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Abstract Under the federal SensorNet initiative, sensor-cyber

networks have been deployed at the Port of Memphis [4]

We analyze the ability of a stochastic coverage algo-and the Washington DC area to protect the areas’ pop-
rithm to achieve both accurate threat-based coverageulation against the exposure to chemical and radiation
and effective information capture. When mobile sensorsisks, respectively. Both deployments are in populated
are used to cover the region over time, the goghogéat- areas and their primary objective is the detection of

based coverags to allocate the sensors’ coverage time the threat. Lessons learned from these deployments
between the subregions in proportion to their threathighlight the importance of the following requirements:

levels. We show that, in contrast to prior results on Management of resource constraintsThe sensors are
mobile coverage for maximizing simple event captureexpensive both in terms of procurement and manage-
limiting mobility by strategicallypausingthe sensor is  ment costs, and typically have only a modest sensing
important for threat-based coverage of physical world range. Thus, it is essential to optimize the sensor
monitoring. Besides being energy efficient, pausing haglacements, and develop methods to further improve the
two desirable effects. First, it can improve the aCCU-Coverage by exp|0iting sensor m0b|||ty

racy of the threat-based coverage, in particular, thelmportance of people protection. The project re-

accuracy increases monotonically with a pause time,q . [4] states that the main decision of where to place
parameter, and a large enough parameter will ensure

hi fh ; file with th a limited amount of sensing resources is based on the
exactmatching of the sensor's coverage profile with thejact on the area’s population, since “human effects
region’s threat profile. Second, diverse natural phenom

) - ) . Tepresent the true consequences of failure” to detect a
ena require a nor)—n.egl|g|ble Sensing time to overcome, 5y agent and subsequently evacuate the affected
statistical uncertainties posed by the random nature o opulation. Hence, at each step of the placement al-
the phenomena. Suitable pausing allows a subregion tQ,ithm [4], a search procedure is used to determine
be observed long enough for reliable results. the location of the next sensor that will maximize the
marginal gain in protection for the residents.

Need for uncertainty reduction. The physical world

L . . . being sensed is inherently noisy and probabilistic, and
Monitoring the physical world has important appli- . ;
the measurements may be imprecise or have errors.

cations. One example is the protection of the country. L ; i
; ; : : : : The measurements for radiation detection are proba
against chemical, biological, nuclear, radiological, andbilistic with a high variance [7]. While chemical sensor

explosive (CBNRE) threats in homeland security. In o ;
L . measurements exhibit lower variances, the measurement
such an application, the observed environmental pa- - i
. . errors are not negligible. Thus, there is a need to remove
rameters are mostly random in nature. For instance,, . . . . .
i - Lo Statistical outliers or cancel out their effects in the
a common characteristic of radiation detection is that

a sequence of sensor readings over a significant timmeasurementprocess. Longer measurement periods lead
fo higher detection confidence, but if the sensors are to

interval is needed to produce high-confidence detectio . -y
: . ._ be stationary, the coverage extent becomes limited.
due to the inherent probabilistic nature of the radia- )
In this paper, we focus on the performance of

tion source, the presence of background radiation, and

noise/interference in the surveillance area. This giveé‘}Ob'l'ty'baSEed dccfnvecrjage t.ha: gtgﬁeRsEatrlllmltted mfjmbﬁ:
rise to atemporal dimensiorof the sensing problem, of sensors 1o detend agains reats under the

namely the need to collect and process radiation countt bove reqt:clrer(?e?ts. \éVet Wl{'.l |IIu_srtr:ate our probllemffor
over suitable time intervals for reliable detection. € case of radiation detection. The major goals of our

sensor coverage algorithm are the following:
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quality of the information collected are relevant. It is 0.9

desirable to capture a larger fraction of the interesting 5 o0s ]

events. It is also important to maximize the confidence 306

about the captured events. £ 04

G3. While constrained resources will require sensors to 508

move between the subregions requiring coverage, we 0.1 £/ Empirical data — Bestit funcion
should limit the amount of the movement to achieve a 0 o 0 a0 200

low cost and practical solution.

The maincontribution of this paper is to analyze the
costs and benefits of mobility for threat-based sensin
with a temporal dimension. We analyze a stochasti

