve in M . In fact, if the image of η is not a closed
curve on M , it would have some limit points in M along some local transverse cross
section to the foliation. This implies that Ψ has multiplicity greater than 1 for a
generic fiber of Ψ, a contradiction. Hence multiple fibers correspond to compact
invariant curves of the vector field on M , and there are at most a finite number of
those leaves, denoted by E1, · · · , Ek.
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The foliation is defined locally by dΦ := Φ∗dw = 0, where w is a local holo-

morphic coordinates at a point on Φ(M̃). The expression dΦ is non-degenerate on
M −∪ki=1Ei apart from a finite number of points. The foliation on M −∪ki=1Ei is
non-degenerate generically and extends naturally across ∪ki=1Ei to give a foliation
F with a finite number of singularities on M . This is essentially the same as the
foliation obtained from dΦ but neglecting the multiplicities of the closed curves
∪ki=1E. In other words, we consider the saturation of a foliation if it is defined
locally by holomorphic one forms or vector fields as described in page 11 of [Bru2].
Hence we denote by Sing(F) the singularity set of F , a discrete set of points.

6.1.5 We refer for example to [B] for standard notations about holomorphic fo-
liations on a complex surface. There is a short exact sequence associated to the
foliation F , cf. pages 10-11 of [Bru1].

(7) 0→ TF → TM → IZNF → 0,

which is dual to

(8) 0→ N∗F → ΩM → IZT ∗F → 0,

after tensoring with KM , where NF is the normal bundle to the foliation, and IZ
is the ideal sheaf with support on the singularity of the foliation.

The associated long exact sequence reads,

0 → H0(M,N∗F )
ι→ H0(M,ΩM )

α→ H0(M, IZT ∗F )
β→ H1(M,N∗F )

γ→ H1(M,ΩM )
δ→ H1(M, IZT ∗F )

ε→ H2(M,N∗F )
σ→ H2(M,ΩM )

τ→ H2(M, IZT ∗F ) → 0.

From the first line of the long exact sequence above, as h0(M,Ω) 6 2, we
know that h0(M,N∗F ) takes the value of either 0, 1 or 2. For h0(M,N∗F ) = 2,
the Castelnouvo-de Franchi argument (cf. [BHPV] with two independent elements
in ι(H0(M,N∗F ) ⊂ H0(M,ΩM ) leads to the conclusion that foliation comes from a
holomorphic fibration over a curve of genus at least 2 and hence leads to a contra-
diction as discussed in 6.1.4.

6.1.6. Suppose h0(M,N∗F ) = 1. Let ω ∈ H0(M,N∗F ). Denote by the same symbol

its pull-back to M̃ . From definition, ω annihilates the tangent vectors to fibers of

Φ on M̃ . We claim that any leaf of F must be compact. Suppose on the contrary

that a leaf L of F is not compact on M . Denote by L̃ a lift of L in M̃ . L̃ is the

fiber of Φ : M̃ → C studied earlier. Suppose Φ(L̃) = o ∈ C. Let V be a small
coordinate neighborhood of o in C and z be a coordinate function on V . Then
Φ−1(V ) is a neighborhood of L. As both ω and Φ∗dz annihilate tangent vectors

to L on M̃ , we know that in a neighborhood of L, ω = fΦ∗dz for some function f
which is holomorphic along L. Taking exterior derivative

0 = dω = df ∧ Φ∗dz + fdΦ∗dz = df ∧ Φ∗dz.

