J. Nonlinear SC|V0| 8: pp 491-579 (1998) J o u r n al o f

Nonlinear
Science

© 1998 Springer-Verlag New York Inc.

Existence of Dendritic Crystal Growth with Stochastic
Perturbations

N. K. Yip*
Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA
e-mail: nkyip@cims.nyu.edu

Received April 7, 1997; revised October 30, 1997; accepted November 3, 1997
Communicated by Robert Kohn

Summary. We prove the first mathematical existence result for a model of dendritic
crystal growth with thermal fluctuations. The incorporation of noise is widely believed
to be important in solidification processes. Our result produces an evolving crystal shape
and a temperature field satisfying the Gibbs-Thomson condition at the crystal interface
and a heat equation with a driving force in the form of a spatially correlated white noise.
We work in the regime of infinite mobility, using a sharp interface model with a smooth
and elliptic anisotropic surface energy. Our approach permits the crystal to undergo
topological changes.

A time discretization scheme is used to approximate the evolution. We combine
techniques from geometric measure theory and stochastic calculus to handle the singular
geometries and take advantage of the cancellation properties of the white noise.
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1. Introduction

We prove the mathematical existence for dendritic crystal growth in a model that in-
corporates stochastic perturbations. This is an example of a curvature-driven evolution.
Such processes appear frequently in the modeling of various physical phenomena—for
example, solidification processes, fluid flows, and bacteria growths. Crystal growth is
one of the most vivid examples of pattern formation. It can be described by relatively

* This paper is based on part of the author’s doctoral dissertation [Yip].
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simple equations, and yet it demonstrates rich and complex structures. The nonlinearities
and singularities involved in such evolutions pose many difficult questions, including
the existence and regularity of their mathematical solutions.

The effects of noise in such systems have been investigated at length by the physics
community through both experiments and theory. See for example [Kar] in the case of
crystal growth. It is believed that certain forms of fluctuations must be presentin order to
generate the observed patterns. Due to the nonlinearity of the evolution, a tiny amount of
noise can be magnified tremendously to produce a macroscopic effect. Many physicists
and material scientists are interested in knowing the selection mechanisms determining
the final pattern. There are still many open questions concerning the formulation of the
models with noise, the origins of the noise, and its relevance for the overall dynamics of
the evolutions.

The study of such processes has also been taken up from a mathematical point of view.
The Stefan problem is a simple model which does notinvolve any surface tension. Amore
refined model incorporates curvature information. It gives a more stable interface and
allows the phenomenon of undercooling. Local in time classical solutions for this refined
model were proved in [CR] and [FR]. [AW] and [Luc] used variational approaches to
give general weak solutions in the infinite mobility framework. [Son] used the phase
field method to give a varifold solution in the finite mobility case. Numerical works have
also been done by (not mentioning the huge physical literatures) [Alr] and [RT] using
variational approaches, and by [Kob] and [WMS] using the phase field approach. All
these works do not consider the effects of noise except that, in simulations, noise very
often is added artificially in order to produce realistic pictures.

In this paper, we introductaermal fluctuations into a model of crystal growth and
prove an existence result for a solution which combines the effects of surface tension—
the Gibbs-Thomson condition—and stochastic heat diffusion. We hope this can be a step
toward a more physical formulation. Using the idea of [AW], we produce an evolving
crystal shape with sharp interface. We work in the regime of infinite mobility. The
surface energy we use is anisotropic, smooth, and elliptic. The crystal is allowed to
undergo topological changes. The whole Theorem is stated in Section 2.2

1.1. Model for Crystal Growth and Stochastic Noise

Our existence theorem is for a model of dendritic crystal growth. This process can be
formulated in a wider context afurvature driven flows, which are defined as follows.
Consider a time-varying domaif (t) in the spaceR". Its boundaryK (t)—a hyper-
surface (physically also known as therface)—evolves according to the following
form:

Norml Velocity|pesk = F (Curvaturéye,k , Bulk forceg
where F is some prescribed function. The bulk forces are quantities defined on the
ambient space. They can be the temperature field, concentration of solutes, impurities,
nutrients, and so forth. The use of such a formulation in various physical systems can be
found in [KKL] and [Lan].
In the case of crystal growth, the above heuristic equation becomes

sk (P) = M(Nyk (P)) (ho(P) + C(p. 1), pedkK, (1.1)
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wherevyk (p) = (inward) normal velocity ap € dK; nyk (p) = (outward) normal to
dK; M = mobility function;® = surface energy integranid; (p) = (®-weighted)-mean
curvaturé; C = undercoolingt = time.

The mobility function M assigns a value to each normal direction. It describes the
response of the interfad€(t) in terms of the attachment kinetics—the ease with which
atoms attach to (or detach from) the interfa¢e(t) or the crystal lattice.

There are two driving forces. The first one is theweighted mean curvature hg,
which captures the reduction of tdesurface energyof 9 K—® (dK). (Surface energy
arises whenever there is an interface separating two phases or material composites. In
our case, they are the solid and liquid phases.) The system will evolve in such a way that
@ (oK) (together with some other bulk quantities) decreases. The relationship between
® andhg is given in Section 2.1.7.

The other driving force is thendercooling C which is a function of the temperature
valueT. It describes how much is lower than the melting poiri, of the materiaf C
can be approximated &(p,t) = T(p,t) — T.(p,t) whenT is close toT,. Negative
(positive) values ofZ gives a growing (shrinking) tendency of the crystal. These two
forces are competing against each other. Their relative effects govern whether the crystal
is growing or shrinking.

Another important ingredient of our model is thdédfusion of latent heat, which
controls the rate of growth. Recall that freezing of the liquid phase releases latent heat.
If this heat is not diffused away, it will warm up the interface and then slow down the
growth. Thus, in order to have a proper growth model, (1.1) is coupled with the following
diffusion equation:

dQ = div(Sk VT) dt, (1.2)

where the heat distributio® is related to the temperature fieldthrough the specific
heat capacityQ = ¢k T. X is the diffusivity matrix.

The derivations of (1.1) and (1.2) using thermodynamics can be found in [Gur] and
[Gur2]. The concept of (weighted) mean curvature from the materials science point
of view is described nicely in [Tay]. Several mathematical methods of tackling phase
transition problems are outlined in [TCH].

The motivations for the study of this phenomenon include applications to materials
science. The control of the interfacial structures is an important issue in the manufactur-
ing of alloys and semiconductor materials. The description of various physical processes
involved in solidifications can be found in [Cha] and [Woo]. In addition, even the ques-
tions of how to model and predict the rich patterns pose many fascinating mathematical
problems.

The above model is also an examplelgfusion controlled growths. The qualitative
picture in such phenomena is that simple shapes such as planar and circular interfaces
are notoriously unstable ([MS], [MS2]). They tend to evolve into a regime of intensive
sidebranching activities, but this is later stabilized by the surface energy effect. It is the

1 The sign convention is théit is positive for a sphere.

2 In reality, the melting point of a material depends on the curvature of the interface. This is called the Gibbs-
Thomson Curvature Effect, which is one of the main ingredients in this papeareans the melting point of

a planar interface.



494 N. K. Yip

interplay between the interfacial kinetics, surface tension, and diffusion that produces
the intricate dendritic patterns observed in the solidification processes. The seemingly
regular and self-similar patterns seen for example in snowflakes is believed to be a
consequence of tremisotropy of ®.

There is extensive physical literature concerning various aspects of these patterns. The
quantities they study include tip radii of the dendrites, the spacings between them, and
their growth velocities. Several nonlinear (deterministic) models have been proposed (see
the accounts in [KKL], [Lan], [Lan2]). However, in some recent works, incorporation of
noise is one of the main considerations ([Lan3], [PL], [WL]). It is widely believed that
fluctuations are important in initiating the onset of morphological instabilities. The noise
is then selectively amplified by the nonlinearity of the process to produce macroscopic
patterns. However, the magnitude of the noise needed to simulate the experimental results
seems to vary a lot depending on the models used. It is also not quite clear in which
stages of growth the effects of noise are most prominent.

Here we take the point of view that thermal fluctuations are natural sources of pertur-
bations. They are always present. They can come from external heat sources, chemical
reactions, impurities, etc. In this paper, they are all put together into one stochastic driv-
ing force that is white in time but correlated in space. We demonstrate the possibility of
a mathematical framework to incorporate such effects and produce an existence result.

Several questions remain open. What are the statistics of our solutions and their long-
time behaviors? The answers can give a test of our formulation in comparison with
the experimental results. In the framework of this paper, we are in effect considering
macroscopic perturbations. Can they be treated as the accumulative effects of micro-
scopic fluctuations? How can we relate quantitatively the noise we use and the physical
parameters? Another approach to introduce perturbations is to consider random initial
data. How can we compare the overall effects of initial randomness and the fluctuations
during the evolutions? We do not know whether our approach gives a unique solution.
How can this be formulated? We believe these are important directions for further work.

In this paper, we study the following simplified version of (1.1).

Infinite Mobility ( M = oo) and the Gibbs-Thomson Condition. This formally re-
duces the interfacial dynamics (1.1) to

ho(p) = —=C(p, 1),

i.e., the mean curvatutdalances with the negative of the undercooling. This is called
the Gibbs-Thomson Curvature Condition. We further assume that

C(p.t) = H(T(p. ). (1.3)

H is called theGibbs-Thomson Relation which is a decreasing function of the temper-
ature value—the lower the undercooling, the higher the corresponding curvature. Itis this
effect that provides the barrier to nucleations and gives the possibilitigsdefrcooled

liquid andsuperheated solid

3 From now on, we will drop the word®-weighted.” It is understood that mean curvature is always with
respect to some surface energy integrénd
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Note that the above is aguilibrium condition. However, the crystal shape and tem-
perature field are constantly changing. Due to the infinite mobility, the crystal interface
can respond as fast as possible to compensate any deviations from the equilibrium.

As far as we know, there has not been any rigorous justification of why such a
simplification is considered in much of the literature. Numerically, the inclusion of the
curvature termhg is necessary to give a well-posed problem, but the mobility’s being
finite is not important for such a purpose [Alr]. A finite mobility regime is simulated in
[RT], [Kob], and [WMS].

However, the hypothesis of finite mobility is necessary to produce a crystal evolution
that iscontinuous in time. In [AW], which considers (1.3), there is an actual example
of a discontinuous evolution of the crystal shape. Mathematically, existence results for
the motion law (1.1) are harder to establish than (1.3). We need a stronger regularity
property for the crystal interface. [Son] gives a solution for (1.1), but the interface is
of a varifold nature. A modified version of the approach used in this paper can indeed
produce a continuous crystal evolution, but we do not know how to formulate and prove
(1.1). The relationship between the solutions for the finite and infinite mobility cases
remains to be resolved.

Models for Thermal Fluctuations. We add a stochastic driving force to the diffusion
equation to imitate thermal fluctuations. Loosely speaking, we will consider the following
stochastic heat equation:

dQ = div(Zx VT) dt +ck f(T)dW, (1.4)

whereW, is aspatially correlated infinite dimensional Brownian motion andd W, is
the Ito’s differential. We show the existence of an evolution satisfying (1.3) and (1.4). The
spatial correlation of\; is important in our approach to give good regularity properties
of the temperature fields so that (1.3) can be shown to be true.

We compare our formulation with those in the physics literature in whjiette-time
white noisesare considered very often. In [Kar], Langevin noises were introduced to
both (1.3) and (1.4). They showed that this was necessary to be thermodynamically
consistent with the equilibrium fluctuations of the bulk phases and the interface. The
equations therein relevant to our paper are noted as follows:

2T, = D,divVT,-V-q, v=l,s,
Lvn = n-[cDsVTs—c.DIVTII+n-[cqg —cdd, 15
vn = M(he +C+ 1),

whereT is the temperatureD, is the diffusivity; v denotes the liquidl} or solid ()
phasesyy, is the normal velocitylL is the latent heat ang}, the specific heat capacities;
M is the mobility;C is the undercoolingg andn are space-time white noises.
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Note that the noises considered there are much more singular than the one used in this
paper. However, (1.5) works in the finite mobility regirhehich has more regularizing
effects than the infinite mobility case as demonstrated in [Str]. Thus it is conceivable
that (1.5) can support more singular noises than our equations. It will be interesting to
investigate mathematically the “optimal roughness” of the noises permitted in various
regimes and to study the regularity properties of the interfaces.

Other Models. At another extreme, we completely ignore the undercooling and heat
diffusion. Then (1.1) becomes

vak (P) = M(Mhe (p). (1.6)

This is calledmotion by mean curvature (if we further assume thatl = 1). Itis a
fascinating geometric evolution in its own right. Stochastic perturbations added to (1.6)
have been considered in [Yip].

Another interesting question is whég corresponds to a nonconvex surface energy.
In this case, (1.6) is then backward parabolic in some directions. The interface might
produce infinitesimal wrinkles. Such and related issues are discussed in [Gur2].

1.2. Mathematical Approach

The most difficult aspect of solving (1.3) and (1.4) is the singular behavior of the equa-
tions. Singularities may form even from smooth initial data. Topological changes of the
crystal shapes may happen during the evolution. Upon the addition of white noise—time
derivative of Brownian motion—we need to make sure that the effects of noise are can-
celed locally in time. The approach employed here can tackle the above difficulties quite
efficiently. We combine the machinery of geometric measure theory and stochastic cal-
culus. The function spaces we use can handle the singular geometries, and they have nice
compactness and regularity results at our disposal. Furthermore, we have a meaningful
formulation of (1.3) even when the curvature is unbounded.

The idea is to write the whole evolution as a gradient flow with respect to an energy
functional. Under such a flow, the energy is always decreasing. We minimize a related
functional using a time-stepping scheme to approximate the flow. The novel parts in this
scheme are the choice of the inner product for the function spaces and the proof of the
convergence to a limit.

In the deterministic setting, such an approach was used in [AW], [ATW], [Luc], and
[LS] to solve (1.2), (1.3), and (1.6). Here we follow the idea in [AW]. The difficulty in
the stochastic case is to control the energy globally in time and then prove the tightness
of the probability measures. A technical device used is the smoothing of the noise term to
preserve the regularity property of the functions inherited from the minimization steps.
The spatial correlation df\; is crucial in the argument. I1to’'s Formula and martingale
inequality are the main tools from stochastic calculus.

4 In the infinite mobility limit, (1.5) essentially becomég = —C + 5 anddQ = div(SVT)dt + V - gy,
whereQ is the heat distribution.
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In order to carry out the above scheme, we take the following analog from the stochas-
tic differential equation:

dX; = A(X¢) dt + B(Xy) dW, 1.7

whereX; denotes some heuristic state varial#d¢X,) is a driving force describing the
unperturbed motion law, anB(X;) is some operator acting on the white noise term
dW.5 (1.7) is interpreted as an integral fora = Xo + f(; A(Xs) ds+ fot B(Xs) dWs.

In this paper, we employ a time discretization procedure. The integral can then be ap-
proximated as:

n
Xn=Xo+ ) A At + ) BOGN) AW, (L8)
i=1 i=1
whereAW, = W(t11) — W(t). Within each discrete time interval, we minimize some
energy functional to approximat(X;) At;, and then we solve a stochastic heat equation
to imitate the effects oB(X;) AW,;. These discrete evolutions will be shown to converge.

n

2. Statement of Result and Outline of Proof

Our goal is to prove the existence of an evolution process of crystal shape and heat distri-
bution satisfying (1.3) and (1.4). First we define the terminologies and notations involved.
Further concepts of varifolds and probability theory will be given in the appendix.

The domain we are working in is andimensional toru® so that we do not need to
worry about boundary conditiong)| = £"(O) = p" denotes the volume @. (p is
the side length 00.)

2.1. Definition of Function Spaces

2.1.1. Crystal Position {C). These are described by subset®afith finite perimeter.
K is called such a set if

oK | = sup{/ divgdL"™ g e C3(O, RY, gl < 1} < 0. (2.1
K
|0K | is called theperimeter of K. K is metrized by the_* norm,
IK — LIl =/ IK(x) — L(x)| d£"x = LK AL). (2.2
xeO

By abuse of notationK can mean either the skt or its characteristic functio# « .

The main properties we need for this kind of set esenpactnessunderL? of the
collection{K € K: |0K| < M < oo} and the existence of a well-defined notion of nor-
mal and boundary-approximate normal (nk) andreduced boundary (3*K). These
concepts are elaborated nicely in [EG] and [Giu]. E&clke K also can be considered
as am-dimensional integral current in the context of geometric measure theory [Fed].

5 Here we are considering Ito’s differential.
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2.1.2. Surface Energy ¢). A surface energy integrand® is a function fromS"* to
R.. It is usually extended to a map froR" to R, by positive homogeneity of degree
L. o) = AP (v) (A >0,ve S'"l).

The @ surface energyof K € K is defined as

dOK) = / ®(ng) dH" 1, (2.3)
oK

whereng is the outward normal vector oK .6

In this paper, we assume thdtis smoothandelliptic, i.e., it is twice differentiable
and has positive second derivative when restricted to any straight line not passing through
the origin’

2.1.3. Heat Distribution (Q). A heat distribution is any positivie? function Q defined
on 0. They are metrized by thmodified Monge-Kantorovich Norm,

IP—=Ql-=IP-Qll.+|P-Q

where||P — Q|l, is the number

, (2.4

sup{/ P(X)(P(x) — Q(x))dL"x: Lip(p) <1 and / pdl" = O} , (2.5
o o

- 1 . .

andP = 0] / P d£" is the spatial average .
(@]

Such a norm is used in many mass transport problems [Rav]. An important property

of Qisthat{||Ql .2 < M < oo} is compactin the - |.. topology ([AW] Appendix B).

2.1.4. Temperature Field ). A temperature field is any positiie? function T on
O. This space is metrized by the norm,

1/2
1Ty — Tall2 = ( / ; ITL(X) — T2(X)|? dﬁ“x) : (2.6)

We denotdJ = 1/T.

2.1.5. Specific Heat Capacityd) and Diffusivity Matrix ( ). Specific heat capacity
is a number which relates the heat content and temperature of a material. In general, this
number depends on the phase.
Let K € K be a crystal{x € K} is called thesolid phaseand{x ¢ K} theliquid
phase Thespecific heat capacityis a piecewise constant function defined®n

Ck = CsXk +C(1— Xk), 2.7

6 In this paperpK always denotes the reduced boundariof

7 This condition is not necessary in every result. However, in order to prove the existence of minimizers
involving @, it is at least required to be a convex function.
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wherecs, ¢ are constants of the material. Usuaily< ¢ . Heat content and temperature
are related by

Q=ckT. (2.8)

Another quantity we need is tltffusivity matrix for heat diffusion,
Sk = XXk + (1 — Xk). (2.9

s andy; are positive symmetric matrices wiby usually taken to be a multiple of the
identity.
Note that botltk andX arediscontinuousfunctions of the spatial variable.