mobile coverage algorithm called WRW-aLP, and com- . )
pare its performance with best-case static coverage arf!fing deployment [9], [10], or (2) moving nodes only
the mobile coverage algorithm in [1] via simulation When the network is first formed or when there are
experiments. Our analytical and simulation results arguéignificant changes such as node failures [12]. In the first
for a limited form of mobility in which the sensor moves @Pproach, the nodes that do move do so continuously,
between points of interest (Pols) for expanded ared"@king it harder to manufacture these nodes or ensure
coverage, but also pauses strategically at the Pols tdheir continuous operatu_)n_under limited energy. In the
improved performance. We show that, while mobility S€cond approach, the limited movement can improve
is useful, intermittent pausing has three main benefitsth® system's robustness against changes. However, it
First, it reduces deployment costs such as energy uséstill requires that in the stable state, there are sufflcu_ent
Second, we prove that the accuracy of threat-base8€NSor resources to cover the whole surveillance region.
coverage increases monotonically with the pause time
parameter of WRW-aLP, in particular, a large enough3. Neyman-Pearson Test & Sensing Utility
pause time parameter will ensugractmatching of the
sensor’s coverage profile with the surveillance region’s \e consider the detection of a point radiation source
threat profile. The analytical results hold in spite of of strengthA, in counts per minute (CPM), such that
side effectof coverage as the sensor moves from oneyp, jgeal detector without background radiation located
Pol to another. Third, whereas a faster sensor alwaygt 5 distancel from the source will register a count
increases the f_ractlon of events cgptured, as established . in a one second time interval. We know that
by the results in [1], [5], the sensingncertaintyabout s pojsson distributed with parameter/d? [3]. With
each captured event also increases when the temporghckground radiation, a detector may register a random
dimension is present. In this case, suitable pausing at theount even when there is no identifiable source present.
Pols can increase the utility of the information captured.pence, we use the Neyman-Pearson test [8] to ensure
that a count is due to a radiation source, and not due to
2. Related Work random fluctuations of the background radiation, which
can be modeled as a point source of strengthThe

Our work complements existing work on mobile hypothesis testing works as follows [8Hy : ¢ is
coverage for simple event capture [1], [5]. The goalPoisson distributed with parametBr H; : ¢ is Poisson
of threat-based mobile coverage is similar to that in [4]distributed with paramete3 + A/d?>. We can then
for static coverage in terms of people protection. Proformulate the Neyman-Pearson test with false alarm
portional sharing of coverage time has also been studiedrobability o« by computing a threshola such that if
in [11]. Our work differs from theirs in three respects: (i) Pr(c|Hy)/Pr(c|Hy) > 7, then Hy is chosen, other-
They study deterministic coverage algorithms, whereasvise, H, is chosen. The value af that yields the de-
our algorithm is stochastic; (ii) there are no side effectssireda can be computed using Lagrangian method [8].
of coverage in their system model, whereas analyzing To demonstrate the probabilistic nature of the sensing
the side effects is one of our primary concerns; and (iii)process, we used the RFTrax to measure a close-by
they do not study the issues of sensor coordination. radiation source. To be safe for experimentation, the

Radiation detection has been studied in [2]. The rel-source had an extremely low intensity, and was placed
evance of the temporal dimension in radiation detectiorat a small distance of 14.6 cm from the sensor. We
and other detection tasks has been documented in [8ollected CPM readings from the sensor at two second
Our goal is to understand the impact of the temporalintervals, for a total of more than 4000 seconds. Lgt
dimension on mobile sensor coverage. be theith sensor reading, = 0, .... The true reading,

We study the use ofimited mobility to obtain the z, of the source can be taken as the mean over a
benefits of mobile coverage at low cost. Prior work haslarge number of readings, i.ez, = %ZZ:@ x, for a
limited mobility by either (1) using a hybrid network sufficiently largen. We compute a sequence of moving
architecture in which only a fraction of the nodes moveaverages, of window size), over the sequencéz;}.

Figure 1. Utility of measurement as a function of
: Empirical characterization and least-square fit
gﬁnction.



The jth moving average is given hy; = % Zf:f T needed to improve the sensing utility. We say that an
For eachw, we measure the fraction of the;’s that  event iscapturedif during its lifetime, it is within range
satisfy |z; — Z| < ¢, for a smalle. This fraction of the of at least one sensor for one reading by the Neyman-
averages that deviate little fromis then theconfidence Pearson method. Otherwise, the event is uncaptured, and
of the measurement given the measurement window sizthe event is taken to have a zero utility of measurement.
w. A plot of the confidence againatis given in Fig. 1.

Interpreting the confidence of a sensing result as it Coverage Algorithm and Performance
utility, we can also use Fig. 1 asuility function of

the sensing against the sensing time. 51. Performance metrics

4. System Model Before presenting the coverage algorithm, we address
how a candidate algorithm should be evaluated. The
We assume that a 2D rectangular geographical regioavaluation consists of two sets of metrics. The first
is under surveillance. The region is partitioned into aset quantifies three general properties of the mobility
vector of n disjoint cells each of dimensio§ x S,  algorithm:
where S is in distance units. Each cell, sdy has a  Matching. The matching between the achieved global
population size of;, wheres; is a non-negative integer. coverage profile and the given threat profile at time
We define a cell to be oint of interest(Pol) if a  js quantified by the percentage deviation of the former
radioactive source may appear at the center of the celkrom the latter, which is equal té;& x 3, @) — CT )
The presence duration of a radioactive source at a Pol i§hfairness. This is the average exposure time of the
called anevent An event is dynamic in that it appears poys, j.e., the average duration of the continuous time
and disappears according to given arrival/departure propyterval over which the Pols are not covered. The

cesses, and events do not overlap in time at a Pol. FQinfairness measure is given BY . (i) x ®(i), where
simplicity, we assume that the event dynamics at thee(l-) is the average exposure time of Fol

Pols are identical and Poisson distributed, but the Pol
vary in importance in terms of their population sizes. We
then define thahreat profileof the surveillance region
as ann-element row vecto® such that if celli is a
Pol, ®; = s;/%;s, is the threat level of. If cell 7 is
not a Pol,®; = 0.