It follows that df(v) = 0 for all tangent vectors v ∈ TL. Hence f is constant
along L. In other words, we may regard ω = Φ∗dz along L. Note that the same
argument shows that ωL = Φ∗η|L for any local holomorphic one form η on V as
long as Φ∗η|L = Φ∗dz on L. In particular, this holds for η = h(z)dz, where h is
a holomorphic function on V with h(o) = 1. Let W be a small coordinate neigh-
borhood of M which has non-empty intersection with U . Since L is dense on M ,
we may assume that the image π(U ∩W ) contains infinite number of disconnected
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pieces Li, i =∈ N of L ∩ π(U ∩W ), by taking a smaller W if necessary. From the

above discussions, ω|Li = Φ∗dz|Li for each i, after pulling back to U ∩W ⊂ M̃
and identifying Φ−1(L1) with L on W . As remarked above, the same argument
shows that ω|Li = Φ∗(h(z)dz)|Li . Since we may choose h(z) so that h(z) 6= 1 on
Φ−1(L2), we immediately reach a contradiction. Hence all leaves of F on M are
compact. It follows that Φ induces a fibration β : M → R to an algebraic curve R
of genus at least 1, as in the proof of the classical Castelnouvo-de Franchi Theorem
as mentioned above, see also Proposition 6.2 of [Bru2]. The fibration lifts to a

fibration β̃ : M̃ → R. Since the fibration in this case is actually the original one
induced from Φ, which is Γ-equivariant, it follows that there is an induced covering

map γ : C = Φ(M̃)→ R. As Γ acts freely on M̃ , Φ∗Γ acts faithfully on C as well.
We conclude that the Poincaré metric of N restricted to C descends to R. Hence
R is hyperbolic and has to be of genus at least 2. This leads to a contradiction as
in 6.1.3 again.

6.1.7. Hence we assume that h0(M,N∗F ) = 0. We know that h0(M,ΩM ) can be
0, 1 or 2. In the case that h0(M,ΩM ) = 0, it corresponds to the fake projective
plane situation with h1,1 = 1. Since the pull-back Φ∗ω

M̃σ of the standard Kähler

form ω
M̃σ on M̃σ is Γ equivariant and descends to M , it has to be a non-trivial

multiple of ωM , the standard Kähler form on M . This however contradicts the fact
that Φ∗ω

M̃σ ∧ Φ∗ω
M̃σ = 0 as the image of Φ has complex dimension 1.

Suppose now that h0(M,ΩM ) = 2. From the long exact sequence as above,
we know that h0(M, IZT ∗F ) − dimIm(β) = 2. Hence we may find two linearly
independent elements ω1, ω2 ∈ H0(M,ΩM ) ∼= Im(α) ⊂ H0(M, IZT ∗F ). As T ∗F is
one dimensional, we may write ω1 = fω2. Clearly ω1 ∧ ω2 = 0. Castelnouvo-de
Franchi Theorem implies that there is a fibration of M over a curve R of genus at
least 2 with generic fiber still denoted by Ms. In this case, the Euler number formula
(6) still holds with χtop(R) > 2 and χtop(Ms) > 2, which leads to contradiction as
in 6.1.3.

6.1.8. Hence we are left with h0(M,ΩM ) = 1, h0(M,N∗F ) = 0 and hence h0(M, IZT ∗F )−
dim(Im(β)) = 1. In this case, there is a non-trivial Albanese map alb : M → E, an
elliptic curve generated by the holomorphic one form θ ∈ H0(M,ΩM ). As θ can be
considered as an element in H0(M, IZT ∗F ), the fibers of α are actually transversal
to the leaves of F generically. Applying (6) to our Albanese fibration, we know that
the contribution of the singular set Zalbof alb is given by

∑
i∈Zalb

δalb,i = 3. Since

θ can be considered to be living in H0(M, IZT ∗F ), we know that the singularity set
of the foliation Z ⊂ Zalb.

We now consider the singularities of F . Recall an invariant of foliation introduced
by Baum-Bott in [BB], see also [Bru1] for details in the following setting. In a
neighborhood of a singular point p ∈ Sing(F), we may uppose that F is generated
by a vector field v given in local coordinates by v(z, w) = F (z, w) ∂∂z +G(z, w) ∂

∂w .
Then

Det(p,F) = Res0{
det J(z, w)

F (z, w)G(z, w)
dz ∧ dw},
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is a non-negative integer. Define

Det(F) =
∑

p∈Sing(F)

Det(p,F),

From [BB], see also Proposition 1 of [Bru1], we know that

Det(F) = c2(M)− c1(TF ) · c1(M) + c21(TF )(9)

It follows from the equation that

(10) c1(TF ) · c1(NF ) = c2(M)−Det(F).