2.1.6. State Space for Time Evolution$). As we are studying evolution processes,
time will be incorporated into our state space. Precisely, we define

S= L0, 1], £) x L?([0, 1], L?2(®)) x L%([0, 1], L2(®)) x C([0, 1], Q). (2.10)

Each elemenK e Sconsists of time-varying crystal position, temperature field, recip-
rocal temperature field, and heat distributioik(t), T (t), U (t), Q(t))tejo,13- The metric
for Sis given by

1 1
1X: = Xalls = / IKa(®) — Ko®lLs dt + / ITa(t) — Ta®)1%s dt
0 0

1
+/O IU1(t) — U2(t) 72 dt~|—ts[(l;I|ClJ] 1Q1(t) — Qa(V)ll~ . (2.11)

2.1.7. The Gibbs-Thomson Condition and First Variation. The Gibbs-Thomson
condition (1.3) is the equilibrium relationship between the curvature of the crystal bound-
ary and the temperature value. In order to formulate this condition in the case when the
crystal boundary is not smooth enough to define its curvature, we make use of the concept
of first variation of surface energy.

Given the previous definitions of surface energy and integrand (Section 2.1.2), we
describe how the (mean) curvature is related to the changes of the surface energy when
the set is deformed by vector fields.

e Given aC! vector fieldg: R" — R", let Gs(x) = X + sg(x) for x € R". ThenG,
is a one-parameter family of diffeomorphisms for small values afdGq(-) is the

identity map fromR" to R". Note thatg(x) = %G(s, X)

s=0

. Some-

d
e Thefirstvariation of K with respect tay is defined to b& d—scb (Gsy0K)
s=0

times it is also denoted bipK, g).

8 In the following, thet means the “push forward” or the diffeomorphic imagedkif under the action o6s.
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° I:I¢: oK — R" is called the® first variation vector field of oK if, for all g,

9 (GesiK)

= / (Ho (), g(x)) dH"1x. 212
ds xeaK

s=0

o If further, H¢(x) = he (X)Nk (X), whereng is the outward normal o§K at x, then
he is called thed (weighted) mean curvaturé€ of K . Rewriting the above, we have

d

= / he (X) (Nk (X), (X)) dH"x. (2.13
s=0 xeoK
Using this point of viewhg, is seen to be theate of change of thed-surface energy of
9K pervolume swept out by deformationsThis definition coincides with the classical
one when the boundary is smooth.

2.1.8. Gibbs-Thomson Condition.There is a prescribed function called t&ébbs-
Thomson Relation H: R, — R, which relates the temperature and curvature values
in equilibrium. (By abuse of notation, we use the sarhas the first variation vector
field, but without the arrow.H is smooth and decreasing It has the growth rates
H(a) ~ O(a=?) asa — 0" andH(a) ~ O(a?) asa —> +oo. (Its exact form will

be given in Section 3.1.)

K e Kand T € 7 are said to satisfy th&ibbs-Thomson conditionif, for arbitrary
C! vector field g,

d
50 (G:K)

= / div(H (T (x))g(x)) dL£"x. (2.14)
s=0 K

Clearly this formulation corresponds to the classical sense when everything is smooth.

2.2. Statement of Result
The main result gives a precise meaning by which the following statements are true:

dQ = div(Z«VT)dt +ck f(T)dW, (2.15)
he = H(T). (2.16)

where

e W is an infinite dimensional Brownian motightaking values in_2(0).

e f is a given function of the temperature value (R, — R, ) with growth rates
f(a) ~ O(@* asa — 0'; f(a) ~ O(a™!) asa — +oo. Itis used to damp the
white noise termd W in extreme temperature ranges.

9 For historical reason, the-mean curvature vectoris taken to be thaeegativeof the d-first variation vector.
10 such and related concepts about the stochastic integral will be given in the Appendix.
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We have achieved the following:

There is a probability spacé&, F, P) equipped with a filtration 7 };c0 1) and a
Brownian motion{W,, F;; 0 <t < oo} in L?(0) with its covariance operator given
by a symmetric kerneh (-, -) € L*(O x O) such that starting from some admissible
initial conditiont* Ko and Q,, there is an almost surely positive stopping timand
a predictable stochastic procesgtX = (K (t), T (t), Q(t))tepo,1) defined on(2, F, P)
taking values in the crystal shapes, temperature fields, and heat distributions satisfying
the following properties:

1. E i sup @K )™+ IT®)I™ + ||U(t)||’[‘2} < Cm < o0 and
te[0,1]

1 m
E (/ IVT 12 + VU )12, dt) < Cp < o0,
0

where U= T~! and m is any positive integer.
2. The heat distribution @) with Q(0) = Qg is evolving continuously in time in the
modified Monge-Kantorovich norin ||... It satisfies the estimate,

EIQ®) — Q)™ < Cm|t —s|™ foral0<s<t<1

3. Qt) =ckpyT(t) fordLr x dP a.s. on{(t, w): t < t(w)}.

4. (K (1), T(t), Q(t))ieo,1) SOlves the stochastic heat equation (2.15) in the following
sense:
For all ¢ € C*(0),

taT

tAT
QA 1), @) = (Qo. w)—fo (Ek VT, Vo) o|r+/O (cx F(T)AW, ¢),

where( -, -) denotes the Linner product on B(0). Here f acts as a multiplicative
operator on 1?(0).

5. Ford! xdP a.son((t, w): t < 7(w)}, the Gibbs-Thomson condition (2.16) holds,
ie.
Given any C vector field g or®,

d
3 (Gs;0K (1))

= [ div(H (T (t, x))g(x)) d£"x.
5=0 xeK ()
The left-hand side is the first variation of tdeenergy ofo K whenoK is deformed
by the one-parameter family of diffeomorphisms (for small gxG= x + sg(x).
6. Ford£! xdP a.son(t, w): t < 7(w)}, the following regularity statements are true:
n= 2. dK(t)is aone-dimensional differentiable submanifold#ithout bound-
ary and for any ¢ vector field g or®,

d
3<° (Gs: 3K (1))

= / H(T (X, 1) (N, 9(0)) dHX,
=0 xedK (t)

11 See the next section.
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where rk is the outward normal of K angi* is the Hausdorff one-dimensional
measure oK.

n=3: 9K(t)isthe homeomorphic image ¢ of a compact two-dimensional man-
ifold without boundary.

The whole theorem is split up into Theorems 6.4.5 (Energy Estimates and Heat
Continuity), 7.2.1 (Limiting Heat Equation), 8.0.1 (Gibbs-Thomson condition), and 8.0.2
(Regularity of the Crystal Boundary).

2.2.1. Admissible Condition and Stopping Time.The admissible condition and the
stopping time are introduced artificially by our method of solution. Concisely, the ad-
missible condition says that the whole doméinis not completely frozen or melted.
The stopping time gives the interval of time such that this condition is ensured to be
true. Beyond this, th€ mightoscillate without control in between the states of being
completely frozen or melted, and the compactness argument on which our proof relies
heavily will fail. The definition of the admissible condition will be givenin Section 6.2.2.
However, by the suggestion of one of the referees of this paper, if we consider the
Dirichlet boundary condition for the temperature fieldl;» = f > 0, the stopping
time = in the above main theorem probably could be eliminated. We believe that the
extra estimates coming from the boundary®tan be handled in very much the same
way as in the present paper. See also the remark in Section 6.1.1.

2.3. Outline of Proof

We will solve (2.15) and (2.16) using a time-stepping approximation scheme. There are
three main ingredients in our method:

e Variational minimizations are used to approximate (or restore) the Gibbs-Thomson
condition (2.16). The singular nature of the curvature condition is handled automati-
cally by the techniques of geometric measure theory.

e Global energy estimates are derived using stochastic calculus (especially Ito’s For-
mula and martingale inequalities) to take advantage of the statistical cancellations of
the Brownian increments. This leads to tightness of the approximating probability
measures.

e Approximating crystals are shown to converge in the varifold sense, which is much
stronger than just thie! convergence. This allows us to show that the Gibbs-Thomson
condition is true in the limit.

Now we give a symbolic outline of the whole scheme.

2.3.1. Generation of Discrete Approximation.Let {X(t)}c[o 1) denote the evolving
state variablé? For eachX, we associate it with some kind of energy functiofiaX).

L2X = (K, T,U,Qwithu =T-1.
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Let N be a positive integer antit = 1/N be the discretization interval. Also |e<r,.N,
(Xi’l‘) be the state variable §t = (At~ ({7 = (At)*) for 0 < i < N. We will
produce{XN(t)}te[oql],

N N N N N N N
XN — XN — XN — XN — o XN — XN — XY

in the following manner:

e XN — XN: XM is chosen to be ainimizer for the following “heuristic func-
tional”:

1 N
EX) + X =XxN|. (2.17)

where|-|| is some metric forX. It acts as genalty function so thatXi'\i will not
differ too much fromX". The form of ||| also serves the purpose of giving the
right motion law. In the present case, the choice is to make the minimizers satisfy
the Gibbs-Thomson condition. As a by-product, the temperature fields enjoy some a
priori regularity properties.

e XN — XN (t <t <t1): Theheatdistributionis diffused by the following stochas-
tic heat equation for duration of At with initial condition Xi“i:

dQ = div(Zin VT) dt + en f(T) AW (2.18)

Note that thecrystal is kept fixed to be K\ during this procedure. Galerkin’s
scheme is used to solve the above equation. In the actual implementatismowéh
out theW in (2.18). This will be explained later in Section 2.3.3.

2.3.2. Derivation of Energy Estimates.The next step is to derive the energy bound
E {sup.co EXN(A)} < C. Itis carried out formally as

EXN) < £X]) (by definition of minimization)
EXN,) = XD + AN At + BYN(XY) AW (by Ito’s Formula)

whereAN andBN are some controllable operators. Théig;an be estimated as
t t
EXN) < £xXN0) +/ AN(xN(s)) ds+/ BN(XN(s)) dWs.
0 0

A Martingale Inequality gives the asserted energy bound. The tightness of the probability
measures follow from the compactness property of the function spaces. We can then
extract a converging subsequence.

2.3.3. Properties of Limit Evolution. Our goal is to show (2.15) and (2.16). The valid-
ity of the stochastic heat equation can be proved by standard procedures using martingale
formulation.

However, the Gibbs-Thomson condition is the heart of the matter. In the present case
with stochastic perturbation, extra care must be taken to obtain good regularity properties
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of the temperature fields during the heat flow process. An intricate step is the smoothing
of the white noise term in (2.18). This is used to preserve the regularity of the temperature
fields inherited from the minimization procedure.

The main ingredient here is to show that the approximating crystals converge in
varifold senseto the limiting ones. Briefly speaking, we will prove the following:

IKN—-K|,—0 and @®@OK"Y) — ®(3K).

The key idea is to exploit the fact that the" are minimizers of the functional (2.17).

3. The Minimization Step

In this section, we describe the minimization procedure and its associated estimates.
During this step, both the crystal and heat distribution will be changed. The purpose is to
restore the Gibbs-Thomson condition. The a priori regularity estimates for the minimizers
turn out to be very important to prove the properties of the limiting evolution.

First we define thenergy of the systermasé,

EK,Q = ®OK)+ [,k Fc'QdL",  (Kek,QeQ),
®(IK) + [, ek F(T)dL", (T =c'Q).

We recall thatb is asmoothandelliptic integrand.F is the bulk energy functional. Its
form and relationship wititH—the Gibbs-Thomson relation—will be given in the next
section.

Leta be any fixed positive number less than 1/&ven P € ©, weminimize

(3.1)

1
E(K, - PJ~, 3.2
( Q)+Ata 1Q l (3.2)
among allk € K andQ € Q such thatQ = P,i.e., | QdL"= [ PdL". We call

any minimizer(K, Q) of the above functional Eninimi(zjer for (&, A?, P).

In the actual applicatior? will be Q;-, the heat distribution df , and the minimizer
will becomeK;+ and Q;-, the crystal position and heat distributiortat

As pointed out in [AW], one of the novel features of this scheme is the use of the
Monge-Kantorovich Distance. Itsrole in (3.2) is to allow a certain degree of heat transport
so as to facilitate crystal changes. Due to this freedom, the minimizers satisfy the Gibbs-
Thomson condition exactly. The condition ens such that the effect of this term is not
felt when taking the limitAt — 0.

3.1. F, H, and their Estimates

Here we follow [AW] Appendix A.F is asmooth positive uniformly convex function
defined onR, . Its form can be described as followd & 1/T):

U2 if 0<T <a,,
F = 172 if b <T <oo,
F(T.) = 0forsomerT, € [a.,b,],
F(TY > c¢c>O0forallT >0,

3.3
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wherea, andb, are fixed positive numbers afid is interpreted as the melting point of
the planar interface of the material.
The Gibbs-Thomson relatioH() is derived fromF as

H(T) = (& — co)(F(T) = TF(T)). (3.4

It is easy to check thdi is a smooth decreasing function such thiafT,) = 0.
The following are simple consequences of the above representations:

IF(Ty) — F(T)| < C(|UZ - U2+ T2 -T2|)

= C|Ty — Tl (U1UZ + U2U; + T1 + To), (3.5)
IH(T) — H(T2)| < C(JUZ-U3|+|T7-TZ))
= C|Ty — To| (U1UZ + U2U, + Ty + To), (3.6)

whereC is a fixed constant. Furthermore, there are bounded Lipschitz funcliemsl
L from R, to R such that

H(T) = C,(3U? = T2+ J(T)), H'(T) = Co(—6U3 — 2T + L(T)). (3.7)

3.2. The Existence and Properties of Minimizers

The following results are from [AW] Chapter 4.

3.2.1. Theorem (Existence of Minimizer).For all P € Q, At > 0, there exists a
minimizer(K, Q) for (£, At, P),i.e.,forall L e K and Re Q withR= P,

1
At

c1>(aK)+/ ok F(clQ)dLh + 1Q — P~
(@)

1
< cI>(8L)+/ cF(c'RdL"+ — |[R—P||..
o Ate

3.2.2. Theorem (Regularity of the Temperature Field).Let T = c;lQ whereg(K, Q)
is a minimizer for&, At, P). Then, upon redefining T on a set of measure zero, we have

1. T is bounded from below and above. Precisely,

A 1/(3n+2) -
- AtN/GH2) T C(Q+At™), 0). (38
[5(K,Q)+B] <T(p) < C(Q+ ) (pe0). (3.8
2. T is Lipschitz withLipT < DAt™,i.e.,

IT(p) —T()| = DIp—qlAt™, (p.q€0). (39

(A, B, C, and D are constants depending only on the dimension n and the &z&of
is the spatial average of Q.)
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3.2.3. Theorem (Validity of the Gibbs-Thomson ConditionforK and T). The Gibbs-
Thomson condition holds for any minimizé, Q) of (£, At, P), i.e., for all g €
C3(R", R"), Gs(X) = X + sg(x), we have (T= c* Q)

d
32 (Gs:K)

:/A H (T (x)) (nk (X), 9(X)) dHMXZ/ div(H(T)g) dL".
xedK K (3.10)

s=0

For completeness, we also mention some regularity properties of the minimizing
crystals.

3.2.4. Theorem (Regularity of the Minimizing Crystal). Suppos€K, Q) is a mini-
mizer for(&, At, P). Then,

1. There exist positive numbetsand i such that
H"HEK N B(p.r) = pur"

for each point p in the support 8 K] and0 < r < é.

2. The support of[ K] (which equals the closure 6K) has finite’{"~! measure and
hence zeraC" measure.

3. There exist positive numbessand C together with a functiom(r) = Cr defined
for0 < r < § such thatd[ K] is (®, w, §)-minimal in the sense of Bomberi [Bom,
Definition 1, p. 101].

4. Whend is an even integrand¥ (v) = ®(—v)), there exist positive numbeysands
such that the support off K] is (y, §) restricted with respect to the empty set in the
sense of Almgren [AlIm 1.1, p. 53].

5. When® is an even integrand, there exist positive numkieesd C together with
a functionw(r) = Cr defined for0 < r < § such that the support df[ K] is
(®, w, §)-minimal with respect to the empty set in the sense of Aimgren [Alm Ill.1
p. 75].

6. Whend is smooth and elliptic, then except for a possibly compact singular set of zero
H"~1 measure, the support 8f K] is a two times Hlder continuously differentiable
(n — 1)-dimensional submanifold @?.

7. When® is smooth and elliptic and = 2 or 3, the support S 0§[ K] is a two
times Hblder continuously differentiable submanifold @f (with no singular set).
Furthermore, at every point p of S, the weighted mean curvature of S (with respect
to the exterior normal of K) exists in the classical sense and equéls(p)).

3.3. Measurable Selection

If we want to write the whole evolution as a stochastic integral (Section 5.2), we need to
make sure that the evolving crystal positions, heat distributions, and temperature fields
areadaptedto some underlying filtratiofi7 };., of a probability space2, 7, P).

Letthe state &f” be denoted bX;” = (K™, T, U, Q;"), whichis aF; -measurable
random variablef;, C F), i.e.,

w— X (w) = (Ki_(a)), T (@), U] (o), Qi_(a))) (Q,F) — (8B (31))
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is measurable. Upon minimization, we get a new sigte= (K;*, T,*, U/, Q") att".
In general, the minimizers are not unique. We want to makeasurable choicef the
Xi+ so that it is also & -measurable random variable, i.e.,

0 — X' (@) = (K (@), T (), Ut (@), Qi (0): (2, F) — (S B). (312

is a measurable map.
To achieve this, it suffices to demonstrate the existenceBairal map betweenX;”
andX;":
X € (S B) — X' e (S B). (3.13

We omit the proof here. The techniques are from [SV] Chapter 12. For details, see
[Yip].

4. Heat Equation and Estimates (Fixed Crystal)

In this section, we carry out the heat flow process to diffuse the latent heat with the
addition of stochastic noise. We solve (1.4) with the crystal kept fixed. In the next
section, we will derive estimates for the overall solution. This is crucial in proving the
compactness property of the evolution process, which is the crux of the matter in the
stochastic version of the theorem.

An intricate step in this procedure is temoothing of the stochastic noise order
to preserve the regularity of the heat distributions inherited by the minimization steps
(Theorem 3.2.2). The spatial correlation of the noise is essential to achieve this purpose.
The regularity estimates will be important in the proof of the Gibbs-Thomson condition
in Section 8.

We assume the basic notions of stochastic calculus. They are summarized in the
appendix.