Effective coverage.The effective coverage at timeis
given by tZ—fn wherem is the number of sensors. A
higher effective coverage means that the sensors spend
more of their time doing useful work in terms of mon-
itoring events without duplicated efforts. Two factors

. may reduce the effective coverage of an algorithm: (i)
NHe travel overhead of a sensor during which it is not
covering any Pol but is traveling between the Pols, and
(ii) the redundancy of coverage when multiple sensors
cover the same Pol at the same time.

range ofS/+/2, so that a sensor within Pokcan always
sense a radioactive source intowards the targeted
false alarm ratex in Section 3. The sensor can move
within the surveillance region, subjected to possible .
accessibility constraints (e.g., a sea area is inaccessibl Further to the general performance properties, the
to a land sensor). Consider a deploymentosensors secon_d set of metrics guantifies the information capture
up to real timeT, of which 77, time is spent asravel ~ Of definite stochastic events: o
time overheadby sensorj, meaning that sensgris not ~ Normalized utility of the events captured. This is
within range of any Pol foﬂ"é < T time during the the sum of utilities of all the events captured within a
deployment, andl”f% time is wasted by sensor as it ~ 9iven time interval, norr_nahzed b_y thg total numb(_er of
is within range of any Pol that is already monitored byevents_that appear during the time interval. A higher
another sensor. Denotey = m x T — Y (T + T}) normalized utility shows that the sensors can colllect
as theduty timeof all sensors up to tim&". Define & Iarger_ total amount or fraction of the interesting
C = {C;}, theglobal coverage profileas a row vector ~nformation.
such thatC; is the total amount of coverage time Confidence about each captured eventA coverage
received by celli from any sensor up to timg. We  algorithm may achieve a large aggregate utility by
seek to achieve threat-based coverage, i.e., if cédl ~ capturing many events, but with low confidence for each
a Pol, C; is targeted to be®; x Tp. To track the One. This metric further characterizes the algorithm per-
threat-based coverage goal, we definemaglement row  formance by quantifying the utility of the measurements
vector U = {U;} such thatlU; = ®; x Tp — C; is given the cumulative sensing time of each event.
the undercoverage timef cell i. Note thatU; can be
negative, in which caséis over-covered 5.2. Stochastic threat-based coverage

An event can be detected if its occurrence is within
range of a sensor during the event’s lifetime. However, We present a stochastic mobile coverage algorithm
as discussed in Section 3, a single reading while usefubased on aveightedrandom waypoint (WRW) design.
may not be reliable, and a longer sensing duration igFurther details of the algorithm can be found in [6].) In



the algorithm, the sensor moves in a sequence of trips.  Remarks: (A) Each of the above mentioned fea-
Each trip starts at the center of some Pol cell, say tures can be enabled independently. We denote by
and ends at the center of another Pol cell, gaffhe ~ WRW-feat a particular extension of the WRW algo-
ending point, called avaypoint of one trip becomes the rithm, where feat is a combination of the enabled
starting point of the next trip, and so on. The speed offeatures represented by the letters a, L, and P for
the sensor during a trip is fixed to he adaptivity, maximum trip length, and random pause
Suppose celi is the current position of the sensor. time, respectively.
A cell j,j # i, is chosen to be the next waypoint (B) The range of the pause time is controlled by
with probability ®;. Such weighting of the random P. In the special case thaP = 0, the algorithm
waypoint selection by the threat profile is a first stepdoes not pause and performs as a continuous movement
towards achieving threat-based coverage. For simplicityalgorithm. In general, the pause time is expected to be
we assume that every cell is reachable from every othelarger when the undercoverage is higher. After the pause
cell. The exact path connectirigandj must not cross time, the selection of the next waypoint that defines
an inaccessible area, but its determination is otherwiséhe next trip occurs as in the previous description. The
flexible, e.g., it can be specified as the direct straight lingpause time attempts to correct the undercoverage in an
from i to j if the line does not violate inaccessibility extremely efficient way — with zero movement over-
constraints. head and no possibility of inadvertently changing the
The basic algorithm is simple, but its coverage profilecoverage of other cellsAn important objective of this
fails to accurately match the threat profile, because ipaper is to determine analytically and experimentally
fails to consider théntermediatecells covered between the impacts of such pausing on the accuracy of threat-
the source and destination. For example, consider #ased coverage and the utility of the sensing results.
surveillance region with a few high threat hotspots. In (C) We specify that sensors use the global coverage
moving between the hotspots to give them adequatgrofile to determine the undercoverage of Pols. We
coverage, the sensor will also visit frequently all the assume that there exists a wireless infrastructure for the
cells on the paths between the hotspots, thus oversensors to exchange their local coverage information. If
covering the intermediate cells. To solve this importantsuch an infrastructure is unavailable, the sensors can
problem ofside-effect coverageghe basic algorithm is use their local coverage history to approximate the
augmented with the features: global one in computing the undercoverage, making
Maximum trip length. The distance of one trip is not the algorithm fully distributed in nature. On the other
allowed to exceed a parametér (in distance units). hand, a deterministic mobile coverage algorithm for
Hence, when we choose the next waypoint, we restricmaximizing the number of events captured at given Pols
the candidate cells to be within the disc of radiils has been proposed by Bisnik, Abouzeid, and Isler [1].
and centered at the current cell. Limiting the trip lengthWe call this the BAI algorithm. It is acentralized
forces the algorithm to consider more possible routesapproach since a pre-defined path is first computed and
to go between any two hotspots, thus reducing theall sensors follow the same path. The BAI algorithm is
possibility of “warming up” the intermediate cells. designed for simple event capture, without consideration
Adaptivity to prior coverage. Because of the proba- for the temporal dimension or the threat-based coverage.
bilistic nature of the algorithm, the correlations betweenPart of our simulation results illustrate the performance
the cells visited, and the finite speed of the sensor, théifference between these two algorithms. O
algorithm’s actual coverage at any time may deviate
from the given threat profile. To correct the deviation, 5 3, Multiple-sensor coordination
in selecting the next Pol to visit, the algorithm adapts to
the current actual coverage and selects a more severely