Note that apart from the finite number of singular points, the normal bundle NF
can locally be represented by the lift of the tangent vectors to the base of the

fibration ψ : M̃ → C. From Riemann-Roch formula for TF on M , it follows that
c1(TF )·c1(NF ) = c1(TF )·(c1(TF )−c1(TM )) is an even integer. Hence as c2(M) = 3
and Det(F) > 0, identity (9) implies that c1(TF ) · c1(NF ) = 2 and Det(F) = 1, the
latter implies that there is only one singularity Q for F , with Milnor number 1.

From the earlier discussions, we conclude that Q ∈ Zalb. As
∑
i∈Zalb

δalb,i = 3

and the singularity of Q can only contribute 1 to the sum, we conclude that there
is at least one more point, say Q′ ∈ Zalb\ZF . Since by construction, the foliation
is smooth around Q, we may choose a good local coordinate system (x, y) ∈ W
centered at Q′ so that leaves of the foliation are given by y = c, a small constant.
In such a coordinate, we may write θ = fdx for some local holomorphic function f
on W . As θ vanishes at Q′, it follows that f has a non-trivial zero divisor passing
through Q′ on W . Since θ is the pull-back of a one form on the elliptic curve E
by the Albanese map alb : M → E, this is possible only if alb contains a singular
fiber. In other words, θ contains a multiple fiber.

Recall now the expression (6) with respect to the Albanese fibration. Consider
first the contributions from multiple fibers. For a multiple fiber so, the expression
nso > 0 unless the reduced Mso is an elliptic curve, which is not possible as M is
hyperbolic. In such a case, the fact that we have a small Euler number 3 implies
that a multiple fiber Mso has just one reduced irreducible component Dso and we
may write Mso = αsoDso for some integer αso > 2, cf. Corollary 2 in 5.3 of [CKY].
Let g be the genus of a generic fiber Ms of alb. Then nso = 2(g(Mso) − g(Ms))
and 2(g(s) − 1) = 2αso(g(Dso) − 1). It follows that nso = 2(αso − 1)(g(Dso) − 1).
Note that g(Dso) > 2 and αso > 2, we conclude from (7) that there is precisely one
multiple fiber Mso , and furthermore, g(Dso) = 2 and αso = 2. There is also the
contribution of Q to the formula (7). The point Q cannot lie on Mso , for otherwise,
Mso would not be hyperbolic.

It follows from our setting that θ/ξ is precisely the element in H0(M, IZT ∗F ),
where ξ is the canonical section of Dso . Hence T ∗F = π∗ΩE +Dso . Hence

0 = Dso ·Dso(11)

= c1(T ∗F ) · c1(T ∗F )− 2c1(T ∗F ) · π∗c1(ΩE) + π∗c1(ΩE) · π∗c1(ΩE)

= c1(T ∗F ) · c1(T ∗F ),

where we used the fact that c1(ΩE) = 0.
Now we observe that the foliation is defined on M by the fiber of Φ. Hence the

Chern form C1(N∗F ) of N∗F on T is the pull-back of a (1, 1) form on C, which of
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dimension 1. Hence the pointwise product C1(N∗F )∧C1(N∗F ) vanishes on M , which
implies that c1(NF ) · c1(NF ) = c1(N∗F ) · c1(N∗F ) = 0. This implies that

0 = (c1(TM )− c1(TF )) · (c1(TM )− c1(TF ))

= c1(TM ) · c1(TM )− 2c1(TM ) · c1(TF )

= c1(TM ) · c1(TM )− 2c1(NF ) · c1(TF ),

where we have used identity in (11). This however contradicts the fact that c1(TM )·
c1(TM ) = 9, an odd number. The contradiction rules out the case of h0(M,ΩM ) =
1, h0(M,N∗F ) = 0.