4.1. Heat Equation for Fixed Crystal with Smoothing

In between the minimizations, we flow the heat for a durationpfkeeping the crystal
fixed. LetK be agiven fixed crystal We will solve the following equation:

{ dQt) = div(ZkVT(1)) dt+ck f(T(t))dW, @.1)
QW) = coT®. ’
Rewriting the first equation, we have
dT) = Cidiv(EKVT(t)) dt+ f(T(t)) dW. 4.2)
K

4.1.1. Form ofW; and f.

o {W;, F; 0 <t < oo}isaninfinite dimensional Brownian motion taking values in
L2(0) with covariance operator A given by asymmetric kernel (still denoted by
A) belonging toL>*(O x O). The filtration{Fi};-¢ is fixed in this section. Unless
otherwise stated, all adaptedness refers to this filtration.
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e f: Ry, — R, is a smooth positive function of temperature value which acts as a
multiplicative operator on L? functions. We require thatf (a) — 0 asa — 0"
and +oo in such a rate thaF’(a) f (a) and F”(a) f (a) are uniformly bounded in
a.!® The purpose of this is to damp the white noise teii{ in extreme temperature
regions.

4.1.2. Smoothed Version of the Heat EquationAs mentioned earlier, in théiscrete
schemewe are actually solving a smoothed version of (4.2),

dT(t) = édiv(EKVT(t)) dt + f5(T (1)) dWE. (4.3)

e § ande are small positive numbers depending/mrand they tend to zero @¢ — 0.

e f; is basically the same function dsbut with f (a) = 0 for a very large and small.
fs — finC*® normass — 0. Its exact form is specified in (4.14). Of course, we
still impose thatF'(a) f;(a) andF” (a) f{(a) are uniformly bounded ié anda.

e W = ¢, x W; whereg, is a standard symmetric smoothing function tending to the
delta function ag — 0. In this case, the covariance operatoW\f is given by (see
Section B.5.2)

AS(X,Y) = (PeAde) (X, Y) =f( o OA(w,Z)qbe(X—w)@(y—Z) dL"wdL"z

e L®(O x 0). (4.4)

4.1.3. Definition of Solution for (4.3). T: [0,1] — L2(O) is called a solution of
(4.3) with initial data T if T is predictable, P a.s. belongs'fo

C([0, 1], L*(0)) [\ L*([0, 11, HY(O))

and for allp € C*(0), t € [0, 1], the following identity is satisfied:
/er ck ()T (t, X)p(x) dL"x
= /er Ck () To(X)e(x) L X — /Ot /XEO (Zk (OVT(S, X), V(X)) dL"x ds
+/Otfx 900000 F5(T (5, 5)) AW (5, ) L7 (4.5)

Then we set Q) = ck T (1).

Inthe actual scheme, we solve (4.3) during the intentgl$)), [t1, t2), .. .. The initial
conditionTo will then beT,", T,*, .. .—the temperature fields right after minimizations.

The first result we need is as follows.

13 F is the function defined in the energy functiodain (3.1).
14 H1(0) is the space of 2 functions on® with L2 spatial derivatives.
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4.1.4. Theorem (Existence and UniquenessY.here is a unique solution(T) for (4.3)
in the sense of Definition 4.1.3 satisfying

1
E{ﬁmHTamﬂ+1/HVTGW§d4w<m. (4.6)
0

te[0,1]

The Theorem is proved b@alerkin’'s SchemeandPicard’s Iteration. The whole
procedure is very similar to the one carried out in [KR] and [Par]. The fact that we have
discontinuous coefficientsk andX can be remedied by using a weightetinorm. For
completeness, we give the proof in Appendix C.1. Now we concentrate on the effects of
the smoothing and the corresponding estimates.

For the use of later sections, we set forth some notations.

4.1.5. Function Spaces and Operators.

e Let H be the Hilbert space df? functions on® with inner product,

(U, v)y =/ ck OUX)v(X) dLX. 4.7
xe®

Let V be the Hilbert space dfi1(O) functions with inner product,

[u, v]y = / (ZkVu, Vo) dL”x+f ck UX)v(x)dL".  (4.8)
xeO xeO

DenoteV* andH* to be the dual oV andH. Then,(V, H, V*) forms aGelfand
Triple . (See page 568.)
e Let A: V — V* be defined as

(Au, v) =/ (Zk Vu, Vo) dL" = (Z¥?Vu, Z¥?Vu) ,. (4.9
O
If Aue H, v e V,then(Au, v) = (Au, v)y. Formally, this means that
1 .
Au = ——div(ZkVu).
Ck

We have the following properties fak:

Boundedness: || Aully« < |[ully.

Positivity: 0 < (Au, u) and|[ulZ = (Au, u) + [Jull%.

Self-Adjointness: For allu, v € V, (Au, v) = (U, Av).
e LetB: H — L(H) be the multiplicative operator,

(B(wh)(x) = fux))h(x), (u,h e H). (4.10
Let || B(u)||§\ = Tr[B(u)AB(u)*]. Then by Section B.5.1, we have
1. (by theboundednessf f)
1Bu)||% =/ A(x, x) f(u(x)?dL"x < C. (4.11)
xeO

2. (by theLipschitz property of f)
IB(w) — B3 =< Cllu—vlf- (4.12)



510 N. K. Yip

4.2. Lower and Upper Bounds for the Temperature Field

We investigate the role d@fin (4.3).
From Theorem 3.2.2, we know that right after minimization, the temperatureTfield
is bounded from below and above,

A 1/(3n+2) B
[m} At < T(p) <C(Q+At™),  (pe0). (413

Choosefs: R, —> Rto be a smooth positive function such that
fs(TYy=0  forT < (A/B)=z At®2 and T > C(Q + At™), (4.14)

whereA, B, andC are the same as in (4.13).

4.2.1. Theorem.Let T(t) be a solution for (4.3). Suppose the initial conditionsat-
isfies (4.13), then so doegf) fort > 0.

Proof. The idea of the proof is from [Par] p. 152.
SetG,i: R — R, to be a smooth positive convex function such that

A

1
n+2 na —
) Ataz, C(Q+At_")]

andG¢(+) tends to a linear function a6 — =o0.
Then by the same method as in the derivation of Theorem 5.1.1, we get

t
/ ek Gar(T(t) dL" < f ek G (To) L7 + / / Ok Gl (T) fae (T) dWE A"
O O 0 O

1t :
+§/ TI’[CKG,At(T) fAt(T)A€ fAt(T)] ds.
0
However,

. / ck Gat(To) dL" = 0 asTy satisfies (4.13);
O
t
. / Ck G (T) fae(T) dWS dL" = 0 asG/y, () far (1) = 0;
0 JO
1 t
. E/ Tr [ek GL(T) fat(T)AS fa(T)] ds=0asG, () fai () = 0.
0

Hence,/ ek Ga(T(t))dL" =0, i.e., (4.13) is preserved. O
O

To proceed further for the use of Section 8.3.2, define
m = (itnf) (T(t,x), To(X)}, M; = sup{T (t, ), To(X)}, t>0, xeO.
X (8]
(4.15)
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Then, from the above proposition, we have

1
A =R _
; - Ataez d M <C ALY,
m.z<g(K’Q)+B) 3 an i <C(Q+ )

and so,

i
m-24 < (5(K, Q) + B>3”+2 At —24na

: A an+2 and M®< C(G8 + A5,

Using the energy estimates Theorem 5.2.2, we get the following.
4.2.2. Corollary.

E(m™?%) < CAt= and E(M?) < cat™®. (4.16)

4.3. Temperature Gradient Bound

Now we take into account the effect oin (4.3).

Remark. As mentioned earlier, the equation we are solving is (4.3) whésea small
number depending ont. Such a smoothing of the noise will help preserve the gradient
bound of the temperature field under the heat flow. In this section and eventually, we
takee to be At” wherey is a very small positive number.

Our goal is the following:

4.3.1. Theorem (Temperature Gradient Bound).If {T (t)}-( Solves (4.3), and sup-
pose(|VTo|l . < CAt™, then

C
8
E {te?ol:jft] ||VT(t)||L2} < YN (4.17)

Note that by Theorem 3.2.2, the temperature fields right after minimizations satisfy
the hypothesis in the above proposition concerning the gradient bound.

The method is by Galerkin’s Scheme and Picard’s Iteration, which are used in the
proof of Theorem 4.1.4 (Appendix C.1). But this time, the computations are much more
involved. The crucial fact is that the covariance operatovwfis given by a smooth
kernelA€.

In the following, thes in fs will be suppressed.

4.3.2. Strategy of Proving Theorem 4.3.1The following two sections will lead to the
desired result:

Section 4.3.9: Let St) be a time-varying temperature field adaptedfg and let T(t)
be the unique solution of the following:

dT(t) = édiv(zyzvm)) dt+ f(S(t) dW, (4.18)
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in the sense of (C.2). SupposeTpl|l 2 < CAt™, then for0 <t < At,

C t

E{ sup [VT(L)|® §7+/E sup [[VSW)|I8, ¢ dr.  (4.19

{xe[o,% IVT( )||L2} o [Ae[o.'?] RER]IE (4.19)

Section 4.3.10: Set $t) = T" (1), T(t) = T"(t)in (4.18) whergT"(t)},>, are the
solutions in Picard’s Iteration (Appendix C.1.5) in the process of solving (4.3). We
will iteratively make use of (4.19) to achieve (4.17).

Now we start to prove (4.19). We will show that during the process of solving (4.18)
using Galerkin’s scheme, each approximated solufipsatisfies (4.19) and hence so
doesT (by the lower-semicontinuity of the gradient norm under uniform or weak con-
vergence).

4.3.3. Special Basis foH. In addition to the notations in Section 4.1.5, we further
defineHg to be the subspace bf consisting of elementssuch thagfo cku(x)dL"x =0
andV, to be a subspace éfy with inner product

(U, v)y, :/ (ZK?vu, =¢?vv) dc".
(@]

By the Poincag’Inequality and Rellich’s Lemma/, is compactly embeddedin Ho.
Now, Au = —édiv (Zk Vu) is a postive elliptic operator. From [Eva] Section 6.5, we
can find a sequende; }; >, with the following properties:

1. {ui};>, forms a complete sequence of eigenvectord.afe., Au; = A ;.
2. {u;}j>1 forms an orthonormal basis féto, and it is also an orthogonal basis dj,
ie.,
U g =& and (U, vy, = &j lluillF, - (4.20
3. Foru e V, if we writeu = }_; Giu; as vectors irHo, then the series also converges
in Vo.
4. LetIl, be the orthogonal projection ontoy, Uy, ..., Uy} in Vo. Then, foru, v € Vp,

(U, ui)VO = (u, ui)HD (Ui, ui)VOs (421)

(MaU, Tavdy, = Y (U, Uiy, (v, Uiy,
j=1

=) (U U, (0, Uy, (Ui, Uiy, - (4.22)
i=1

We then adjoint the constant functiog = (fo Ck (X) dﬁ”x)_1 to {u;}j~ to form a
complete O.N.B. foH.

4.3.4. Finite Dimensional Approximation for VT. Let T,(t) = Y[, ¢l (t)u;. We
know from Section C.1.1 that

dTh(t) = —In ATy dt + T, f (S(t)) d W
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has a solution with

dd (t) = —ch(t)(zyzwj, T2V dt+ (F(St) dWE, ckui) .

j=1

n
SinceVTy(t) = Y _ ¢, (t)Vu;, we have
i=1

n
(ZK2VT,, VT =D ek (Z¢PVui, B?Vuy)).
]
Hence,

d(SYAVTa(t), SEAVTa (D)

ZZc‘n(t)dc}](t)(E%ZVui, Ei’ZVuj)+Zd(Cin(t), ch®)(ZK?Vui, V)
ij ij
= 2(ZPVTa(), dZPVTL) + d Tr SV ). (4.23)

We proceed to investigate each term of the above.
4.3.5. Computation of2(ZE2VT,(t), dSL2VT,(t)). This term can be written as

n
2> d ) dgh) (SF2vu, T¥2vu)
i

n n
2> e :— > ek (ZPVu, Vy;) dt+ (F(S(t) dW, ceuy)
ij K
x (ZK?Vui, TE?Vu))
n
= —2) i) (ZK?Vuj, TPV (ZPVu;, =?Vu) dt
ijk
n
+2Zc‘n(t) (f(St) dWE, cuj) (EF2Vu, =F2vu;)
]

n
= —2) (ST, T¥Vu) dt
j

+ ) (FSO) AW, ckuy) (ZPVTa(t), =(?vu;) (4.24)
]
= —2) (ST, TFVu;) dt
i
+ (ZRAV L), ZE?V (T(S(t) dW)) (4.25)
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= —2) (=T, SFVu;) dt (4.26)
j
+ (F/(S) (SKAVS®)) dWE + f(S(t) d (Z2VW), SKAVTL (D). (4.27)

Note that, from (4.24) to (4.25), we have made use of the special property (4.22) of
the basiqu;}i> ;.
For (4.26), it is a negative term.
For (4.27), we write it asl M + d M where
dM® = (f'(S() (S¥AVS1)) dWE, SEAVTA (D)), (4.28)
dM? = (f(S)d (S¥VWY), SEVT,(1)). (4.29)

Note thatM? andM® are martingales.
From (4.23) and (4.27), we have

|=¥2v T,

IA

t
| =K@+ M® + M + / dTr{Zi*VTa()
0

= sup | =¥2vT.m)°
ref0,t]

IA

c{Imomo]*+ sup i+ sup
rel0.t] refo,t]

t
+ / dTr(ZF2vTam))
0

4
}. (4.30)

Using Burkholder’s Inequalitys {suge[oﬁt] |=H2v T () ||8} can be bounded by

4

t
C {E | 2¥2v T, + E<Mt(1)>2 + E<Mt(2)>2 +E / dTr(=¥2vT,m)| L
0

(4.31)
We will treat each term separately.

4.3.6. Computation ofd<Mt(1)>. Recall that
dM® = (f/(S() (SHAVSH)) dWE, ZE2VTa (1))
= (f'(St) dW, (SFAVS(t), SHAVTa())) .

Hence,

d(m®)

= ([f/(SE)A“T/(St)](ZK2VSH), T2V (), (ZKAVS), TEAVTa(b)) dt

= // f/(S(t, x)A“(x, y) F/(S(t, ¥))

X,y)eOxO

x (ZKAVS(t, y), PVt v)) (ZREVS(E, %), TPVt x)) dL"y dL x dt
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=C / IVSE, WIVTat, IHVSE, )| [VTa(t, x)|dLx dLy dt
)

IA

CIIVS®) 2 VTaIZ, dt.

(In the process, we have made use of (B.37).)
Thus,

t
(M) < [ 19SOI 1Tl dr 432
0

4.3.7. Computation ofd Mfz) . For simplicity, we will omit thex¥? factor, which

merely introduces a bounded transform of the function space with a bounded inverse. In
this case,

d(MP) = (1 (S1) dYWE, VTa®) = D (F(SH) dopWg, 9Ta(®) it
p

Thus,

d(MP) = 3 (F(SO) [3pge Adpc] FSDIFTa(D), pTa(D)) di
p

p (x.y)
x f(S(t, ¥))3pTa(t, ¥)9pTa(t, x) dL "x dL"y dt

C
= a2 // IVTa(t, Y IVTa(t, )| dL"y dL"x dt  (by (B.38))
X

= 3 IVTaOI.

Hence,

C t
(M) = 2 /0 IVTa(0)12, dr. (4.33)
4.3.8. Computation ofd Tr(Z¥?VT,(t)). The above equals

Y _de®, ) (k?vui, =Pvuj)

i]

= > (F(SM)Af(St)ckui, cxyy) (ZK2VU;, TE2Vy;) dt
i]

= 3 (F(SM)A* F(St)CkUr, o) (SE2VU, TE2vu) dt
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- / / £ (S(t X)AS(X, ) f (S(. y))Ck ()i (¥)Ck (x)U; (x) ALy AL
X, y)eOxO
x (ZK?vu, ZE?vu;) dt
= /CK(X)ui(X)f(S(t,X)) {/Ae(x, y) f (S, y))cK(y)ui(y)dE”y}
X y
x (ZEAVu;, Vi) dL"x dt
= / ck OO () T (S(t, X)) / (ZPVy (A“(x, y) T (S, ), Y Vyui (y))
X y
d."y dL x dt
= / / (BP0 Vy Vi [ F (S X)) A“(X, y) F (S, y) ] ZAY) Vyui (),
x Jy
20 Vit () ALy dL"X x TRV, Eﬁ’ZVui)_l dt. (4.34)
(Note the use of (4.21) in the above computations.)
To continue, we set; = S?Vui/ | Z?Vui | ,. Then, {U; = (Uf,.... UM} _,
forms a sequence @fthonormal vectors for thevector-valuedHilbert space,
L5y (0) = L%(0) x --- x L*(©)  (n-fold product).
SetK(t, X, y) = f(S(t, X))A(X, y) f(S(t, y)). Then the integrand in (4.34) can be
written as

SPOOZKAY) Y ox, (Z oy, K (t, X, y)uip<y>> URIOY!
q p
= D200 ZRAY) Y [0y, dy, K (. X, ) ] UP (1)U 0).
Pq
Let Apq(t, X, ) = ZF2(X) E2(y)dy, dy, K (1, X, y). (4.34) is the same as
Z// Zqu(t, X, Y)UP(y)Ul(y) dL"y dL"x dt.

x.¥) pq

We can now make use of the formula for vector valued trace class operators as in
Proposition B.4.2:

dTr (ZE2VTa ()
< TrA(t)dt

— /Z(App(t,x, x)) dL"x dt
X'p

= /[sz)axpayp[f(sa,x))Ae(x, y) f (St )]
X p

dL"x dt.
x=y
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The term in the bracket equals

f/(S(t, X)) (3%, S(t, ¥)) (3y, A°(x, V) F(S(L, ¥))

+ (S x) (3,A°%, ) F/(S(t, y)) (3y,S(t, )

+ F(S(t, X)) (3%,y, A (X, ) F(S(L, )

+ F/(S(t, X)) (3%, S(t, X)) A“(x, y) T'(S(t, ¥)) (3y, S(E, ).