undercovered Pol with higher probability. The preCisetheir operation for better performance. In [6], it is shown

definition of such adaptation is given in Section 6. that when the sensor density is lowoordination may
Random pause timelf the sensor is at an undercovered be unnecessary in that employing independent sensors
cell, one way to correct the undercoverage is for themay already lead to linear performance improvements
sensor to stay in the cell for some pause tifig  in terms of the first two general performance metrics
The time 7, is drawn randomly from a distribution i Section 5.1 (i.e., matching and unfairness). When
determined by a pause time parameter denoted’by the number of available sensors increases for the same
(in time units). Specifically, at the end of thth trip at  gyryeillance area, the sensor density increases and the

If there are multiple sensors, they may coordinate

destination cellj, T}, ~ U(0,$(j)), where redundancy of coverage problem may become more sig-
0(j) = P x max(Uj,0) nificant. Moreover, good coordination between sensors
Yiec max(U;,0)’ may allow to minimize the travel overhead, leading

{U,} is the vector of undercoverage times defined into superlinear performance improvements in terms of
Section 4, and’ is the set of cells that are candidates effective coverage. In this paper, we consider the per-
as the next waypoint. formance of the three coordination approaches in [6] in



the case that the sensor density is high: such a trip increases the coverage time of eachiPol
No coordination (NC): The sensors are deployed inde- during the travel fromi to j. We useZ;;(0) to denote
pendently each according to the WRW-aLP algorithm.the travel time overhead of the trip fronto j, i.e., the
They use their local coverage history to approximateperiod during which the sensor is not within the range
the global coverage profile. The approach is simpleof any Pol. Hencey ., ., Z;;(k) = T;;. Finally, we
to implement but does not aim to reduce coverageiseD;; = T;; — Z;;(0) to denote the duty time portion
redundancy. of the actual travel time.
Knowledge of global coverage profile (GK) A sensor To admit more general models, we allaw= j, i.e.,
knows the coverage profiles of all the other sensorsthe sensor can decide to remain at its current location
and the sensors use the global coverage profile téh @ transition. In this casel;; is set to be zero.
determine the undercoverage of the Pols. The approach Notice that all the quantitie7;;}, {Z;;(k)} and
does not eliminate the redundancy of coverage sincdDi;} are deterministic properties of the surveillance
the sensors do not explicitly exchange their current€gion and the paths between pairs of Pols. Thus they
locations and try to avoid each other in their movementscan be pre-computed by the coverage algorithm.
However, the global coverage profile allows the sensors A transition from stateX = (i,U~) to stateY =
to compensate for prior matching inaccuracies due tdj, U") in the Markov Chain is labeled b, j), a trip
redundant coverage. Hence, GK gives betteitching  of the sensor from cell to cell j. As the goal of the
of the global coverage with the given threat profile. WRW-aLP algorithm is to reduce the undercoverage, the
When the sensor density is high, however, the coveragéensor tends to go to Pols with large undercoverage. In a
redundancy may still cause significant reductions of thestochastic algorithm, the transition probability is chose
sensors’ effective coverage for information capture. ~ according to: S _ _
Static map division (MD): The sensors are assigned (1) Whether;j is within a given distance from. If
to cover non-overlapping subregions of the surveillanceS0; We say thaj is eligible. We indicate the condition
area. Each sensor follows the WRW-aLP algorithmbY the indicator function/ (i, j), i.e., I(i, ) = 1 if j is
within its assigned subregion. The matching and un-"V"‘g'n _f_?]% ar"e(l);\{i?/% dd?lt(?enrcgo(\)/teroathgr\grlﬁgé (Zlﬁé%w:ee?h the
fairmess of this approach rely heavily on the topologye”éi le Pols. The probability thgj is chosen as the
of the Pols, the distribution of threats among the Polspext Pol is given by
and the manner in which the surveillance area is divided I(i,§) x W;UF
among the sensors. Particularly, a sensor in one assigned Pri; = Tk {/V T
subregion will not be able to compensate for any Zlékén (6, k) x Wi U
undercoverage of Pols in another subregion. AlthougiwherelU;" = max(Uy,0) andW, are the weights given
the redundancy of coverage problem is eliminated inas some positive numbers, e.§;, = ®;.
MD, the sensors’ effective coverage is still not 100% In the degenerate cases thdi, k) = 0 or U} =0
due to travel overhead between the Pols. Nevertheles&r all £, we can simply choose the next Pol randomly,
with proper division of the surveillance area, this travelaccording to some uniform distribution. The precise
overhead can be greatly reduced, and the effectivehoices of thelV;,’s and what to do in the degenerate
coverage of MD may be significantly better than eithercases will not affect the qualitative results.
NC or GK, thereby improving the information capture. In WRW-aLP, once the sensor has moved froio