This concludes the proof of Lemma 3.
�

6.2

Lemma 4. Assume that c2(M) = 3 and Φ : M̃ → M̃σ is a holomorphic map of
real rank 4. Then Φ is a biholomorphism.

Proof Denote by C1(M̃σ) and C2(M̃σ) the Chern forms associated to the Poincaré

metric on M̃σ. First of all, we observe that
∫
M

Φ∗C1(M̃σ) ∧ Φ∗C1(M̃σ) and∫
M

Φ∗C2(M̃σ) are positive integers on M . Note that the integrants are equivari-

ant under Γ and hence descends to M . Clearly the first integral
∫
M

Φ∗C1(M̃σ) ∧
Φ∗C1(M̃σ) ∈ Z, as Chern number of the pull-back line bundle. Now it is well-
known that on any complex surface S with p : P (S)→ S the projection map of the
projectivized tangent bundle, there is pointwise identification as a differential form

p∗C1(L)3 = −(C2
1 − C2),

where L is the tautological line bundle on PS, cf. [Ye1], page 493-494. In particular,
pulling back to our manifold M ,∫

P (M)

Φ∗C1(L)3 = −
∫
M

Φ∗(C2
1 − C2),

Now the mapping Φ induces a mapping between the corresponding projectized
tangent bundles, which implies that

∫
PM

Φ∗C1(L)3 ∈ Z. Using the identity above

and the fact that
∫
M

Φ∗C2
1 (M̃σ) ∈ Z, we conclude that

∫
M

Φ∗C2(M̃σ) ∈ Z as
well. Note that the Chern forms of the bundles are positive on Mσ in terms of the
Poincaré metric there. Hence the integrals are positive as well. The observation is
proved.

For simplicity of notation, denote Φ∗c2 =
∫
M

Φ∗C2(M̃σ) and Φ∗c21 =
∫
M

Φ∗C1(M̃σ)∧
Φ∗C1(M̃σ). It follows that Φ∗c2 ∈ Z. As the Chern forms of the Poincaré metric on
Mσ satisfies C2

1 = 3C2 pointwise on the form level, we conclude that Φ∗c21 = 3Φ∗c2
and hence is a positive multiple of 3.

Assume that the mapping is not etale and hence R exists. Let R =
∑k
i=1 biRi

be the ramification divisor of Φ, where Ri are the irreducible components and bi+1
is the local branching order along Ri. From Riemann-Hurwitz Formula,

c21(M) = Φ∗c21(M̃σ)− 2Φ∗c1(M̃σ) ·R+R ·R,(12)

= Φ∗c21(M̃σ) + Φ∗K
M̃σ ·R+K

M̃
·R(13)

= Φ∗c21(Φ(Σ)) + Φ∗K
M̃σ ·

k∑
i=1

biRi +K
M̃
·
k∑
i=1

biRi.(14)
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In the above, we have used K
M̃

= Φ∗K
M̃σ +R, where K

M̃
= KM .

From equation (13), we conclude that Φ∗K
M̃σ ·R+K

M̃
·R = 6, where the first

term is non-negative and the second term is positive. Note also that Φ∗K
M̃σ ·R =

(−R + KM ) · R is even after applying Riemann-Roch applied to R on M . Hence
one of the following cases hold,
(a) Φ∗K

M̃σ ·R = 0,KM ·R = 6
(b) Φ∗K

M̃σ ·R = 2,KM ·R = 4, or
(c) Φ∗K

M̃σ · R = 4,KM · R = 2. For Case (a), R has to be contracted by Φ
since K

M̃σ is positive. This is possible only if R · R is negative from contraction
criterion on surface, which would violate equation (12). For Case (c), R · R =
KM · R − Φ∗K

M̃σ · R = −2. From Adjunction formula, it follows that the genus
of R is 1, which violates the fact that M is hyperbolic. Hence only (b) is possible,
with R ·R = 2 as a consequence.