Making use of the computations in Section B.5.3 and their simple variants,

1
dTr (Vo) <C{/|V8(t )2 AL+ /|VS(t x)| dL"” 2}olt.
Absorbing the middle term, we get
t t
Tr((z&’szn(t)» <C {/ IVSr)f. dr + 2n+2} (4.35)
0

4.3.9. Combination of Results.Substituting (4.32), (4.33), and (4.35) into (4.31), we
get (recall that we only care aboutQt < At)

t
E{ sup ||VTn(r>||Ez} < C{E||VTn(0>||Ez+m/ EIVSEO)IL: VT, dr
ref0,t] 0

At [t 4
+—E4n+4/0 ENIVTaI. dr

+At3/tE||VS(r>|| dr 4 20 }
0 8n+8

Let 6 be a small positive number to be specified later. Recall the inequadities
2a® + 0b? anda < a + 1. Then the above can be bounded by

At
{E IVTa Q)P + — 7

t t
fEnvsmnEz dr+9Atf E [VTa(0)1%, dr
0 0

At [t o . [ . N
o [, (EIVTaOIL +1) dr 48 | EIVSOIL: dr + g

At t
4 At3) | ErvsOe. ar
0

At
E ||VTn(O)||L2 + —=— conie + o

At
+<9At + +4)/ EIVTa(n)II, dr}. (4.36)
0
Let Dn(t) = E {SUp.o IVTaMWI2}. Ds(t) = E {sup o IVSMIIT.}. Since we

have E ||VTn(O)||‘E2 < CAt~8 pecause of the property of the special basis ((3) in
Section 4.3.3), we can write (4.36) as

1 At ! 2, At?
Dn(t) = C e+ 5 + Atd /ODS(r)dr—i- OAL" + = ) Do) 1
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Choosefl = 1/(4CAt?) ande*™+* > 4CAt2. (Recall the remark at the beginning of
Section 4.3.) Then,

t
Dn(t) < +cf Ds(r) dr.
0

68n+8At8°‘

Letn — oo. We have

A

E{ sup IIVT(A)IIfz} < liminf Dy(t)
Ar€[0,t] n

C t
< —— _+C | E{sup|VSW|E}dr. (4.37

4.3.10. Proof of Theorem 4.3.1Recall that the solution of (4.3) is obtained by Picard’s
Iteration (Appendix C.1.5).
SetSin the previous section to be the solution in tine— 1)-th iteration, T"~*. Let

D™ (t) = E{ sup HVT”(A)HfZ}.
A1€[0,t]

C

Let alsoA = gy B = C. Proceed inductively from (4.37),

t t ety
D™W(t) < A+ B/ D™Dty dy < A+ ABt+ BZ/ f D2 (t,) dt, dty
0 0 JO

BZtZ B"t" Bn+1tn+1
< A+ABt+A— 4+ -+ A— + .
2 n! (n+1)!

(We have used the identity as in (C.15).) Taking the limit— oo,

- ™
I|mnsupD ") < Aexp(BY < g e

Finally,

E{ sup ||VT(A)||§Z} < lim inf D™(t) < (4.38)
]

refo, At 88 A8«

That is exactly the statement of Theorem 4.3.1.

4.4, Continuity in Time Estimate for the Temperature Field

4.4.1. Theorem.If {T (t)};>q Solves (4.3) with VTl 2 < CAt™, then

8 CAt?
E tefoug] IT® = Toll= ¢ = 55 (4.39)



Existence of Dendritic Crystal Growth with Stochastic Perturbations 519

Remark. What is crucial here is the positive exponent of thie Its exact value is not
important. It can be improved to 3 by estimating in an iterative way.

Proof. The proof makes use of the temperature gradient estimates (4.17).
From the definition of the solution of (4.3),

t t
T(t)—To=/ AT(S)dS—i—/ f(T(s)) dW.
0 0

By Ito’s Formula,

IT) — Toll?,
t

t
= 2f (AT(S), T(s) — To) ds+ 2/ (f(T(sH AW, T(s) — To)
0 0
t
+/ Tr[f(T)A F(T(s)] ds
0

t t
= —2/ (ZKPVT(s), TPV (9)) ds+ 2/ (ZK?VTo, TK?VT(9)) ds
0 0

t

t
+2/ (f(T(s) dWE, T(s)—T0)+/ Tr[f(T(s)HA F(T(s)] ds
0 0

= sup [TR) — Toll3
1€[0,t]

A
/0 (f(T()dW;, T(s) — To)

At
= C :/ [VToll IVT(9)| ds+ sup
0 2€0.t]

+At}.

Hence,

4

A

At
sup [T —Toll®, < cat*+C (/ IVToll IVT (s)l dS)
rel0,t] 0

4

+C sup
1€[0,t]

r
/0 (f(T(9)dWg, T(s) — To)

A

CAt4+CAt4{ sup ||[VToll* ||VT(s)||4}
te[0,At]

4

A
+C sup / (F(T(e)AWE, T(s) — To)
0

1€[0,t]

IA

cat? {1+ sup (IVToll® + ||VT(S)||8)}

se[0,At]
4

+C sup
A€[0,1]

A
/0 (f(T()dW, T(s) — To)
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Upon taking expectation, using (4.17) and Burkholder’s Inequality,

E[ sup [T(A) — Tollﬁz]

A1€[0,t]
1 1
4
= Cat {AIBO‘ + At8a68n+8}
t 2
+CE</ (FTE)A T (T(S)(T(s) — To), T(s) — To) dS)
0
AN
= C—s €8n+8 +CAtE/ IT(s) — T0|||_2 ds
At4 8a ) 5
< (C—ge + At +CAtE/ IT(s) — Tol®, @<a’+1

Atz t
< C——= + At E{ sup IT) — To||‘ﬁ2 ds. (providedq is small enough.)
eBn+8 0 2e[0,8]

By Gronwall’s Inequality, we have the desired result:

CAt?
E{ sup T — Tollfz} < s (4.40)

2€[0,A1] 8n+8

5. Global Energy Estimates

A crucial step in proving the main theorem is the global in time estimation of the energy
E. Itwill be used to prove the compactness results in Section 6.3. Two facts in this aspect
are that the energy is alwaysdecreasingafter each minimization, and its changes
during the heat flow steps can be estimated by measgohastic integrals The final

result then follows from martingale inequalities.

5.1. Ito’'s Formula for the Bulk Energy (Fixed Crystal)

To achieve our goal, we make use of an extension of Ito’s Formula (B.29) for the norm
square of a process which takes values in a Hilbert spladeis this formula that takes
into account thestatistical cancellationproperty ofwhite noisetype driving force.

The main result we need is the following Theorem. It was proved in [Par]. In [Yip],
a simpler proof is given making use of thempact embeddingbetween our function
spaces.

5.1.1. Theorem (Ito’s Formula for Energy—Fixed Crystal). Let F be the bulk energy
functional as in Section 3.1 and(f) be the solution of the heat equation (4.2) (or (4.3),
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to be exacdP). Then,
t
/ Ck F(T(t))d[,n—i-/ / F"(T(s)) (2 VT(s), VT(s)) dL"ds
(@) 0 JoO
t
= / CKF(T(O))dEn+/ f ck F'(T(s) f(T(s))dWsdL"
(@] 0 JO

t
-%f Tr[ck F/(T () f(T(s)Af(T(9))] ds. (5.1)
0

Remark.Here,F” (T (s)) andf (T (s)) are regarded as multiplicative operators on spatial
functions (Appendix B.5.1).

5.2. Global Energy Estimates (Varying Crystals)

Now we proceed to estimate the energy globally, taking into consideration the mini-
mization steps. Recall the notati¢K;", T, U;”, Q;") as the state & (right before
minimization att;) and (K;", T;", U;*, Q") the state at;" (right after minimization at
t;). Note thafl;" — T2, by the heat flow process a[, ; = K;". By the measurable
selection (Section 3.3[K;*, T*, U/*, Qf'), is F, -measurable. This allows us to use the
formulas concerning stochastic integrations.

LetE(t) = £ (K (1), T(1)). SinceE(t") < £(t) by the minimization procedure, we
deduce

EtH < &ty
= £t) —EMT ) +EWT )

< EMDH+ D _EXT) —EET)
i=1

< £t + Y _EM) —E®T ). (5.2)
i=1

Making use of Theorem 5.1.1, we arrive at the following.

5.2.1. Proposition (Energy Bound—Varying Crystals).
t
€(t)+/ / F’'(T) (2« VT, VT) dL"ds
0o JO

t t
< 5(0)+/ f Ck F/(T)f(T)dWSd/:”—i—%/ Tr[ex F/(T) F(T)Af(T)] ds.
0 JO 0

This leads to the following global energy estimates.

15 The smoothing has no effect in the global energy estimate.
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5.2.2. Theorem (Global Energy Estimates)For all positive integers m,

E { sup <1>(8Kt)m} , E [ sup [Tl + IIUtll["z] and
tel0,1] tel0,1]

1 m
E [(/ IVTSlIZ. + 1IVUsII? ds) } < Cn. (5.3)
0

t t
Proof. LetMt:/ / Ck F’(T)f(T)dWSdE”:/ (e F'(T) f(T), dWs). Wethen
0

0 Jo
write Proposition 5.2.1 as:

t
EM) + / / F’(T) (Zc VT, VT) dC"ds
0o JO

t
< &0 + M; + %/ Tr[ck F/(T) f(MAF(T)] ds. (5.4)
0

By the fact thatF'(T) f (T) andF”(T) f(T) arebounded we have
t
(M), = / (Ack F/(T)£(T). ok F'(T) f(T)) ds < Ct,
0

t
%/ Tr[ck F/(T) f(T)Af(T)] ds< Ct.
0

Applying Burkholder’s Inequality (B.4) tdv,

E(sup|Mt|zm> < CmE[(M)T], (m > 0).

te[0,1]

Then, starting from (5.4), upon taking power and expectation, we arrive at

° Ei sup d)(aKt)m} <Cm;
te[0,1]

. E{ sup ([ CKF(Tt)dH‘) } < Cm;
te[0,1] \JoO
1 m
o E |:</ / F"(T)(Zk VT, VT) d£”dS> :| < Cn.
0 O

By the growth form forF (Section 3.1),

T2+U2<F(M)+C, Ci+CU*<F"(T)
= VT2 +|VU? < F/(T) (2« VT, VT) +C;

the asserted result follows. O
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5.3. Hdlder Continuity Estimate for the Heat Evolution

In this section, we are going to show that the heat evolveddét ‘continuously in time”
in the discrete scheme. Precisely, we will establish the following:

5.3.1. Theorem (Hblder Continuity in Time of Heat Evolution). We can decompose
Q(t) as Q(t) + R(t) such that, for all positive integers m and for@lic s <t < 1,

E|Qt) —Q®)|™ < Cult—sI™, (5.5)
E sup [R®)|™™ < Cnat?™, (5.6)
te[0,1]

A

A

PreciselyQ’(t) will describe the evolutions during the heat flow &idt) the changes
during the minimizations®

Recall that the space of heat distributions is endowed withMbdified Monge-
Kantorovich Norm (Section 2.1.3),

IQ—=Pl.=1Q~PI,+|Q—P|.
The proof of the Theorem goes by careful estimations of the corresponding terms.

5.3.2. Decomposition forQ(t). Let Q;” and Q;" be the heat distributions at tinte
(right before the minimization) ant (right after). ThenQ;" is changed t®Q;, , by the
heat flow process.
Consider (for simplicity, O< tq < 1)
Q= Q—Q+Q —Qq1+Q 1~ Q1+ Q 1~ Q2
...... + Q+_QI+QI—Q0+Q0

q
=2 Q" -qQf +ZQ’ Q, + Qg

Set
RO = > Q —Q .7)
O<tj<t
QM = QM -RM = > Q —Q",+Qg. (5.8)
O<tj<t

We will estimateR'(t) andQ’(t) separately. The theorem will then follow.

5.3.3. Lemma (Estimates forR'(t)—Minimization Step). For all positive integers
m1

E sup IR®[™™ < cat?™. (5.9)
€[0,1]

16 Because of the jumps in the heat distribution during the minimization steps, the heat evolution is not
continuous in time, but ratheight continuous with left-hand limit , the so-calleadadlag process.
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Proof. The terms inR'(t) measure the changes of the heat during the minimization

steps.
By the definition of the minimization procedure, we have

EH +

NG ~or - o =)

|QF —Qr|l, = at* {e) —eah}
Note that the heat contents@ﬁ andQ;” are the same. Hence,

R

q
> lar-arll,

At Z EWT) — EET)

q q
{Z EG)—EG D+ EtTy - S(t#l)}
i=0

i=0 i=

IA

IA

IA

IA

b
At“{g(tg)—g(t+)}+m“{2f chF (T)f(T)dW d£"
ti-1

I
+ %/ Tr[ck F/(T) f(TAT(T)] dr}
ti1

Iq

IA

to tp

ty
At® {5('[0) —I—/ (CK F/(T)f (M), dVVr>+ %/ Tr [CK F”(T)f(T)Af(T)] dr}

tq tg
< At {5(0)+/ (ck F'(T) f(T), dV\4)+%/ Tr[ex F/(T) f (T) AT (T)] dr}.
0 0

The lemma follows from taking powers and then invoking Burkholder’s Inequality. It is
quite similar to the proof of Theorem 5.2.2. O

5.3.4. Lemma (Estimates forQ’(t) — Q'(s)—Heat Flow Process).For all positive
integersmandforald <s <t <1,

ElQt) —Q®|M<Clt—s™. (5.10)

Proof. ThetermsinQ’(t) — Q’(s) measure the changes of heat caused by the following
diffusion equation:

dQ = div(ZkVT) dt +ck f(T)dW;
t t
ie., QM) —Q(s) = / div(Zk VT) dr +f ck fF(T)dW,.
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Without loss of generality, assurse= t, andt = tq. Now,

IR -Q ). = Z Q -Q,

i=p+1

i=p+1 %

Step I: Estimation for the Change of the Heat Content’Ziq=er1 Q - Qitl’. Con-
sider (note that © = @.),

/ i) dc” —/ /dlv(EKVT) dchdr + ok f(T)dW dC”
Oi= p+l

tq
/ / ck F(MdW dL" = / (ck F(T), dW,).
tp

Hence,
q tq
> (@ - Q)| =|[ et aw) (5.11)
i=p+1 tp
By Proposition 5.3.5, we get
q 2m
E| D> (Q—-Q")| =Calt—s". (5.12)
i=p+1
Step II: Estimation for the Monge-Kantorovich Norm H Z?ZPH Q — i+—1H . Let
Lipp <1 and [, ¢dL" = 0. Consider:
/ —Qy) @dL”
Oi= p+1

t,
=/ /div(EKVT)godL”dr—i—/q/ ock F(T)dW dg”
t, JO t, JO

tq fq
—f f (T VT, Vo) dL"dr +/ (@, ck T(T)dW)
t, JO tp

tq 1/2 tq
C (/ / [Vol|? d/:”dr) (/ / VT2 dL”dr)
t, JO t, JO

fq
/ (@, chde)‘
t

p

tq 1/2
C [ty — tp| ™ / / VTR dcdr ]+
t, JO

1/2

IA

+

A

tq
/ (o, CKf(T)dVVr)‘. (5.13)
tp
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The second term of the above can be estimated as

fq
<w,f cK f(T)dw>
tp

However, since Lip < 1 andfo ¢dL" = 0, by Poincag’s Inequality, we havéyp|| > <
C. Hence, taking powers on both sides of (5.13) leads to

tg 2m
‘ < Cultg — tp|" (/ IVTIZ, ds)
tp
ES

2m
The whole lemma then follows by the energy estimates Theorem 5.2.2 and the next
result. (Its proof is elementary.) O

=< llellL2

tq
/ Ck f(T)dVVr

tp

fq
f (0. ch(T>dV\4>’=
tp

L2

9
Y Q -Qh,

i=p+1

tq
+Chm f ok F(T) dW, (5.14)

tp

L2

5.3.5. Proposition. Let M, be a continuous square integrable Hilbert space valued
martingale with d{(M)); = I'y dt andTrI'; < C (a deterministic number). Then, for all
m>1,

E(IM{— MgJ|*™) <Cnmlt—s™, 0<s<t<l (5.15)

6. Convergent Subsequence

In this section, we are going to show the tightness of probability measures induced by
the discrete scheme. The notion of convergence we use iwg¢hk convergence of
probability measuresor convergence in distribution (see Appendix B.2).

There are several steps. We need some compactness properties of the function spaces.
In addition, we will introduce atopped versionof the evolution. (This is an artifact
due to the limitation of our compactness results.) Tightness follows from the global
energy estimates. Finally, we will make use of an extended version of Skorokhod’s
Theorem to reformulate weak convergence in termambst sure convergence on the
same probability space This last part not only makes many later computations more
transparent but also allows us to freelympare the discrete and limiting evolutions
This is crucial when we want to prove varifold convergence of the crystal positions
by exploiting the fact that the discrete evolutions are obtained through minimization
procedures.

6.1. Compactness Properties for Crystals, Temperatures, and Heats

The main idea for the compactness of the function spaces comes from the relationship

Q=cT o T=clQ



Existence of Dendritic Crystal Growth with Stochastic Perturbations 527

(In practice, they refer t@QN = cxn TN, whereN = 1/At—the discretization level.)
Note thatck is adiscontinuousfunction in the spatial variable. NoWT ||, 2, || 1/T|| 2,
VT 2, and||V1/T| . can be controlled by Theorem 5.2.2. HenceQlf converges,
S0 mustk v . But from Theorem 5.3.1, indeed we ha@®' converging to some limiting
heat distribution (up to a subsequence).
First we describe the compactness results in the deterministic case. They are proved
in [AW] Chapter 6 and reformulated by an anonymous referee for [AW].

6.1.1. Remark—Nontrivial Crystal Configurations. The compactness criterias de-
veloped here rely on the fact that the crystals roatrivial , i.e., the domain isiot
totally frozen or melted. In this section, we will assume that there is a (small) positive
numbery such that every crystdd € KC satisfies the condition

Y101 < L"(K) < 1 -p)10]. (6.1

Such a condition is to “force” the crystal to have some boundary inside the ddnain
This will then exclude the wild oscillations of the crystal betwééen= ¢ andK = O
when we apply the following results.

The next proposition is the starting point of our compactness argument. However, we
believe thatitis not necessary to restrict to such nontrivial configurations if we impose the
Dirichlet boundary condition for the temperature field (instead of the periodic boundary
condition as in the present setting). This was suggested by one referee of this paper.

6.1.2. Proposition. [AW, Thm 6.1] Suppose

e K and L are two crystals i’ with L"(KAL) > O.
e Q is a single heat distribution iQ.
o T = cng and S= c[lQ are the corresponding temperature fields.

Then, VT2 + VLTl .2 + [IVS|lL2 + [V1/S]| 2 = oo.

6.1.3. Corollary (Close Crystal Positions).JAW Cor. 6.2] Given any positive numbers
€ (small) and M (large), there exists> 0 such that, if

P and Q are two heat distributions witlP — Q|| < 4,

K and L are two crystals ifC with ®(dK) and®(dL) < M,

T= cglP and S= cle are the corresponding temperature fields,
Tl + LTIz + ISl + [11/S] L2 < M,

VTl + IVUT (L2 + IVSIlz + VLS| 2 < M,

thenL"(KAL) < e.