4, it will stay there for a pause timel'»(U;), which

@

6. Analytical Results can depend on’s current undercoverage. The value of
this pause time is part of the decision of the transition.
6.1. Markov model Hence a movement fromto j increases the sensor’s

duty time byD,; + T»(U;). In addition, for each cell,

We model the WRW-aLP algorithm by a Markov its coverage time will be increased by; (k) for k # j
Chain for a single WRW-aLP sensor. Without lossandZ’»(Us) for k = j. Using the above, the change of
of generality, we assume that the Pol cells of thethe undercoverag&)” — U (for k = 1,...n) can be
surveillance region are denoted as cells- 1,...,n ~ computed explicitly. N _
of the Markov model, and use cell 0 in the model Note thatthe transition probability frotki to Y given
to represent the collection of non-Pol cells in thebPy (1) depends only on the current stateand U~.
surveillance region. The state of the Markov Chain isHence it models a Markov Chain process.
denoted byX = (i,U), wherei is the location of the
sensor (i.e. the Pol the sensor is at), & the vector 6.2. Performance analysis
of undercoverage times as defined in Section 4.

Besides the notations in Section 4, it is convenient This section analyzes the WRW-aLP Markov Chain
to introduce the following quantitied;; specifies the model for the single sensor. One of the main behaviors
actual travel time of the sensor for a movement fromof any Markov Chain concerns its long time behavior
i to j. In addition, the numbers;;(k) specify how and ergodicity and stationarity properties. It is natural



to ask these questions to our WRW-aLP model. Many Now consider
of the standard results are expected to be trmvever, ExV(Y) - V(X)

due to the side effects of coverage—the sensor can n 5
pass by some unintended Pols dueZg(k) > 0 for Z [Zak (Uk + <I>kT,,) +a; (U; + (®; — 1)Tp)*

k # j—it is not immediately clear whether the long J=1 k#j

time behavior can be related to the desired threat-based n

coverage, or the threat profile can be achieved. - Zak(Uk)Q} Pry; (note:}: Pri; = 1)
For example, without the side effects, i.&,;(k) = k=1

0, to achieve the threat profilé, we can simply con- - Z7'Tp {2 x I + II}

struct a Markov Chain withb as its stationary distribu-

tion. Such a chain can be realized by appropriate Montewhere Z, = S WkU;j- The quantitied and I are
Carlo simulations. However, with non-zetg;;’s, the  defined and anéllyzed as follows.

analysis needs to be modified with some care. Our main n n
results state that the desired threat profile aavaysbe I = Z (Z @ Uy — ajUj) I/V]»Uj+
achieved, provided that the pause timddsg enough J=1 k=1

compared with theZ;;’s. They are proved through the n n n
concept ofLyaponoqu functionwhich appears in the =< (Zakcka,j) (ZWjUf) - (Zaka(U;j)Q)
study of the stability properties of dynamical systems. k=1 i=1 k=1