As −Φ∗c1(M̃σ) ·R = 2, it is easy to see that there can be at most two irreducible
components in R. First assume that there are two irreducible components R1 and

R2 in R. The above constraint leads to −Φ∗c1(M̃σ) · Ri = 1 and bi1 for i = 1, 2.
For each i, Ri ·Ri > 0, for otherwise adjunction formula implies that Ri has genus
less than 2, contradicting the fact that M is hyperbolic. It follows that Ri ·Ri = 1
for i = 1, 2 and R1 · R2 = 0. But this implies again from Riemann-Roch for R1

that −Φ∗c1(M̃σ) · R1 = (−c1(M) − R2) · R1 = −c1(M) · R1 is even and positive.
Similarly −c1(M) ·R2 is even positive. This contradicts the earlier conclusion that

2 = −Φ∗c1(M̃σ) ·R = −Φ∗c1(M̃σ) · (R1 +R2).
Hence we conclude that R = R1 with only one irreducible component. From

b21R1 · R1 = R · R = 2. We conclude that b1 = 1. This implies that the local
branching order of Φ around R is 2. From Adjunction Formula, we know that the
arithmetic genus χ(OR) = 3.

Let Σ be a fundamental domain of M in M̃ . It is known that Σ can be taken
as a polyhedron and Poincaré Polyhedron Theorem holds, with a finite number of
faces in the boundary ∂Σ. The faces of ∂Σ are identified by actions of elements
γ1, · · · , γk in Γ to give rise to a compact manifold isometric to M . Similarly, the
boundary components of Φ(Σ) are identified by induced actions of γ1, · · · , γk. By
identifying the corresponding boundary components, we get a compact topological
space which we denote by Σσ. From the earlier discussions, Σ is a two-fold branched
cover of Σσ. Since any two-fold covering is a Galois covering, Σσ is obtained from
Σ by a Z2 quotient.

As R = R1 is fixed by an automorphism of M coming from the generator of the
Z2 action, we conclude that R is totally geodesic. However, for a totally geodesic
curve R1 on a complex two ball quotient with possibly self-intersection, we have the
formula KM ·R1 = 3(g(R̂1)− 1), where R̂1 is the normalization of R1, cf. Lemma
6 of [CKY]. This violates our conclusion in (b) that KM ·R = 4. The contradiction
concludes our proof for Lemma 4.

In conclusion, Φ is a biholomorphism. �

We remark that Lemma 4 was known to Domingo Toledo [T] with a different
proof.

6.3 From the above lemma, we conclude that Φ is a biholomorphism. This implies
that Φ gives rise to an isometry with respect to the Killing metrics on the domain
and the image. Hence it corresponds to a bihomomorphism from G to Gσ. This
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however leads to a contradiction, since the Galois conjugate σ is not even continuous
with respect to the standard topology on C. The contradiction implies that Gσ

is compact and hence Γ is arithmetic. Alternately, the argument above shows
that the homomorphism induced by σ is standard in the sense of Margulis [Ma],
page 367, which implies that the lattice is arithmetic. In summary, we conclude
the following proposition. Recall that the condition h1(M) 6 2 is automatically
satisfied according to the previous sections.

Proposition 3. Let M = B2
C/Γ be a smooth compact complex two ball quotient

with e(M) = 3 . Then Γ an arithmetic lattice.

6.4 We can now state the uniqueness of the examples with h1,0 = 1.

Proposition 4. Let M = B2
C/Γ be an arithmetic complex two ball quotient with

e(M) = 3 and h1,0(M) = 1. Then M is holomorphic to the surface constructed by
Cartwright and Steger mentioned in §4.