6.1.4. Corollary (Close Temperature Fields).JAW Cor. 6.3] Given any positive num-
berse (small) and M (large), there existsséa> 0 such that, if

e P and Q are two heat distributions witfP — QJ|.. < 4,

e K and L are two crystals witl£" (KAL) < §, ®(@K), and ®(9L) < M,
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o T = c;lP and S= c[lQ are the corresponding temperature fields,
o [Tl +111/T 2+ [1Slee + 1182 < M,
o VT2 + VT2 + IVS|La + VUS| 2 < M,

then|| T — S|l .2 + |L/T —1/9]| 2 <.

From the above results, we can formulageace time convergenceThis was sug-
gested by an anonymous referee for [AW]. Such an approach makes the convergence
scheme much more transparent and easier to be handled than the original arguments
in [AW].

6.1.5. Theorem (Space Time Compactness for Function Space}iven a sequence
of time-evolving crystal positions, temperature fields, and the corresponding heat distri-
butions K(-), Ti(-), Q(-) = ¢k, Ti (-) such that, for all i,
e sup ®(K;(t)) <C,
tel0,1]
e sup [TiM)ll2 + I1/Ti®]2 <C,

tel0,1]
1

o [ VTl IvIm @l de<c,
0
e Qj(t) — Q(t) uniformly in t € [0, 1] in the modified Monge-Kantorovich norm,

then there exists K) and T(-) such that
1
/ IKit) — K ()2 dt —> 0, (62)
0

1
/0 1T = T + 11T () — LT[, dt — 0, (6.3)

and Q) = ckh T().

Proof. For the first statement, letbe an arbitrary positive number. Choadsgeto be
such thaC/M < e. Let§ be the number gotten by Corollary 6.1.3 for suckeamd M.
Next chooseN such that, for all, j > N,

Qi —Q].<s  Vvtelo 1]
Let G; andG; be the set ofood times

Gi
G;

(t IVT®O e+ IV Ol < M),
{t IVTO].+ V1T O] < M}

Thenc'([0, 1\Gi) < C/M, £X([0,1)\G)) < C/M, and|K;(t) — Kj(t)| , < € for



Existence of Dendritic Crystal Growth with Stochastic Perturbations 529

allt € G; () G;. Hence,

1
[ Ik = k0], a
= / [Kit) — Ky . dt + IKi ) — Kj®)] . dt
G (G

€ +2C/M < 3¢;

/[0,1]\& MG

IA

i.e.,Kj is Cauchy inL{ (O x [0, 00)).
For the second statement, lebe any positive number. Choos¢ > 0 such that
C/M < e. Leté be the number gotten from Corollary 6.1.4 toand M.
From the first statement, there is Bnsuch that, for all, j > N,
1
/0 [Ki®) — Ky ®] ., dt < es,

Q) —Q].<s  Vvtelo.1]
Let H; andH; be the set ofood times

Hi

[t |Ki) = K| 2 <8 IVTOIZ + IVUT®))12. < M.}
[t [ki© - K] 2 <8

H;

VTOIE+ [VIm®[E = m ]

Then, £Y([0, 1]\Hi) < €8/8 + CIM = 2¢ (similarly, £1([0, 1]\H;) < 2¢). In addi-
tion, we have| Ti (t) — Tj(t)|| , < e forallt € H; [ H;. Hence,

1
/0 IT® - T 0], dt

= / [ Ti) —Tj(t)||fz dt+/ 1T t) — 17T (t)||f2 dt
H (O H [0,1\H; () H;
< €+ C(4e);
i.e., Tj is Cauchy inleoc((’) x [0, 00)). Similar results hold for ;. O

6.2. Nontrivial Crystal Configurations

Now we return to Remark 6.1.1.

The condition of nontrivial crystal occupancies (necessary for the compactness result)
might not be preserved for all time due to the white-noise driving force in the heat
equation. (In the deterministic case, the energy of the system is always decreasing, so
there are ample initial conditions such that this nontriviality of the crystal shape holds
for all time.) We show thathis condition is true up to a stopping time.

Leto > 0 be a fixed small number throughout this section.
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6.2.1. Proposition (Sufficient Condition for Nontrivial Crystals). [AW Prop. 3.5]
Given any (large) M> 0, there is a (smally > 0such that, for any Le K and Pe Q
with

IA

/ P2+ P2dL" <M  and (6.4)
O

<I>(8L)+/ cLFetP)dL" < min {c F(q‘lﬁ),csF(cs‘lﬁ)}K’)l —o0, (6.5)
o

whereP is the spatial average of P, then a@, At, P) minimizer(K, Q) satisfies
Y10l < LK) < (1-p)|0].

Proof. Assume the contrary, i.e., there is&h > 0,11 — 0,andL; e K, B € Q,
such that

/ P|2+ Piizdﬁn
]

IA

M, 6.6)
d><aLi>+/ oL FE*R) AL < min{aF (G ). aF (e P} 10l — 0. (6.7)
(@)

and a(&, At, P) minimizer (Kj, Q;) satisfies
LK) =y |0 or LK) =1A-wn 0|
By the definition of a minimizer, we have

1
At

@K+ [ o Feq QAL+ 1Q — Pl = @@L) + [ o Fe!R) L
(@) O

Due to the uniform convexity d¥, the middle term of the L.H.S. of the above is bounded
below by (JAW], Prop. 3.1)

P P
Fl— " Jd'=mest+A—ma)F[—— 0.
e (y.cs+<1—y.>q> e+ =ma) (y.cs+(1—y.>q)' |

From (6.6),6; < P, < 8, for some fixed positive numbess ands; (depending on
M). Taking a convergent subsequence (still denotdd bych that, — a, 1 — 0,

then
ma|oF () aF (§)} < {or () oF (3)} -
Cs a Cs o
which is absurd. O

To apply the above resultl., P) will be the crystal and heat distribution right before
each minimization an& will be the crystal right after.
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6.2.2. Admissible Initial Conditions. Initial configuration(Kg, Qo) is calledadmis-
sibleif

@ (9Ko) +/OcK0F(cngo)dcn < min{csF(cs'Qo), GF(¢ Qo)) 0 —0. (6.8)

The fact that there exists such an initial condition can be seen as follows.
LetO <r < 1,L"(Kg) =T |O|, andTy(r) be the constant temperature field satisfying

(rcs+ (1L —r)o)To(r) = Qo (preservation of heat content).
We claim the existence d€q(r), Q,, andr such that

®(IKo(r)) + (res + (1 —r)g) F(To(r)) |O]
< min{csF(c5' Qo). GF(G'Qo)} 0] —o. (6.9)

e (Recall thatF is uniformly convex, nonnegative, afé(T.) = 0 for someT, > 0.)
Pick Qg satisfying

— < Ty < E’ i.e., GT, < @ < qgT,.

e Choose giving To(r) = T,.
o Ko(r) exists if|O| is large enough.

6.2.3. Proposition. Start from eachinitial admissible configuration of crystal and
heat distribution, at each level of the discrete scheme & 1/N), and there is an
almost surely positivestopping time N and arandom number N such that the
crystal satisfies

yN1Ol < "KN@t) <@ -yN) 0] forO<t <1\, (6.10)

Proof. (The superscripN is suppressed for what follows until the very last.) From the
previous proposition, at each minimization step, we want to ensure condition (6.5):

Et) = <I>(8Ki‘)+/ocKifF(CE}Qi‘)d/;n
< minfesF (6 'Q)). aF (G QN } 101 - 0 (6.11)
The L.H.S. of the above is bounded by (Proposition 5.2.1)
£(0) +/Ot {ck F'(T) F(T), dV\/r)Jr%/Ot Tr[ck F/(M f(MAF(M)] dr.  (6.12)
We tighten the sufficient condition (6.11) to
£0) + /Ot ek F'(T) F(T), dW,) + %/Ot Tr[ck F/(T) f(T)AT(T)] dr

< min {CSF(cs‘lQ_f), o F(Cle_f)} 10l — o
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Set
t
ls(t) = 5(0)+%/ Tr[ex F/(T) £ (T)Af(T)] dr
0
t
— s (c; QM) 0] + /0 [CFMEM, dw).  (6.13)

The same definition holds fdr(t) with cs replaced by .
All the quantities in the above expression eoatinuousin time. We can then define
the stopping time,

N =minft : Is(t) = —0 or Ii(t) = —o.} (6.14)
Choose initial configuratiotK, Qo) such that
£(0) < min{csF(cs'Qo), G F (G Q0)} 0] —o; (6.15)

thentN > 0 a.s.
The random numberN depends on

sup{/ TNO2+ TN 2dL", telo, 1]} )
O

6.3. Tightness of the Discrete Scheme

Using the previous sections, we now show that@pped versionof our discretized
evolutions are compact in the sense of probability measures.

6.3.1. Reviewof Notations and ResultsLet XN = (KN (t), TN(t),UN(t), QN (t))tef0.15

be the evolutions generated by the alternating minimization and heat flow process
(N = 1/At). Then they are random variables defined on a probability s(ace, F)

taking values inS.*” There is also a Wiener Proces;, 7;; 0 <t < oo} defined on

Q. Let uN be the law ofXN on S.

6.3.2. Definition of the Stopped ProcessAs mentioned earlier, in order to make use
of the compactness results in Section 6.1 to show the tightness af'tegthe crystals
must be nontrivial. This condition is true only up to a stopping tirtle We will modify

the evolutionXN afterz™ for mathematical conveniencéle will not assert anything
about the evolution afterzN. We do not know whether such a modification is absolutely
necessary. At the moment, it seems quite artificial. In addition, the state Spéttde
expanded to include more information

17 Note that the heat evolutions are not quite continuous in time due to the jumps in the minimization steps.
We will take care of this in Section 6.3.4.
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1. LetK, beany fixed crystal and T, be any fixed constant temperature field We
now introduce thetopped process

X = (KN®, TN 0, UM 0, QY1) oy -
where

KNt = KN@)y  fort <z, K, fort >N,
TN = TN fort <N, T. fort > N,
uNt) = TNt fort €0, 1],

QVNt) = QVt)  forte (o, 1].

2. Consider the definition fais(t) (6.13) (and similarly fod, (t)),
t
It = £0) + %/ Tr ek F/ (TN FTNHATTN] dr
0
—csF (e QN ) (0] + IN(), (6.16)

whereJN () is aF;-martingale with quadratic variation
t
/ (Ackn F/ (TN £(TN), cn F/(TN) £(TY)) dr. (6.17)
0

These processes act like indicators to give extra information about the nontriviality
of the crystals. From them we define

N =inf{ti: Istt) = —o. Ii(t) > —0o.} (6.18)

Consider the “revised version” cbg\‘ (t) (and similarly forI,N(t)),

t
1N = 5(0)+%/ Trcen /(TN FTHAT(TN] dr
A !

—oF (VM) (0] + 3N, (6.19)
DenoteJN(-) = IN().
What we have done so far is to define the stopped process from the original one:

[XN = (KN, TN, UM, QY), N} — 1IN ey — T (620

tef0,1]
v ’ v
X = ETLUEL QD W oy — (L Lihoy — 77 (6209

By (6.18),rN isalso aﬂxy'J*N -stopping time, WheerFtX*N’J*N is the filtration generated
by XN andJN.
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6.3.3. Theorem (Tightness of the Stopped Procesd)etT'N be the law of
XY0, 3O} oy  OnSxC(0,1] R). (6.21)

Then{r'!'},., is tight.

Proof. Let uN be the law ofXN on S. Clearly it satisfies the same estimatesds
(Theorem 5.2.2). Hence, for all> 0, there is arM > 0 such that

) { sup ®(@Ke) + I Tellfo + Uelf> < M} > 1—el4,
tel0,1]

1
[y {/ IVTlIZ + VU2, dt < M} >1—€l4.
0

By Theorem 5.3.1 and Theorem B.2.2 (see the remark following this proof), there is
a compact subsé of C([0, 1], Q) such thauN (7, *B) > 1 — /418
Consider the set

A = {ts[gg]dnaK(t)H ITOIZ. + IUMDIZ. < M}

1
N {fo IVT®IZ. + IVU 2, dt < M}ﬂ(n;lm.

Clearly,uN (A) > 1—3e/4. According to Proposition 6.2.1, there ig a- 0 (depending
on M) such that

10| < LK) < A-p)|0], ul as.for 0<t <M.

By Theorem 6.1.5Ais compact in the metric @&. (Note that even though the relationship
QN = ckn TN does not hold fot > N, the compactness result is still applicable since
the crystals and temperature fields are fixed after that.)

SinceJN(t) € C([0, 1], R), from (6.17) and Proposition 5.3.5, we can invoke B.2.2
again to conclude the existence of a compact sub#tC ([0, 1], R) such thal"'N (S x
C)>1-—¢/4d

Finally, we haveI'N((A x C([0,1],R)) N (S x C)) > 1 — €. The theorem
follows. O

6.3.4. Remark—Indirect Usage of Theorem B.2.2The original version of B.2.2 does
not apply directly in the above proof, as the sample paths of the heat distrib@fb3,
strictly speaking, are not continuous in time but have jumps. To overcome this, we use
the following twist.
LetC; = C(]0, 1], @) andC; be the collection of heat evolutions which are piecewise

continuous with a finite number of jumps gitN ‘1}1.>0 n-1- C2 is given themetric of

18 114 is the projection fronS onto its fourth factoC ([0, 1], Q).
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uniform convergence LetCsz be the completion oE,. ThenC; is acomplete separable
metric space Letv] be the law ofQN on Cs.

Now, for all N, QN(-) can be decomposed & (t)’ + RN(t) with QN () € Cy.
(Note that the map Q(t) — Q/(t) is a continuous and hence Borel map o1€3.)
By Theorem 5.3.1, we apply B.2.2 Q" (-)’ to conclude the existence of a measure
v, on C; and a subsequence (still denotedNby such that for albounded uniformly
continuousfunctions f on Cz, we have

/f(QN/)dP:/ f(Q')du§—>/ f(Q) dv,.
Q Cy Cy

But, by Lemma5.3.3RN(t)’ = QN(t)— QN (t) — O uniformly int in probability and
so doesf (QN) — f(QN') (f is uniformly continuous). By the dominated convergence
theorem,

/ f(QMy — f(QV)dP — 0.
Q

Hence, we conclude that
/ f(Q)dvN —>/ f(Q)dv*=/ f(Q)dv,.
Cs C, Cs

By the Prokhorov criterion (Section B.2), given any- 0, there is a compact sét
in C3 such that, for alN,

wN(B)>1—e
Thus, the step in the above proof using B.2.2 is justitied.

6.4. Formulation on a Common Probability Space

From Theorem 6.3.3 and the Prohkorov Criterion, there is a subseq(léHan and a
probability measuré€', on S x C(J0, 1], R) such thaﬂ“*NJ — I,.

We now formulate this weak convergence in termalafost sure convergence on a
common probability spaceby an extended version of ti&korokhod Theorem(which
is usually stated for the case of complete separable metric space). The reason for doing
this is that later on we will make comparisons between the limiting random variables
and the approximated ones, treating them as defined on the same probability space.

6.4.1. Proposition (Skorokhod Theorem—Extended Version)Let {T'N} _, be a
tight sequence of probability measures orseparable metric spaceY converging
weakly to a probability measuré on Y. Then there is a probability spac®, F, P)

and random variableXN and X taking values in Y such that the lawX! is TN and
XN — X P a.s. in the metric of Y.

19 Actually, in the original definition ofS, we can even replacg([0, 1], Q) by Ca. Everything remains
unchanged.
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Proof. The proof starts by embeddinginto its completiorlY. Then we can invoke the
usual Skorokhod Theorem [IW] to construct random variabl®sand X, taking values
in Y satisfying the stated properties.

By using the tightness ¢f™™ }N>1, there are compact se@sin Y (and hence compact
and closed irY) such that, for allN > 1, P(XN ¢ C) = r'N(C) >1—2"". Then,
P(XN € UCj) = 1.SinceXN — X Pa.s.,wealsohaé(X € ) > lim sup P(XN
Ci) > 1— 27" This leads tdP(X € UC;) = 1. Hence, we can treat all tHN’s and X
as taking values iy (UC; C Y). O

Applying the above to the case of
Y=SxC(0,1], R) = {X = (K(), T(),U(), Q(), I }efo,1 »

we conclude that there is a probability spatand random variableéf(”, 5”) taking

values inS x C([0, 1], R) with the same law a¢XN, JN) and converging® a.s. to a
random variablé X, J) in the metric ofS x C([0, 1], R). N is defined the same way
asin (6.18).

We are going to study the properties(&N, JN) and(X, J). In the following, E is
with respect toP.

6.4.2. Energy Estimates and Idlder Continuity of Heat Evolution. For all positive
integeram, we have

E{ sup @(BKN(t))m}, { sup HT (t)” n HU (t)H } and

te[0,1] te[0,1]

- 1 - 2 - 2

E [(/ HVTN(t)HL2 + Hqu(t)HL2 dt) } < Cp < 00. (6.22)
0

FurthermoreQN can be decomposed " + RV, such that

E HQ )y — < Cnlt —s™ and E sup H RN < CrnAt2™.
te[0,1]
(6.23)
In addition,
| ~ - 2m
E‘JN(t)—JN(S)‘ <Cnlt—s™. (6.24)

All the C’s are independent dfl.

6.4.3. Minimizing Property. For eachN, we havel'™™ ([ ; Bw.i) = 1, whereBy;
is the collection of elemenig, X) = (z, (K, T, U, Q)) in ([0, 1], S) satisfying:

. s[gg]{eb(aK(t)) FITOIE + UM} <M
te[o,
o T — At > 1.
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e ForallL € K andR € Q suchthaR = Q;-,

1

Ao Qi — Qi

1
Ate

® (OKi+) + / ck,. F (Ti+) dL" +
(@]

scb(aL)+/ PR AL + — [R— Q- |,
(@)

It is easy to show thaBy ; is closed. Hencei,JMqi Bwm is a Borel set. Thus, we also
have

5((%”,)2“‘) GUBM,i> =1 (6.29
M

6.4.4. Martingale Property. Consider the following filtration:

ﬁ“=@a{(XN(r),5“(r)): 05r5t+5}, O<t<oo.  (6.26)

1. Letp € C*(0). We claim thatMN(t, ¢)’, defined as
MYt g) = (QVEA e, o) - (Q¥E. o)
tAzN .
—f <2K-NVTN, w> ds, (6.27)
0

is a FN-martingale. The cross variation process betwisEh(t, ¢)’ andMN(t, )’
is given by

tarN
(Mo ) = [ (ac t (T, o f(Tu) ds 629)
0
2. JN(t A Ny is aFN-martingale with quadratic variation

(rren) = |

In addition, the cross variation process betwdéi- A £N) andMN(t, @)’ is given
by

tagN

<ACKN F'aMiam), e /(TN f (fN)> dr. (6.29

tagN
<5N(-AfN), M;“(-,(p)’) =f <AcKNF’(fN)f(TN), cKNf(fN)¢>dr. (6.30)
t 0
(1) can be seen easily by the fact that the process
tarh
MYt @) = (QNt ATNY, o) — (QN (1Y, ¢)—/ (Zkw VTN, Vo) ds (6.3D)
0

is aFi-martingale. (Recall thak; is the filtration with respect to whic, the Wiener
Process, is adapted.)
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Let ®s be any bounded Borel function defined 8rx C([0, 1], R) which is

ﬂa {(x(r),y(r): 0<r <s+348, xe S, yeC(0,1], R)}-measurable
840

Then,

B . . tAzN . B .