To simplify the analysis, we set all the pause timesyhere we have used < U+ and UU+ = (UT)2
Tp(U;)'s equal to some fixed constefip. Furthermore,  Using the Cauchy-Schwartz inequality, we have
I(i,5) = 1 for all + and 7, i.e., any Pol is accessible n n 12, 1/2
within one transition. Such an assumption can certainly(z Oékq)kU,:r) < (Z @k) (Z oci@k(U,j)Q)
be relaxed. In general, the pause time can even be =1 k=1 k=1

random. i "W 12 1/2
+ k +1\2
Consider the following quantity: (ZWkUj ) = (Z a—k) (Zaka(Uk ) ) :
k=1 k=1 k=1
V(X) = Zai(UiX)Q (2) By choosing®,a? = ap Wy, i.e., ) = W@, ', then
i=1 n
Wi\ 1/2 1/2
whereq;’s are some weights to be determined. Clearly, (Z a—:) = (Z CPk) =1,
V = 0 refers to perfect matching with the threat k=1 k=1

profile. Hence the goal is, in the long run, to make which givesI < 0. On the other hand, equalities in the

as small as possible. The following two results show ahove Cauchy-Schwartz inequalities hold if and only

that “on average,V” decreases as the mobile algorithm if the vector (U;)7_, is a multiple of (a,®);_, or
continues. To better illustrate the idea, we first considerfyy, )»_ . This is impossible a§"}_, U, = 0. We can

the case of no side effects and treat the latter as ghus infer the existence of @> 0 such that
perturbation

Theorem 1:Let Z;;(k) = 0 for i,5,k = 1,...n. I<—p> ap(U) 4
There exists a positive number > 0 such that if k=1
V(X) =2 A then (See also Remark (B) on Page 7.)
ExV(Y)<V(X) -1, 3) Next, the quantity/ I equals:
where X and Y refer to the current and next states, 11 = Tp» [Zaksz +a;(®; — 1)2}WjU;_-
respectively, andEx (-) denotes the expectation given J=1 k#j

the stateX. (The choice of the weights;’s will be I . I
specified in the proof of this Theorem.) Note that it involves onlylinear terms of U.". Hence,

Proof: Let the current and next sensor locationsthere exists & > 0 such that/] < C/>,_, (U;H)2.
be i and j. Then the undercoverage of Pblwill be a
increased byp, T, for k # j and(®; — 1)Tp if k = j. So if /> 1, (UF)2 > X for some large numbek,

Hence, we have
2 2 n
V) =Y ar (U8 + ®T,)" + oy (U + (95 = 1)Tr)" 9w [+ 11 <t S an(UF )2,
k#j - 2
k=1
Then, the expectatiofx (V (Y')) equals After taking into account of the prefactar ! and re-
defining the value of the constant we get the desired

n

Z Zo‘k (U + (I)kTp)2 +a; (U +(2; — 1)TP)2] Prij.l’esult:

5=1 Lk#j ExV(Y)-V(X) < —u/V(X) < —1.



In the above, we have used the fact that¥oy U;, = 001 o1 1 10 100
0, there exists &' > 0 such that

ST <> W <0 (UH

The next result incorporates the presence of side
effects, i.e.,Z;; > 0. We use the same notation as in
the previous Theorem.

Rate of growth of global
undercoverage
2 °
g = 2
L
)

: ——San Francisco
—=—San Jose
0.0001

Chicago . &

0.00001

Corollary l Thel’e EXIS'[/\,T; > O SUCh that fOI’ . Pause time parameter (minutes); sensor speed = 9.47 mph
Tp > Tj andV(X) > A, then Figure 3. Rate of growth of global undercoverage
EXV(Y) < V(X) -1 time. 038
~Proof: We will only outline the proof as it is very 2 07 i Wt o)
similar to Theorem 1. Due to th&;;’s, the function I e S o WRWalp (13)
V(Y) evaluated at the new state is now given as: i S~y
Z Qg (U}f + Ty, — Zi; (k))2 + oy (UJX + (CI)]» - 1)TP)2 . g 03 BAIOG T ;;1--/,]:
k#j g Z:i et :NRW—ELPM,BD —
Hence, the quantitygx V(Y') — V(X)) equals 0
n 0 1 2 3 4 5

2
Z [Z an (Uk T, — Zij( k,)) Maximum senso speed mph)

=i Figure 4. Per captured event utilities for San Fran-
! ! cisco map.

+ oy (U5 + (%~ DTe)* _;O‘k(Uk)z}P’"”' 7. Simulation Results (Residential Maps)

We proceed as before. The quantitynow has an

extra term given by: (A) Single sensor.We evaluate the performance of
n the WRW-aLP algorithm in Section 5 and the BAI algo-
_ ol 2R | rithm [1]. We show the results for a real-life topology,
kUk W;U; ST A ;
= = Tp namely a residential region in San Francisco. The map

of the region is shown in Fig. 2(a). The region is of size
2000 feet by 2000 feet. It is divided int® x 8 cells,
51 of them are Pols. The threat level of a cell is taken
to be the number of residents in that cell, estimated
from the LandScanTM 2004 database of population
2 data. The sensing utility function is the concave function
Trpd 0, [ZZ# o (‘I’k - Z;—I(f)) + (P — I)Q}WjUj*. given in Section 3. We use the dynamic events defined
in Section 4. The event durations are exponentially
istributed with mean 13 minutes. Their interarrival
times at a cell are exponentially distributed with mean
value of 1 hour.