Proof The classification of Prasad and Yeung [PY] covers all arithmetic complex
two ball quotients of e(M) = 3. In particular, the set of all arithmetic lattices
of e(M) = 3 consists of 28 classes with [D, `] > 1, each of which contains fake
projective planes, and five more classes, C1, C8, C11, C18, or C21 with D = ` in the
notation of [PY] that may contain examples. Finally in [CS], Cartwright and Steger
show that there are precisely 100 fake projective planes within the first twenty-eight
classes, and there exists precisely one arithmetic lattice Γ with e(M) = 3 in the
remaining five classes above, lying within the class with number field give by C11

and has h1,0(B2
C/Γ) = 1. We conclude that the fundamental group of a torsion

free ball quotient M with e(M) = 3 and h1,0(M) = 1 has to be isomorphic to the
example of Cartwright and Steger mentioned in §4.

Let us first restrict the possibility of the fixed point set for a hypothetical complex
conjugate diffeomorphism h on the Cartwright-Steger surface. In such case, it is
known from the work of Cartwright Steger that the automorphism group of the
surface has order 3. Suppose on the contrary that there is a complex conjugate
diffeomorphism h on the surface. It follows that either h or h3 is a conjugate
involution, which has a totally real manifold as the fixed point set F . From (4),
h1,1 = 3. Hence it follows from Lefschetz Fixed Point Formula that F contains a
component which is one of the followings, sphere S2, real projective plane P 2

R, torus
T 2 or PR#T 2. Neither of the first two cases is possible from the proof in Lemma

4. In fact, the lift F̃ of either set to the universal covering M̃ ∼= B2
C ⊂ C2 has to be

compact. The square of the Euclidean distance function with respect to the origin

on M̃ , dE(0, z)2 = |z1|2 + |z2|2, is convex with respect to the Killing metric and

hence the restriction of r2 to F̃ is constant by the Maximum Principle. However as
BC2 is homogeneous, we may idenitify the origin 0 of B2

C as an arbitrary point on

M̃ and repeat the same argument to conclude that F̃ is a point, a contradiction.
For the case of T 2, by considering a harmonic map from T 2 to M induced by the
immersion, the same argument together with Pressman’s Theorem (cf. [CE]) leads
to a contradiction as well. Hence the possibility is PR#T 2.

In fact, from [BY], isince M can be defined over Q and the complex conjugate
of M is biholomorphic to M , see Remark 5.1 of [BY]. Hence it follows that there is
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exactly one Cartwright-Steger surface up to biholomorphism. This concludes the
proof of the proposition.

6.5
Proof of Theorem 1 This follows by combining the results of Proposition 1,
Proposition 3 and Proposition 4.

7. Modifications comparing to [1]

7.1 In the following, we list some main changes in this paper comparing to [1].

(a) The original scheme of proof for irregularrity 2 in §4 of [1] was incorrect; in
particular, Lemma 2 is not correct. In this corrected version, §4 of [1] was removed,
and arguments in §6 of [1] is modified to cover the case of irregularity 2. §6 of [1]
is replaced by §5 and §6 in this version. The main modification in the proof of
Integrality of Γ is given at the end of §5. The modification in the proof of super
rigidity is given in §7 with analysis of some associated foliations.

(b) Lemma 1 of [1] was incorrectly stated and should be discarded. It is not needed
in the revised argument above.

(c) Reference [Mi] is added in the section corresponding to 2.1 of [1] which proves
ampleness of KM in case that c21(M) = 3c2(M).

(d) Details are added to §6 to explain that the complex conjugate of M cannot be
isomorphic to M . It was taken from [Ye4].

7.2 We also remark that Proposition 2 is now a special case of a general result of
[EG].

References

[1] Yeung, S.-K., Classification of surfaces of general type with Euler number 3. J.
Reine Angew. Math. 679 (2013), 1-22.
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