E [((QN(t/\fN)/, ¢>—<QN(0+)/, (p>—/ <2KNVTN, w) dr) @S(XN,JN)}

0

tAT

- E ((ij(t ATV, @) —(QR 1Y, go)—/ (Zn VTN, Vo) dr) As(XN, J*N)}
A !

=E ((Q*N(SMNY» ¢) - {QY "), w)—f T BT, Vso)dr> ®S(X,?‘,J*N)}
0

- ° <<QN(S”N)” o) - (@ e, “’>‘fw (Zen VTN, V) dr> Os(X™, jN>}.
0

Similar computations lead to the other assertions.
The final result in this chapter follows (from Section 6.4.2 and Kolmogorov Theo-

remB.2.1).

6.4.5. Theorem (Energy Estimates and Heat Holder Continuity).The limit evolution
X = (K, T, U, Q) satisfies the following estimates:

~ ~ ~ m m

E{ sup ®OK )M E{ sup HT(t)H , and

te[0,1] te[0,1] L2 L2
[ .2 Y m
E </ H VT(t)H L HVU(t)H . dt) < Cm < 00, (6.32)
0

. N - - 2m m

E|Qw - Q®| " =calt—sm, (6.33)

~ | ~ ~ 2m

Elit) — J(s)‘ <Cplt—s™. (6.34)

(The above statements hold because all the functionals inside the expectations are (lower-
semi)-continuous with respect to the metric of S.)

Thus,Q(") is continuousin time in the modified Monge-Kantorovich nord;) is
alsocontinuousin time.

6.4.6. Remark. From now on, we will drop the- symbol. It is understood that the
random variablesXN, JN)’s are defined on a common probability sp&rd hey satisfy
all the previously stated properties and convergetoJd) P almost surely in the metric
of Sx C([0, 1], R).
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7. Limiting Heat Equation

The goal of this chapter is to establish (2.15) in the sense set forth in Section 2.2 (4).

We will follow the usual procedure, which is to convert the problem into a martingale
formulation and then construct an extension of the underlying probability space so as to
accommodate a Wiener Process. We have already set up the technical devices (especially
the almost sure convergence in some space-time topology) to carry out this procedure
and, with the special case that our operatorsiarelegeneratethe whole proof is thus
quite transparent.

7.1. Martingale Formulation

First, we solve (2.15) in the setting of martingale formulation. We define some notations.
From Remark 6.4.6, we know th&t a.s. in the metric o6 x C([0, 1], R)

{XN =N, TN UN, QY), IV} — (X =(K,T,U, Q). J}.
Consider the following filtrations oR:
F = (o {XNM), INm): 0<r <t+4}, 0O<t<1, (7.1)

8§10

F = ﬂa{(X(r),J(r)): 0<r <t+346}, O<t=<1 (7.2)
510

We also introduce the filtration @ x C([0, 1], R),

Bi=[)o((x(r),y()): 0<r <t+6, xeS yeC(0.1,R}, 0=<t=sLl
810
(7.3)
Recall the definitions of N (t), IlN(t), N in Section 6.3.2. Similarly, we set

t
Is(t) = £(0) + %/ Tr{cx F/(T) f(TAF(T)] dr — csF(c; QM) |O] + J(1)),
0
(replacecs by ¢ for I, (1)) (7.4)
T = inf{t: Is(t) = —o, i(t) = —0}. (7.5)

Itis a simple matter to check theY (-) andI N () converge tds(-) andl; (-) uniformly
int € [0, 1] P a.s. In additionzN andr are ZN and7; stopping times, respectively.
The result in this section is as follows.

7.1.1. Theorem.

1. Q=ckT, dC x dP a.s.on(t, ): t < t(w)}.
2. Forall ¢ € C*(0), the following is a continuoug;-martingale:

tat

M.(t, @) = (Q(t A 1), ¢) — (Qo, ¢) +/O (Zc VT, Vo) dr. (7.6)
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3. The cross-variation process between(M¢) and M,(t, ) equals

tat

(Mi(, ), M ¥ 2/ (Ack f(T)e, ck F(T)y) dr. (7.7)

0

4. J(t A 1) is a continuousF;-martingale with quadratic variation
tAT
(JEAD) = / (Ack F'(T) £(T), ek F/(T) f(T)) dr. (7.8)
0

The cross-variation process betweett 4 7) and M, (t, ¢) is

taT

(3C AT, My @)y = fo (AcF'(TYE(T), ok f(Mg)dr.  (7.9)

Before starting the proof, we present some elementary but useful results that will help
in many of the computations later on.

7.1.2. Lemma.Let1l < p. If {fy},., are real valued random variables such that
E|f,]°P<C <ooforallnand f, — f P a.s., then Ef — Ef.

Proof. It suffices to show thafy},., are uniformly integrable, i.e., given amy> O,
there existdM > 0 such thaE | fn| 1;1,>m; < € for all n. However,

IA

1/ 1/
(E1alP) " (ELtamy) (Up+1g=1)
(Elfo»™ _ C
M P/a ~ MPa’
Hence M can be chosen independentlyroio makek | f,| 1;+,1>m; arbitrarily small O

Elfnl Lty>m)

CP(fal > MY <C

IA

7.1.3. Lemma. For all positive integers m,

E { sup QY () ||T} < Cp < 00. (7.10)
A1€[0,1]

Proof. This can be established in the same way as in Lemma 5.3.4. (We just need to
apply Burkholder’s Inequality to (5.11) and (5.14). Note that all the quadratic variation
processes are uniformly bounded by some deterministic number.) O

There is a subtlety about stopping time. We would like to heye— 7 P a.s., but
in general, this is not true. To overcome this, we make use of the following idea (which
the author learned about from the preprint [Fun] Lemma 3.1).

7.1.4. Definition. Letn > Oand

o = {t: 1Mt = —o—n, V) = —0—n}, (7.11)

T = {tii ls(t) = —0—mn, i) > —0—n} (7.12)
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n is called apoint of continuity if

P { lim 7, = r,,} =1 (7.13)

n'—n

7.1.5. Proposition.

1. For all but countably many; > 0, it is a point of continuity.
2. If nis a point of continuity, them — 7, P a.s.

Proof. For (1). Thisis becauss isdecreasingn n, and hence so &t,. Any continuity
pointn of Ex, is a point of continuity for our definition.

For (2). Letn be a point of continuity. Without loss of generality, we just need to
consider one functioh. Given any > 0, thereis am’ > n suchthat, < r, < 7, +e.
But IN(t) — Is(t) forall't € [0, 1]. Hence, for large enough,

I (ty) — ls(ty) > —0 — 1.

Therefore,rn“/‘ < 1y <1, + € forlargeN. O

With the above preparations, we will prove Theorem 7.1.1 with") replaced by,
(rnN) for n a point of continuity, and then take a sequence of sueh> 0. Furthermore,
the energy estimates in Section 6.4.2 will be kept in mind.

For the simplicity of notations, we use

CN = CknN, C = Ck, XN = XN,
Y =3k, ™N = tnN, and rt=r1,. (7.14)

Now we haverN —s 7 P a.s.

7.1.6. Proof of 7.1.11)}—Relationship betweenK, T, and Q. Let¢ be an arbitrary
random bounded function afl x [0, 1]. Consider

E/ (Q—-cNli<¢ dchdt
Ox[0,1]
=E —¢T) (Ljter) — Loy ) 2 AL dE
/;9x[0,1](Q )({t I {t }){
+E/ {(Q-QM—(c—en) T—en (T =T +(QY —enT™M) } L dL™ dt.
0x[0,1]

By the dominated convergence theorem, energy estimates, and Lemma 7.1.2, all the
terms tend to zero d@d — oo. (Note that the last term is zero for &ll.)
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7.1.7. Proof of 7.1.1 (2)—Martingale Property ofM.(t, ¢). What is needed is that,
forall 0 < s < t and any bounded continuous functién defined onS which is
Bs-measurable (see (7.3)), we should Héve

EM.(t, 9)Os(X) = EM,(s, 9)Os(X). (7.15

Let

tazN

MUt o) = (QYt AT, ¢) —(Qp. ) + (ENVTN, Vo) dr

t
ENVT Vgo) 1{,<TN} dr, (7.16)

o\o\

= (@Yt A", ¢) = (Qq ¢) +

tAT

M.(t,¢) = (Qt A T), ) —(Qo, ¢ (Zc VT, Vo) dr

t
(Zk VT, Vo) Ly dr. (7.17)

]
= (Qt A7), ¢) = (Qo, ¢ /

0

The proof of (7.15) is established after the following two lemmas.

7.1.8. Lemma.

E M, (t, )Os(X) = Iim EMN(t, )@s(XM). (7.18)
Proof. First, sinceéQN(t) ¢) — (Q(t), ¢) uniformly int € [0, 1] andzN — =,
we have(QN(t A (Q(t A1), @) P a.s. But, due to Lemma 7.1.3,

E[[QYtAY), ¢)|" <C,E[QNtAY|" <C,.

Hence,E (QN(t A V), ¢) Os(XN) — E (Q(t A 1), ¢) Os(X) by Lemma 7.1.2.
Next, consider

t t
E {@s(X)/ (ZVT, Vo) Lo dr —®S(XN)/ (ZNVTY, w)l{mN}dr}
0 0
= E{(@s(X)—®5(xN))/ (ZVT, Vo) 1 r<,}o|r}
t
E {@S(XN) (/ (EVT, Vo) Lo — (ENVTY, w)l{mN}dr)}.
0

The first term of the above will tend to zero by the dominated convergence theorem.

20 Sincer is aF;-stopping time M. (t, ¢) is clearly adapted t&;. The requirement aboWl.(t, ¢) having
finite first moment is easy to check.
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For the second term, it is bounded by

t
CE / <ENVTN’ V(/)):I'{r<1,"“} —(XVT, V§0> 1{r<r}dr
0

t
< CE‘/ (ENVTN, Vo) = (EVT, Vo)) L vy dr
0

(7.19)

t
+CE f (ZVT, Vo) (1{r<r} — 1{r<TN}> dr
0

It suffices to consider only (7.19). We decomp¢sa VTN, Vg) — (EVT, Vo) as

(ZNVTN, V) — (ZVT, Vo)
= (SN —D)VTY, Vo) +((Z - &) VTN, Vo) — (TN = T), div(EVe))

where¢ is a smoothed version &f.
Every term in (7.20) can be shown to converge to zero. For example,

IA

t
CE/ 128 = Zle [ VTN dr
0

t 1/2
C (E/ I=n — 2112 dr)
0

t 1/2
X (E/ VT2, dr) . (7.21)
0

The first factor tends to zero by the dominated convergence theorem, while the second
factor is uniformly bounded by the energy estimates.

All the other terms can be handled similarly (upon choosing better and getiter
approximatex). O

t
Ef (=n = 2)VTN, Vo) dr
0

IA

7.1.9. Lemma. We can decompose Mas MY (t, ) = MN(t, ¢)’ + RV (t, ¢), where
MN(t, )’ is a continuousFN-martingale and R (t, ¢) is an error term such that
ERN(t, p)k < C Atk (k> 1)

Proof. Actually, this is similar to the decomposition in Theorem 5.3.1. For simplicity,
lett =t Then we haveV (t, ¢) = M'(t, ¢)' + RY(t, ¢), where

q
MMt @) = D QY (7 ATN). o) = (QV (K7, A M), o)

i=1

ti
+/ (znvThN, V) L vy dr

tl—l

= (QVty ATV, 0) = (QN(0), ¢)

tq/\tN
+/ (=nVTN, Vo) dr, (7.22)
0
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q

RVt o) = D (QV(E Ath). o) = {Q (& A V), o). (7.23)

i=1

MN(t, )’ consists of terms involving the heat flow process. By Section 6.4.4, it is a
martingale with quadratic variation

/O WN (Aen fs(TM)e, oy f5(TN)g) dr. (7.24)
The error termRN (t, ¢) is handled by Lemma 5.3.3, which immediately leads to
E[RV(t, )| < C Atk (7.25)
|
7.1.10. The Final Step—Martingale Property ofM,.(t, ¢). From the previous two
lemmas, we deduce that
EM.(t, ¢)Os(X) = lim EMN(t, 0)Os(XN)
= imE[(M . ¢) + RNt ) ©s(X")]
= imE (M. 0) + Rt 9) ©s(X")]
= EM.(s, 9)Os(X),
i.e., (7.15) is satisfied, and henbg.(t, ¢) is anF;-martingale.

7.1.11. Proof of 7.1.1 (3)—Quadratic Variation ofM,(t, ¢). The asserted form for
the quadratic variation dfl..(t, ¢), is equivalent to the following:

Forall 0 <s<t,®s: S— R, bounded, continuous, aift§-measurable,
tAT
E {M*(L@M*(t, V) —/ (Act(T)g, ct(T)¥) dr} BOs(X)
0

= E{M*(s, PIM. (S, w)—/ " (Acf(T)g, cf(T)y) dr}@s(X). (7.26)
0

It suffices to verify the above fap = ¢.
Note that, by Section 6.4.4,

(Ml 9)), = /O t (Afen f5(TNYg, ey f5(TN)gp) 1oy dr. (7.27)
Consider

E{M) (. 9)? = (MM (. 0)),} Os(XM)

= EfjMM o) + R o) = (MI o) f osx™)
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E{MN(t )2 — MV, 0)), ) Os(X™)
+E {2M)t, ) RN (1, 9) + RN (t, )7} ©5(X™)
E (MY, 0)2 = (MN(, 9))g} ©s(X™N)
+E {2M}(t, o) RN (. ) + RN (1, )%} ©5(XM).

The second partofthe above are the error terms which willtend to zeroby Lemma 7.1.9.
Now,

E(MY(s.9)? = (MI (. 0))) ©s(X™)
= E(IMNs 0) - R o) = (MM )),) 05X
= E(MY(s 97 = (MY, 9)')) ©s(X™)
+error terms involvingRN (t, ¢).
Thus, what needs to be shown is that, for & < t,

EM,(t. 9)?05(X) = lim EM(t, 9)?05(X"), (7.28)

t
E@s(X)f (Act(T)e, cf(T)e) Ly~ dr
0
t
= lim E@S(XN)/ (A<t (T, cfs(T)e) Ly vy dr. (7.29)
0
Proof of (7.28).This is very similar to the proof for Lemma 7.1.8.

Proof of (7.29) As everything is bounded, by the dominated convergence theorem it
is enough to show tha a.s.

t t
/0 (AGCN fa(TN)w’ CN fg(TN)(p>1{r<TN} dr — /O (ACf(T)(p, Cf(T)gD) 1{r<,}dr.

SinceAc is given by a bounded kernel (4.4), the L.H.S of the above can be written
as (we omit the harmless\ andr)

t
/ / / [A<(X, Y)on (K)en (e (00 (y) (TN E0) F(TN(y)] dL"x dCy dir.
0 X, ¥)e(Ox0O)

From this, it is clear that the asserted convergence holds because of the following
convergence i.2(O x O) and with all the functionals being bounded (recall tiais
uniformly Lipschitz iné):

ASC ) — AC, ) cn () —> ¢(); fs(TN () — F(T).

7.1.12. The Remaining Steps of Theorem 7.1.5tatement (4) of the theorem can be
verified in exactly the same way as above.

Finally, we take a sequence gf — 0 consisting of points of continuity. Then
1, — 7. By Lemma 7.1.3, the whole theorem remains true.
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7.2. Weak Formulation

In this section, we reformulate the previous statement of the heat equation in terms of
stochastic integration with respect to an infinite dimensional Wiener Process. Precisely,

7.2.1. Theorem.There is a probability space, F, P) (which is anextension of
(22, F, P)) and an [2(0)-valued Wiener Proces{s\f\/t, ?; O<t< oo} with covari-
ance operatorA such that

1. P a.s. forallp € C®(0)

taT

tAT
QAD 9= Qo= [ VT Vo drs [ (ectTadh, o).

0

(7.30)
The above can also be written as
dQ =div(SkVT)dt+ck f(T)dW,  forO<t <. (7.32)
tAT N
ZJGAI%:[ @KpadnTde). (7.32)
0

The general technique for converting the martingale formulation to a statement of this
sort is standard ([DZ] 8.2 and [MM] p. 77). For completeness, we outline the procedure
here, which is simplified due to the existence of the inverse of the multiplicative operator
ek f(TM)—(ck F(T)

7.2.2. Step |I—Construction of a Continuoud_2(0)-Valued Martingale. Let{¢ Yis1
be a O.N.B. olL2(0) with ¢; € C®(0). DefineH (t) = > i My(t, ¢i)gi. Using the fact
that 3 EIM.(t, ¢0)I? = Y E [y (Ack f(T)gi, ok f(T)g) dr < oo, we conclude
that H (t) is a continuous square integrallé(O)-valued martingale with covariance
operator

tat
(H) = / ck F(T)Ack f(T)dr. (7.33)
0

In addition, for allp € C*(0),

tat
(Qt A1), ¢) =(Q0), ¢) —/0 (Zc VT, Vo) dr + (H(1), ). (7.34)

7.2.3. Stepll—Construction of a Wiener ProcessLet (', 7', P") be anew probabil-
ity space (“independent” of(Q2, F, P)) equipped with a Wiener Process
{W/, F't; 0 <t < oo} with covariance operatak. Construct the following extension
of Q:

Q=2 xQ ={(w o)}, F=FQF,
P=P®P, F=FRQF, tel01] (7.35)
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For (w, ') € Q x Q/, define
Wi (t, w, o) = W'(t, ), (7.36)
and make the following obvious modifications:

K, o, o) = K(t, w), Tt w, o) =T, w),
Qt,w, o) = Q(t, w), Hi, o, o) = H(, w). (7.37)

Note that the multiplicative operatak f (T) has an inverse given bk f(T))™*
(unbounded). We perform the following operations:

tAT tAt
Het) = / dH, = / (ck F (T (e F(T) T dH
0 0

tAT
:/ ch(T){l{ra}(cKf(T))*ldHr+1{r2,}dWr’}. (7.38)
0
Set

5 t

t
W = f 1{r<r}(CK f(T))_ldHr +/ 1{th} dWr/ (739)
0 0

Compute
t

t
(W), = [ e @t g, @ f )+ [ tena (W)
t 0 0 r
t
= /O L <oy [(ex F(T) ek F (M)A ek F(T) (e f(T)7H dr
t
+/ l{th}Adr
0
t
= / l{rq}A—}—l{rZT}Adr:tA. (740)
0

Hence W, is a Wiener Process di with covariance operatak.
Now (7.38) is the same as

tAT
H(t) = f ck f(T)dW,. (7.41)
0

From (7.34), (7.30) holds.