Figs. 2(c)—(f) show that progressively adding the a,
Remarks: (A) The above two results show that L, and P features to WRW achieves actual coverage that

the positive quantityl’ decreases in expectation if it increasingly match the threat profile in Fig. 2(b). WRW-
has a large value to start with. Hence on averdapge ~ 2LP achieves the threat profile exactly when= 30
values ofV will be reduced Combining with the theory ~Minutes (Fig. 2(f)), verifying Remark (A) on Page 7.

Note that if Z:;—(k) < 1, this extra term can be

bounded bchf:l(U,j)2 for somesmall constantc
so that it can be absorbed by the.V (X) appearing

in Theorem 1.
For II, it becomes

Again, it can be considered in exactly the same way a

before because only linear terms@f 's are involved.
Combining the above statements abdwnd /7, we

have the desired conclusions. O

of martingales, we can show that _This impor_tant p_roperty_of exact threat-based coverage
. 1 is further investigated in Fig. 3 for WRW-aLP. The
plm SV(X(T) =0, figure shows a log-log plot of the growth rate of the

i.e., the overall undercoverage has at mesb-linear ~ 9lobal undercoverage time (as a percentage of the sensor
growth. This leads to the result than the long run, duty time) against the pause time paramefgr for

the threat profile can be achieved exactly San Francisco and also two other cities Chicago and
(B) The numbery in Eqn (4) can be estimated. In San Jose. Note that aB increases, the growth rate
fact, decreases. The log-log scale of the plot amplifies the
pu=1-—max Z P2 (> 0). effect of zerorate of growth asP becomes larger than
' Py somecritical value.

Combining with the actual pre-computed values of the Fig. 4 shows the per-captured event utilities achieved
Z;;'s, we can also estimatg and most importantly, for San Francisco by BAl and WRW-aLP (with varying
T}. This can providepractical guidance of how long P given in minutes) for different maximum speeds of
the pause time should be in order to ensure boundethe sensor. The results show that (1) pausing, which
global undercoverage. [0  is possible with WRW-aLP and increases with can



el Vit L | [}
EN---pemnne
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Figure 2. (a) Map of residential area in San Francisco. (b) Threat profile of the residential area. (c)—(f)
Actual coverage achieved by progressive variants of WRW.

P ] Maximum sensor speed (mph) |
(mn) [ 04 | 06 [ 08 [ 1.2 | 24 [ 36 [ 48 |
1.3 0.983 ] 0.975 | 0.967 [ 0.950 [ 0.900 [ 0.852 | 0.807
2.7 0.967 | 0.950 | 0.933 | 0.900 | 0.807 | 0.725 | 0.658
13 0.837 | 0.765 | 0.702 | 0.601 | 0.422 | 0.323 | 0.260

Table 1. Fraction of time sensor moves under
WRW-aLP, for different maximum sensor speeds v Figure 7. The ring topology.

and pause time parameters P. coverage of more than 95%. Matching, however, may

significantly increase the utilities of the sensing results significantly worsen as there are more sensors. This is
and (2) the utilities do not increase, but rather decreasbecause as the sensor density increases, the size of a
consistently, as the sensor speed increases. Table slibregion assigned to a sensor becomes smaller. It then
verifies that the amount of sensor movement requiredecomes more difficult to divide the surveillance area
by WRW-aLP is practically small. into subregions of adjacent cells having similar threat

(B) Multiple sensors. This set of experiments illus- levels. The unfairness achieved by MD also worsens
trates the performance of NC, GK, and MD coordinationwith higher sensor densities, as shown in Fig. 5(e). It is
(Section 5.3) under different sensor densities. Figs. $ecause under MD, the number of possible destination
and 6 show the pause fraction, unfairness, effectivecells of a sensor is much reduced with more sensors.
coverage, and the percentage deviation from the thredfence, it is more likely for the sensor to stay at the
profile of WRW-aLP for San Francisco. The number of current Pol. This results in higher unfairness as the
sensors is varied to be 2, 4, 7, 10 and 20. The pausgensor travels less, and has longer pause times as shown
fraction, unfairness, and effective coverage results foin Fig. 5(d).
NC are similar to those for GK, and are omitted due In summary, NC and GK give better matching when
to space constraints. Figs. 5(a) and 5(d) show that fothe sensor speed or the sensor density is high, but
GK and MD, the sensors move for a small fraction of they do so at the cost of significantly reduced effective
the time only, verifying thelimited mobility property  coverage. On the other hand, MD may achieve a much
of WRW-aLP. Notice from Fig. 5(b) that for GK, the better effective coverage, especially when the sensor
unfairness is roughly reduced by half when we doubledensity is high. This may lead to improved information
the number of sensors. The same improvement appliesapture globally, although higher-threat Pols may no
for NC, showing that sensor coordination will likely longer receive proportionally higher allocations of the
not further improve the unfairness beyond independentonstrained sensing resources.
deployment of multiple sensors. The conclusion (for
unfairness) is similar to that in [6] for the low sensor 8. Simulation Results (Ring Topology)
density case. Figs. 6(a) and 6(b) show that in contrast
to unfairness, the steady-state matching doesim- In this section, we discuss results for the ring topol-
prove as we use more sensors for NC and GK. Thisgy in Fig. 7. The same topology is used in [1] to
is because having more sensors will exacerbate thevaluate the BAI algorithm. The ring consists of a
coverage redundancy, thus hurting the matching metricsequence of 50 cells, each of dimension 250 xt.
However, for the high sensor speed shown in Fig. 6250 ft., and 10 Pols are uniformly placed on the ring.
GK achieves a 60% improvement over NC in termsWe use the same sensing utility function and the same
of the percentage deviation (of the global coveragetype of dynamic events as in the previous section. The
profile) from the threat profile when the sensor densityevent durations and interarrival times are exponentially
is high. It is because a sensor under GK can exploidistributed with mean 800 s. For WRW-aLP, is set
the actual global coverage to better compensate foto be 1500 ft.. The pause time parameteiis varied
matching inaccuracies occurring from prior redundantto control the amount of sensor movement. We use
coverage. WRW-aLP{) to denote the algorithm running with

MD is an explicit attempt to solve the coverage P = k£ minutes.
redundancy problem and reduce the travel overhead. To assess the impact of mobility, we also compare
Fig. 5(f) shows that as the sensor speed is increased umvith best-casestatic coverage, in which each sensor’s
der higher sensor density, MD can achieve an effectivestatic position is chosen to give the best performance.
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Figure 5. (a) Pause fraction, (b), unfairness, and (c) effective coverage of WRW-aLP for multiple sensors
under GK in San Francisco. Corresponding results for MD are shown in (d), (e), and (f).
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Figure 6. Percentage deviation of WRW-aLP global coverage profile from given threat profile, for multiple
sensors under NC, GK, and MD in San Francisco.

We report results that are averages of at least 1@herefore with higher confidence.

different runs. The standard deviations are very smalljij) Static coverage is extremely efficient. Hence, while
(within 1% of the averagesjdence, we do not report it js inherently unfair, it might perform the best purely
the standard deviations or the error bars from a utility standpoint. Fig. 8(a), however, shows that
In this set of experiments, one sensor is used toyRW-aLP always outperforms static coverage when
cover the whole area. This corresponds to a severeljhe maximum speed exceeds a modest value. This is
constrained resource environment, in which the resourcgartly due to the concavity of the utility function. When
availability is only 10% (i.e., one sensor for 10 Pols). the utility function is concave, much of the utility is
(A) Normalized Utility. We compare WRW-aLP obtained during the initial period of observing a new
(with different values ofP), BAI, and static coverage by event. This encourages the sensor to occasionally move
the normalized utility measure in Section 5.1. Fig. 8(a)from one Pol to another in order to catch more new
plots the normalized utility achieved by the different events, as long as the moving speed is not too low to
algorithms as a function of the sensor's maximummake the travel overhead too high.
speed. The following observations are in order: The normalized utility as a function oP and the
(i) For static coverage, the sensor always stays amaximum sensor speed is shown in Fig. 8(b). Notice
one Pol. Hence, it should be able to capture 10% ofhat the binary function is concave in both arguments,
the events at their maximum utilities. From Fig. 8(a), showing that standard techniques can be applied to
however, notice that static coverage has a normalizedompute, for example, the optim#t for maximizing
utility of about 0.08, which is less than 0.1. This is performance.
because some of the events are short-lived, and do not (B) Utility per captured event. Fig. 8(c) compares
last long enough for them to be captured at utility one.the utility per captured event for the different algorithms
(ii) From Fig. 8(a), notice that WRW-aLP(0) has similar as a function of the maximum sensor speed. Notice
performance as BAI. This is because = 0 ensures from Fig. 8(c) that WRW-aLR{), for p > 1, achieves a
that the sensor will continuously move between thesignificantly higher per-captured event utility than BAI
Pols, similar to the BAI algorithm. Whe® increases or WRW-aLP(0) for the same maximum speed. Hence,
to one time unit, however, WRW-alLP(1.3) can performwhereas the previous results show that a positive pause
significantly better than BAI. The results show that time with WRW-aLP achieves a higher normalized util-
pausing at Pols can improve the quality of the sensingty than a continuous movement algorithm such as BAI
by allowing the events to be measured for longer ancor WRW-aLP(0), these results further show that they do
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0

S0 not by capturing more events, but by improving thebetter effective coverage than either GK or NC. This is
confidence of each captured event. For the continuoubecause under MD, coverage redundancy is eliminated
movement algorithms, notice also that the per-capture@nd sensors have reduced travel overhead.

event utility drops significantly as the sensor speed
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