7.2.4. Step lll—Representation ofJ. Statement (2) about can be seen by the fol-
lowing computations:

taT
(Jiar =f0 {Ack F/(T) £(T), ek F'(T) f(T)) dr,
taT
(3O HE @)iar = (3O, Mi( @) ene =/O (Ack F'(T) f(T), ck f(T)e) dr,

. tat
U (cK F'(T)f(T), dv"v,)> - f (Ack F/(T) F(T), ek F/(T) £(T)) dr.
0 tAT 0
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tAT
Note thatW ., = / ((ck F(T)™L, dH). (See (7.39).) Now comptite
0

(30, [ (ecrmren. i) -

= <J(-), /0 (ck F/(T) f(T), (ck F(T))id Hr)>w = <J(-), fo (F/(T), dH,)>w
- <J<~>, /O'iZ(F’m, @) (@H, ¢i>>w

= Z/ow (F'(T), @) (Ack F'(T) f(T), ck f(T)gi) dr

= fow (Ack F/(T)f(T), ek F/(T) f(T)) dr.

From the above, we deduce tf{aﬂt(-) —/ (CK F'(T)f(T), dVVr)> equals
0 tAatT

(J(.)>W+</'(CKF’(T)f(T),dVVr)> _2<J(.),f(cKF’(T)f(T),dW,)> ,
0 tAT 0

tAT

which is zero. Hence,

tAT
J(tAr):/ (cKF’(T)f(T), dw). (7.42)
0

8. The Gibbs-Thomson Condition

Our goal is as follows.

8.0.1. Theorem (Gibbs-Thomson Condition).P a.s.or{(t, w): t < t(w)}, forallC*
time-varying random vector fields%g,

(0K (1), 0) :/ div (H(T(t))g) dL", 8.1

K(t)

where(9K, g) = d%d) (Gsy0K)| , with Gs(t, x) = X + sg(t, X).

This is the heart of the whole Sp_a(l)per. Its proof involves an intricate combination of the
estimates from the minimization steps and the smoothed heat flow.

As a by-product of the above theorem, we can also show that, in low dimensions, the
9dK'’s enjoy some regularity properties. Precisely,

21 The unboundedness of some of the functionals can be easily dealt with by some cut-off and truncation
arguments.

22 The notations are from Section 2.1.7.
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8.0.2. Theorem.Ford£! x dP a.s. on{(t, w): t < t(w)}, the following is true.

n= 2. dK(t) is a one-dimensional differentiable submanifoldivithout boundary
and, for any C vector field g or0,

d
d—SCD (Gsz 0K (1))

= f H (T (X, 1) (nk 0), 900) dHx. (8.2
s=0 xedK (1)

n=3: 0K(t)isthe homeomorphicimage @ of a compact two dimensional manifold
without boundary.

For Theorem 8.0.1, we will actually prove the following:
E/ (K (1), g(t)) dt = E/ / div (H(T(t, x))g(t, x)) d£"xdt.  (8.3)
0 0 JxeK(t)

Essentially, it says that, for alf, (3K (t), g) = mediv(H(T(t))g) dc", P as.
{(t, w): t < T(w)}. By the fact that the space @f* vector fields is separable, we can
then find an almost sure event (independeng)ah {(t, w): t < t(w)} such that (8.1)
is true.

8.1. Strategy for Proving the Gibbs-Thomson Condition

The underlying picture is as follows. The Gibbs-Thomson condition is restored after
every minimization (Theorem 3.2.3). In between them, the heat is diffused. This will
destroy the Gibbs-Thomson condition. In order to prove Theorem 8.0.1, two points need
to be taken care of:

e The total error due to heat flow tends to zera\ds—> 0. For this part, we will make
full use of the regularity properties of the temperature fields under heat flow.

e The approximated crystals need to converge in a topology strongerlthafhe
reason is that (8.1) involves the convergence of a quantity defined on the boundary of
acrystal that is a lower dimensional set. This condition is too singular fdrtmerm.

In order to achieve the stated result, we will improve the crystal convergence to the
varifold sense. Under this notion, the tangent planes of the boundary of the convergent
crystals also match up with those of the limiting crystal. Precisely, we will show that
®(9K) = limy ® (0K N).23 The proof exploits the fact that the approximating crystals
are minimizers of some energy functionals.

For the following, superscrigtl denotes the approximations corresponding.to=
1/N, and subscript means that; = iAt andi™ = ti+. For allt, leti be such that
<t <t

28 The L! convergence only gives the lower semicontinuity.
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We start from the identities for the discrete time approximations. Consider the fol-
lowing €/3-type argument:

[

< /ThaK(t), g) — (3K (). g) dC”| dt
0

dt

(0K (1), 9) — div(H(T(1)g)) dL”
K(t)

/T (oK), g) - div (H(T(t)g)) d£"| dt
0 K (t)
|

(0K (1), g) — (aKN (1), g) dL"| dt (8.4)
1

1{t<r} - 1{t<rN} dt (85)

f(BKN(t), g)—/ div (H(T (t)g)) d£"
0

K(t)

+
<
0
+
N
g
0

By Theorem 3.2.3, right after each minimization step, the Gibbs-Thomson condition
holds. Hence, we hae K", g) = [~ div (H(T;\)g) d£". Since the crystals do not

1
change shapes in between the minimization steps, (8.6) can then be rewritten and bounded

by
1
/

1
< |
0
/ div(H(Ti'l')Q)dE”—/ div (H(TN(t))g) dL”
KN (t)

1
g
0 KN(t)

= Lo+ Ls. (87)

dt. (8.6)

(oK), g)—/ div (H(T(t)g)) d£"
K (t)

dt

/ div (H(TMg) L — [ div(H(T 1)g) dL”
KN(t) K(t)

dt

/ div (H(T(t)g) dc" — [ div(H(Tt)g) dC"
KN ()

K (t)

dt

We are going to show that:

(Section 8.2) EL, — 0—convergence of the temperature fields.

(Section 8.3) EL3; — 0—vanishing of the error for the Gibbs-Thomson condition
during heat flow.

(Section 8.4) (3K, g) — (3Ky, g) dt x dP a.s. on{(t, »): t < r}—varifold con-
vergence of thelcrystal positions. This will take care of (8.4).

(Section 8.5) E/ (oK, g)|2 dt < C for all N—this enables us to use Lemma 7.1.2
0
to take care of (8.4) and (8.5).

The assertion of the theorem will then follow.

The most difficult parts are Section 8.3 and Section 8.4. The basic ideas follow [AW]
Chapter 8, together with the probability estimates. In the following, we implicitly assume
the functional form ofF andH in Section 3.1.
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8.2. Convergence oEL,t00

The following restatement of [AW] Theorem 8.1 will lead to the asserted convergence
of E L,.

8.2.1. Theorem.Suppose KR (t) and TN (t) are crystal positions and temperature fields
converging to Kt) and T(t) in the following sense (& 1/T):

1
1. E/ IKN®) — K®)||, dt — 0;
0
1 1
2. E/ |TN®O - T, dt  and E/ JuN® —U®|?, dt — o
0 0
1

3. E/ [ VT’\‘(t)Hi2 + HVU’\‘(t)Hi2 dt=C < o0 forall N (and hence the same
0
estimate holds for T and U).

Then, for all random time-varying bounded @ector fields g, we have

1
“J,
0

Proof. Considering the growth rate féi# (T) andH'(T) (3.7), we have

/ i(H(TN(t))g(t)) d,c"—/ i(H(T(t))g(t)) dch| dt — 0.
KNy 0% K 90X ©8)

9 T og
a—Xi(H(T)Q) =H (T)a—xi9+ H(T)a_xi

-
= Cp(—6U% —2T + L(T))%g +Cp(3U% -T2+ J(T))%
| |

U oT oT
= = ol s mE
cz(eu 2T L )M)g
+C,BUZ -T2 4 J(T))g—f. (8.9)
i

Hence,

0 0
KN— (H(TYg) - Ko (HMg)

0X;
auN TN aTN
= KN|Cy(6UN— —2TN——— 4 (TN —
|: 2( 0%; 0%; +L( )8Xi 9
r U aT aT
—K|Cy[BU— —2T— + L(T)—
L 2( 0Xi 0Xi + L )3Xi>g]

+KN [c:l(au“2 — TN 4 J(TN))%]
|

—K|Ci(BU2 -T2+ J(T))%] ) (8.10)
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We will consider some “typical” terms and show their convergence. For example,

1 TN aT
E KNTNg—— — KTg— d£"| dt
/o /o g X gaxi
1 TN aTN  aT
=E KNTN —KT)g— + KTg| — — — ) d£"| dt
/0 L( )g 3Xi + g( 8Xi 3Xi>
1 aTN
< CE/ [KNTN — KT, [—=—| dt
0 8Xi L2

dt

1
+E /
0
1
+E /
0
whereys is a smooth approximation &€ T g. We will consider each term of the above.

1
. (CE/ [KNTN — KT, dt) is bounded by
0 X L2

1 ) 1 2
<E/ IKNTN — KT, dt> (E/ dt)
0 0 L2

1
CE/ [KNTN = T) 4 (KN = K)T|?, dt
0

1 1
ce/ ™ -T2, dt—i—CE/ [N = k)T, dt.
0 0

The first term tends to zero by assumption, while the second term tends to zero by the
dominated convergence theorem.

TN oT ‘ .
e E KTg-— —— — — )| d£"dtis bounded b
/Ox[O,l] (KTg lﬂ)( X 3Xi> y
1 12 1 2 12
(E/ IKTg— v2, dt) (E/ dt) .
0 0 L2

This can be made as small as possible by choosing better and Hedted by the
assumption on the uniform bound on the Dirichlet integral of Efes.

1 N
.E/ /w(ﬂ_ﬂ>d£n
o lJo X 9X

1
E//|V1/f|}TN—T|d£”dt,
0o JO

which will tend to zero by arguments similar to those above.

TN aT N
/(Q(KTg_w)<3—Xi_8_Xi) dc

N
o)
o X X

dt,

9TN 2

TN

Xi

IA

IA

aTN 8T

9X%; 0%

dt can be bounded by

Each term converges to zero either by assumption or by the dominated convergence
theorem.

All the other terms can be handled similarly. O
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8.3. Convergence oEL3to0

We actually prove the following slightly stronger version (Theorem 8.3.3):
2
/ div (H(T,Y)g) dc" - / div (H(TN(t))g) d/:”‘ dt — 0.
KN(t)

1
lim E/
N 0 KN(t)
(8.11)

It is at this point that we will use the regularity estimates of the temperature fields
right after minimizations (Theorem 3.2.2) and the estimates concerning the smoothed
version of the heat equation (4.3).

First we invoke a tool. It estimates the integration of the trace of a function on a
hypersurface.

8.3.1. Proposition (AW, Thm. 8.2). Let K be a set of finite perimeter; f is anD)
vector field. Then, for all M> O,

2

/ (F(p). ne) dH™1p
peoK
<C{MI IV il + M2 (R (@K) + 1) |V FII2.}

where C is a universal constant depending on the size and dimens®@nrgf is the
outward normal td K , andH" ! refers to then — 1)-Hausdorff measure. Theé?lnorms
on the right-hand side refer to%(0).

To make use of it, we lefi (t) = [H(TN (") — H(TN )] g, t <t < t1. Now
consider the following form of s:

L/—/l
L=
0

N—-1 st
-y / / div (H(TN))g) — div (H(TN(t)g) dL”
ti KN(t)

i=0
1

N— tiv1
_ Z/ / div (,(t)) dC”
0/t KN (t)
1

2
dt

/ div (H(TNH)g) — div (H(TN(t))g) de
KN()

2
dt

2
dt

N—

tiv1
= Z/ f (fi®), ngn) dH"
i=0 /i KN (t)

N-1 tita
— EL, = Z/t E
i=0 vl

2
dt

2
dt; (8.12)

/ (), nn) AR
KN @)

i.e., we have writtele L; as asum of all the deviations from the Gibbs-Thomson condition
caused by the heat flow process in between the minimizations. We will make use of the
above proposition to bound | (fi(t, p), nkn) dH”’1p|2. (In what follows, the

pedKN
N’s will be suppressed.)
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2

e E —ForallM > 0,

/ (fit, p), nk) dH"p
pedK

2
E

/ (fit, p), nk) dH"p
pedK

1
< CYME (I fill2 IV i ||L2)+WE (H" (0K +2)IIV f; IIZLZ}

12

1 12
= CIM(ENfil2) (B NV 6iI2) "+ 5 [E (R 0K)+1)] [E||Vfi||fz]l/1

1 1/2
< CIM(E Ii1Z:) (B IV filte) " 5 [E (" 0K)D+1)] [E VS ||ﬁ2]1’2},
(8.13)

e E|F ||fz—We repeat the notation of (4.15): Foe [t, ti11), X € O,

m = (itnf) T, %, T, 0}, M; = sup{T(t. x), Tt", x)}. (8.14)
X (t,X)

From (3.6),
[((H(T®) — H(T(®))) gl

1 1
< Clalloe IT®) = T ()] <T2(ti)T(t) + TOT20 +T@) + T(ti)) .

i (O]

A

Hence C depends ofig|l.),
Ifi®1% < CITO = TMI% (M3 +M)?,  telt, i),
ENf®IZ < CE(IT® =TIz (m2+M)°).,

C(EIT®) — T(ti)||ﬁ2)”4[(Em*24)”4+ ( MF)”“] . (8.15)

A IA

IA

e E|Vfil{-—Now,
VEi@® =[VHT®) - VHT )] g+ [HT®) - HT )] V.
This implies that C depends orig||, and LipQg)

Vi ©l

A

gl {[H' T IVTOI+ [H' (TEN|IVT )1}
+ (Lip @) [H(T (1) — H(T (t))]
CUVTOI+ VT +IT® — T} [m® + M.

IA

Hence,

IV @I < CUVTOISL + IVT IS + 1T® = T I} [ + M
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EIVRi®I: < CE{IVTOIL + IVT®)IL. + IT® — T(ti)”Ez})llz

x (E[m+ M )1/2
= C[(EIVTOI) " (EIVT®IL) " (EITO-TwmIE) "]
x[ . EM)llz] (8.16)

8.3.2. The Final Step for Convergence oE L;. From (8.15) and (8.16), we thus need
to estimate
E(m™), E(M), EIVI®OIL., EITO-TWIL, telt tim).
This is exactly the reason we consider the smoothed heat equation (4.3) and prove

estimates for the temperature value and gradient.
Now apply Theorems 4.2.2, 4.3.1, and 4.4.1 to (8.15) and (8.16),

IA

Ellfi(1)]%, < CAtM2e—2-2 (At_?-% n m-&*)

CAt 1/2720(672n72’

1 At _ lg 4y
64n+4At4a + €4n+4 I:At 2+ At ]

IA

EIVA®IL

A

< Ce a8,

Substitute the above into (8.13),

/ f(t, p dH™Lp
pedK

2
E

IA

C {MAtlm—ae—n—lE—n—lAt—Zx + M—1/26—2n—2At—4a}

A

C {MAtl/4~3a672n72 + M71/2At74a672n72}.
SetM = At™#, €2 = At” 24 and the above becomes
ClAat P A3 At 4+ AtPPAU ALY} < C{AattA=3ey g applter )
Choosex, B, y such that

1> 48+ 120 + 4y,
B > 8ua+2y.

As long asx < 1/44, such a choice can always be made. For example,

1 1 21

24 Recall the remark at the beginning of Section 4.3.
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Then,

2
E

IA

C {At(16_11_3_1)/64—|— At(5'5_4_1)/64}

/ fi(t, pdH™Lp
pedK

IA

Put the above into (8.12), and we finally get the following.
8.3.3. Theorem.

1
ELgS/ Cat?2dt — 0  asAt — 0.
0

8.4. Varifold Convergence of the Crystals

The purpose is to show

lim (9K, g) = (3Ki, @), dLPxdP as.on{t.w):t<t@)} (817

This will then lead to the convergence to zero of (8.4).

As mentioned at the beginning of Section 8.,norm is not sufficient to conclude
the above. Instead, we will prove varifold convergence of the crystals. By Appendix A,
the following statement implies varifold convergence.

8.4.1. Theorem (Convergence of Surface Energy).

lim @ (AKN) =@ 0Ky,  dL'xdP as.on{t, o)t <t} (819

The strategy of proving the above is as follows (heuristically).

SinceKtN — K¢ in L, this implies® (3K;) < liminfy ®(3K;) by the lower semi-
continuity of the surface energgut the K\N's are the minimizers of some functionals,
precisely(3.2). Thus, with some errors, which can be controlledas— 0, we have
®(OKN) ~ ®(dK,). That means limsyp® (9K N) < ®(3K;). This gives the desired
result. The main step is to control the error in the proof of the upper semicontinuity.

We now go into the details. The scheme is basically the same as [AW] Theorem 8.6. We
will need the regularity results of the temperature fields. We set the following notations:

o KN=KNt) = KN, tT<t <t con) =cCkng.

e Let QN(t) and TN(t) be the heat distribution and temperature field of the discrete
scheme at time t.QN (t) = cy () TN(1)).

e PN =QN(t"), the heat distribution df". ¥ = TN (t"), the temperature field gt .

e K (1), Q(t), andT (t) are the limiting crystal position, heat distribution, and temper-

ature field at. (Q(t) = c(t)T (t)).

There are some preliminary lemmas. They are all used to control the error during the
heat flow. In the following, we recall the functional form BfSection 3.1.
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8.4.2. Lemma.Forallt e [t, ;1) andt,q < N,

/ LF(LPNYde" — LF(LQMN ) dc"
O

E{ sup < CAtY+ e (819
telti,tiza)

where L is the specific heat capacity of any time varying crysta.some very small
positive number.

Proof.

/ LF(L™*PNyde" — LF(L1QN(t))dc"
O
N 2 N 2
o[ (&) -(557)
o |\ CN CN

C N TNt +
/o|s ol ST STV
cCm?3+M)|s"—TN®)|,.  (using the notation of (8.14))

n

2 2
CN CN
+‘<W) _<QN(t)) T

+V+ TN

dc”

IA

IA

IA

C(m3+ Mi){ sup |§" —TN(t)HLZ}.

tefti tiv1)

Now,

E(mi3+Mi>{ sup [ —TN<t>||Lz}

telti tiy1)

= ClEm 6+MF>]”2(E{ sup USN—TNmez})m

teftitiva)

IA

-~ Y Atl/4
C (At = 4 At ) - (Theorems 4.2.2 and 4.4.1)
€

CAtl/La€7nil.

IA

The result follows by taking = At” with y small enougtf? O

8.4.3. Lemma.

1
E/
0

25 Recall the remark at the beginning of Section 4.3.

/CNF(TN)—CF(T)dLZ” dt — 0.
O
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Proof. We write

/ enF(TN) —cF(T)dc"
(@)

IA

/O}CN (F(TN) — F(T)) + (en — o F(T)| dL”

IA

cf )TNZ — TZ) n ‘UNZ — UZ‘ +lon — ¢ E(T)d"x
O

IA

CUTY =T [T¥+ T + U™ - U [U™ + U]

+ / oy — ¢ F(T)d™).
O
Hence,
1
J)
0
1 2
< C<E/ ||TN—T||L2dt>
0
1 2
+C<E/ JuN—U], dt)
0

1
+E//|CN—C|F(T)d£“dt
0o Jo

— 0

dt

1 2
([ 1+l o)
0
1/2 1
(e [ 1o+ vl o)
0

/ enF(TN) —cF(T)de"
O

1/2 1/2

1/2

(by the convergence aiN — T,UN — U andcy — c©). O

1

8.4.4. Lemma.E/ f LELIQY) —LF(LtQ)dc"
0 (@]

specific heat capacity of an arbitrary time-varying crystal.

dt — 0, where L is the

Proof. The proof is similar to the previous lemma. We write
ILF(L'QMN) — LF(L™'Q)|
1 1 N2 2
< of[gw -l e

c HCNZU NZ _ C’ZUZ) n ‘cNZTNZ - C’ZTZH

IA

C {CQZ)UNZ— Uz‘ +]eN® —c U2+ ‘TNZ — Tz‘ +|c — ¢ TZ}.

The asserted convergence follows easily. O
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1
8.4.5. Remark. Fromthe above lemmas (andthefactllE@[ [KN — K| . dt — 0),
0

thereis a subsequence (stilldenotedpuch thatfod L1 xd Pa.e.or{(t, ): t < T(w)},
asN — 0, we have

1. KN — K¢ in L' and henceb(9K;) < IimNinfd>(aKtN).

2. — 0 (wheret € [t;, ti11)).

/LF(L‘lPiN)dE”—/ LE(L™IQN ) de"
O O

3. / cNF(TtN)d£“—>/ CF(Ty)dLn.
O O
4./ LF(L‘thN)dL”—>/ LF(L™QydL".
O O
8.4.6. Final Steps inthe Proof of Theorem 8.4.1We just need to show thdt(d K;) >
limsupy ®(OKN).

The negation of the above means the existeneaod largeN; (j will be suppressed
for simplicity) such thatb (9K;) + € < ®(3KN). This implies

D (9Ky) +/ CF(c'PN) + ¢
(@]

IA

cp(aKﬂ)Jr/ cFcPN)y  (wheret €[t ti11))

(@]

= <1>(3Ki'i)+/ cNF(cglpiNH/ cF(c*lPiN)—/ enF(eytPY)
O O O

- q>(aKi'i)+/ cNF(cglaNH(/ cF(c*lPiN)—/ cF(leN(t))>
(@] (@] (@]

—(/ cNF(calFﬁN>—/ cNF(calQ”(t»)

(@) (@)

+</ cF(c—lQNa))—/ CF(C‘lQ(t))>
(@) (@)

+<[ cF(c—lQm)—/ cNF<cN1QN<t)>).
(@] (@]

Each of the quantities in the above parentheses tends to zero by the remark before this
theorem.
Thus, choosing large enoughimplies that

<I>(8Kt)+/ cFcPN) +e2< @(aKiN)Jr/ enF(cytPY).
o @]

This clearly contradicts the minimality property of the) andPN (Section 6.4.3).
RemarkNote that in the above few steps, we can Kyt N, and other quantities in

the same inequality as they are defined on the same probability space. This is due to the

use of the Skorokhod Theorem—Section 6.4.
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1
8.5. Uniform Bound forE/ (0K N, g)|? dt
0
8.5.1. Proposition. For all N,
1
E/ (0K N, g)|® dt < C < oo, (8.20)
0
Proof.
! 2
e [ Ik o de
0

1
= E/ fdiv(H(Tit‘)g) dc"
o |Jo
(The Gibbs-Thomson condition holds right after minimization.)

1 2
< CE/ f div (H(T,V)q) dL',”—/ div (H(TN(t)g) dc”
0 O O

dt
1
+cE [
0

1
< CEL’3+CE/
0

2
dt, (teti<t=<ti)

2
dt

/ div (H(TN(t)g) dc”
(@]

2
dt.

/ div (H(TN(t))g) dc"
O

The termE L3 is handled in Theorem 8.3.3. To estimate the second term, suppressing
the N’s and making use of (8.9),

1
CE/ /div(H(T(t))g) dch
0 O

1
CE/
0

1
CE/0 UTIZ VT2 + IUIZ VU2 + IVT 12 + 1T + U] dt

1/2 2
1

{CE(sup ||T||ﬁ2+||U||ﬁz)} {E(/ IVTIZ. + VU dt) }
tef0,1] 0

1
+CE/ VT2, dt
0
C (by the energy estimates)

2
dt

2
dt

A

/ TIVT|+U|VU|+|VT|+T2+U?dc"
O

IA

1/2

IA

IA

8.6. Minimality and Regularity of Limiting Crystals

The method used to prove the varifold convergence in Section 8.4 can also be employed
to establish some regularity properties of the limiting crystals—Theorem 8.0.2.
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First of all, we prove the following minimizing property of thé(t)’s, which has its
own interest. (The notations are the same as those in the proof of Theorem 8.4.1.)

8.6.1. Theorem (Limit Crystals as Minimizers). For d£' x dP a.s. on{(t, »):
t < t(w)},

E(K (), Q) =inf{E(R, Q(t)): Re K}. (8.21)

Proof. The negation of the theorem means the existence ® anX and ane > 0
such that

@(8R)+/ crF(CRIQ(1)) + € < d>(8K)+/ cF(c Q).
(@) (@)
Letti <t < tj;1. Nowthe L.H.S. equals
cb(aR)+/ crF(cg'PV) + <f cRF(cngN(t))—/ CRF(CRlPiN))
O (@) (@)

+ ( f crF(CRIQ(1) — f cRF(c#Q”(t)))
O (@}

Using the lower semicontinuity of the surface enedgythe R.H.S. can be bounded by
(for large enoughN)

el2+ oKN) + / CNF(CNPiN)+</ cNF(cngN(t))—/ cNF(chpiN))
o (@] @]

- ( / cFc Q) — / cNF(calQ“(t)))
O O

By Remark 8.4.5, all the terms in the parentheses will tend to zero. Hence, for large
enoughN, we get

dOR) + / crRF(CR'PY) < @K + / cnF(ey'PY),
o o
which contradicts the minimality property of tmﬁ andPN (Section 6.4.3). O
Thus we have shown that the crystals and temperature fields satisfy the hypothesis of
[AW] Theorem 8.8, which gives the asserted statements of Theorem 8.0.2.
Appendix A. Varifolds and Sets of Finite Perimeter

We are going to introduce the notion of varifolds and their convergence in the case of
co-dimension oné®

26 A full account of varifold can be found in [All]. A concise introduction is in the Appendix of [AW]. Here
we just mention the concepts needed in this paper.
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An (n—1) varifold in R" is aradon measureover R" x S"~1. A sequence ofn — 1)-
varifolds {V;};~, is said to converge in thearifold senseto V, written asV, — V,
if

/ 1<pd\/j — l<pdV (A.D
R'x S- R'x S-

for all continuous functiong: R" x S"~! — R with compact support.
Given any set of finite perimetét (Section 2.1.1), we naturally associate with it the
following (n — 1)-varifold:

V(p) = / @(x, ) dH"x, (A.2)
xedK

whered K refers to the reduced boundarytofandng the (approximate) exterior normal
vector todK. We say a sequence of sets of finite perimé¢t&r;., converges in the
varifold sense if their associated varifolds do so.

In[AW] Appendix C, a sufficient condition is established for the varifold convergence
of K;j to K. Namely,

1. The union of supports df; is bounded.

2. sup |0K;| < oo.

3. Ki — KinL.

4. There is an elliptic integrand (Section 2.1.2) such that thie surface energies also
converge, i.e., lim® (9K;) — ®(9K).

From this, it is clear that varifold convergence is much stronger thah trenver-
gence. Not only does the set converge, but the normals of the boundaries of the sets do,
as well.

Itis easy to establish from the definition ®ffirst variation (Section 2.1.7) that, i;
converges t& in the varifold sense, then for all* vector fieldsg, we have

. d d
I”;n d—sq) (Gsn8K|) o == d—Sq) (staK) SZO,

whereG(X) = X + sg(X).

Appendix B. Concepts from Probability

We describe very briefly the main concepts from probability theory used in this paper. It
is a collection of definitions and notations. We will however elaborate the case of infinite
dimensional stochastic calculus. The main references are [KS], [Par], and [KR].

B.1. Basic Definitions

A probability spaceis a collection of elementls» € 2} equipped with a-algebra F
of subsets of2 and ameasure P on F such thatP(Q2) = 1. Let S be a measurable
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space withr-algebra3.2” An S-valuedrandom variable (r.v.) is a measurable may
from Q to S. In caseX is real valued, we uskg X to denote the expectation &f with
respect taP, i.e.,

EX =/ X (w) d P(w). (B.1)
we2

A stochastic processs a collection of random variableX; }i¢|, where the index set
| isR, or[0, T]regarded as atime interval. A stochastic process can also be considered
as a map,

t,w) = Xi(w): 1 xQ— S (B.2)

Upon fixing at € |, we are observing the random variat{e at timet. On the other
hand, fixing anv € €2, the collection of elementsX; (w)}t¢ is called asample path X
is calledcontinuous (left or right continuous) if the sample paths satisfy this property
almost surely with respect t8.

A filtration {Fi};¢, is atime parametrized increasing family of safalgebras of:

FsCHRhCF foral0<s<t ands,tel. (B.3)

A stochastic procesx is said to bexdaptedto a filtration{ %} if X; is F;-measurable
for all t. In this case, we writeX = {X;, Ft; 0 <t < oo}. X is calledprogressively
measurableto {F} if (S, w) — Xs(w): ([0,1] x 2, B([0,1]) ® ) — (S, B) is
measurable for al € R,. Predictable (completely measurable) set8 are subsets
of [0, o0) x 2, which are elements of the smallestalgebra relative to which all real
Fi-adapted, right-continuous processes with left-hand limit are measuratbledsin A
processX : [0, 00) x 2 —> Sis calledpredictable (completely measurable)f, for
any Borel subseB € S, {(t, w); X(t, w) € B} is predictable.

All the processes in this paper are predictable. They are either continuous or can be
approximated by piecewise continuous processes.

A positive random variabl& is called astopping time (with respect to the filtration
{Fihso) ifforall0 < t, {T <t} e F. This concept is used to indicate the occurrence
of some random event.

The conditional expectationof a real-valued random variabh¢ with respect to a
sube-algebrag of F is denoted byE ( X| G) or Eg X.

We assume the well-known definitions @fontinuous) martingale processes-
{M;, F; 0 =<t < oo}; their associateduadratic variation processes—(M);; (one-
dimensional) Brownian motion—{W;, F;; 0 <t < oo}; stochastic integralwith re-
spect tow; andlto’s Formula. However, we single out the following result, which is
used frequently in this paper.

Burkholder-Davis-Gundy Inequalities ([KS] 3.3.28) Let M be a continuous martin-
gale withMgy = 0. Then, for alim > 0, there are universal positive constaksandK

27 WhenSis a topological space, we always taReo be theBorel o -algebraof S.
28 The following definition is from [KR].
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(not depending o) such that

knE ((M)T) < E ((MH)?™) < KnE ((M)T), (B.4)

T

where t is any stopping time{M), is the quadratic variation oM, and M;* =
SURy<s<t |Ms].

B.2. Weak Convergence of Probability Measures on Metric Space

Here we takeéSto be a metric space. A sequence of probability meagi®gs.; C P(S)
is said toconverge weaklyto P € P(S), denoted byP = w lim, P, or P — B, if for
all f, bounded and continuous &

Iim/ f(X) Pa(dx) :/ f(x) P(dx), Vi eCy(S). (B.5)
nJs S

In the above definition, we can restrittto be only uniformly continuous. We have the
following important criterion for compactness®(S), developed byProkhorov:

A collection of probability measurds c P(S) is calledtight if for all ¢ > 0, there
is a compact set K S such that

PK)>1—¢, VPel. (B.6)

If T is tight, then it isrelatively compact The reverse is true if S mmplete

Tightness Criteria on C([0, 1], S). Let Sbe acomplete separable metric spacéVe
describe here an explicit tightness condition on a collection of probability measures
on C([0, 1], 9—the space of continuous functions from {{ to S. The condition is
summarized by the following two statements.

B.2.1. Theorem (Kolmogorov€entsov). Suppose an S-valued stochastic process de-
fined on(Q2, P, F) satisfies the condition

E|X; — Xs|* < C |t —s|*#, forall0<s,t <1, (B.7)

wherea, 8,C > 0. Then X has aontinuous version X which islocally Holder
continuouswith exponeny for every0 < y < Bla, i.e.,

Xt (@) — Xs(w)
P{iw: sup ———

O<t—s<h(w) |t - S| 4
s,te[0,1]

<8, b =1 (B.8)

where Hw) is an almost surely positive random variable af)dis some appropriate
constant depending on.
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B.2.2. Theorem.Let{X!} be a sequence of continuous process satisfying

te[0,1],N>1
EIXY° < M < oo, (B.9)
E[XM - X" < Cclt—s**, (B.10)

where p«, 8, M, and C are positive numbers independent of N.

Then the collection of measurg®™}, _, induced on Q[0 1], S) by X" is tight.

B.3. Infinite Dimensional Stochastic Calculus

Here we describe the basic notations and terminology for stochastic calculus when
random variables and stochastic processes take valuespaaable Hilbert spaceH.
Many of the concepts related to real valued stochastic processes can be extended to the
present infinite dimensional case. We denote the norm and inner prodddbyn| - ||
and( , ).Let(2, F, P) be a probability space.

A random variableX taking values irH is a measurable map fro(, F) to (H, B)
with B being the Boreb-algebra ofH. If fQ IX]] dP < oo, we can definEEX =
Jo XdP, and we havf EX|| < E [|X].

Let G be a subs-algebra ofF. SupposeE || X|| < oo. We defineE ( X| G) to be the
G-measurabléd -valued random variable such that forlale H,

(E(X|G), hy=E((X, h)|G) P as. (B.11)

Continuous Square Integrable MartingalesinH. Let{F},.obe afiltration. A stochas-
tic procesaM;, adapted taF;, written as{M;, Fi; 0 <t < oo} is called amartingale
if, forall0 <s <t,

EIX] <oco and E(X|Fs) =Xs P as. (B.12)

A continuous martingale{M;, F;; 0 <t < oo} taking valuesirH is calledsquare
integrable if, for all 0 < t, E || X¢||? < co. We useM$(H) to denote such processes
with Mo = 0.

Let M; € M5(H). Similar to the real valued case, we can deffiw), to be the
adapted, continuous nondecreasingrocess such thaitM, |2 — (M), is a martingale.
However, in the case of infinite dimensional martingales, we have a more general object
than just thgM);.

Covariance Operators for M5(H). Given anyM € MS$(H), there is aunique
adapted, continuous nondecreasing proce¢and hence of bounded variations on com-
pact time intervals} M), taking values in the space pbsitive trace class operatorg®
such that for alk, y € H,

(M) x, y) = (M., x), (M., y));. (B.13

29 The basic properties of trace class operators will be described in Section B.4.
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(The right-hand side is the cross-variation process betwiknx) and (M;, y)—the
inner products oM; with x andy.) (M) is called thecovariance operatorfor M.

LetalsoN € M$(G) whereG is another Hilbert space. Then there is a unique adapted
process of bounded variations on compact time interffdds N)); taking values in the
trace class operators fro@to H such that, for alk € H andy € G,

(M, Ny, x) = (M., X), (N, V). (B.14

{M, N)) is called thecross-covariance operatofor M andN.

Brownian Motion in H. Let A be a positive trace class operaton\ener Processor
Brownian motion in H with covariance operator A is a proces$\; € M$(H) such
that

(W) =tA. (B.15

The existence of such a process can be demonstrated as follows, ).t be the
eigenvalues ofA with {g };~, being the corresponding normalized eigenvectors. Since
A is a positive trace class operator, we have> 0 and TA =  ; A; < oo. Also let
{V\/tI }i _, be asequence ofindependent real valued Brownian motions. Then the following
definition can be shown to satisfy (B.15):

W= VieW. (B.16)

Infinite Dimensional Stochastic Integrations. We can define stochastic integrations in
the same way as the real valued case. Before giving the formal definition, we first perform
two heuristic computations. Take the construction of infinite dimensional Brownian
motion from (B.16).

Let f (-) be a predictable function iHl. We define

t t )
[RUCK IR SNy RUCKSE ®17
Consider
</O'(f(s), dws)> = 3 Vaik </O'(f(s), &) dW,, /o.(f(S)’ g) dvvsi>
t i,j t
t . .
= Z,/mjfo (f(s). e)(f(s). g) d(W', W)
i t t
= in/ (f(s), e|)2d3=/ (Af(9), f(9) ds
i 0 0

For another kind of stochastic integration, we repldg¢e by a predictable linear
operatorB(-) from H to G. We then define

t t
MtZ/ B(s)dWszz\/)Ti/ B(s)e dW,. (B.18)
0 i 0
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For allx, y € G, considet’
<(Mt’ X)a (Mtv y))’[

- <Z\/Z/O'(B(s)q, x) dW, Z\/E/O'(B(s)ej, y) dWSj>
i i

t

t t
= Yu [ (Boe, 0 B,y ds= Y i [ (e, BoX) 0, By ds

t

t
/ (AB*(s)x, B*(9)y) ds:/ (B(s)AB*()x, y) ds
0 0

t
<</ B(s)AB*(s)ds) X, y) .
0

Hence,

. t
<</ B(s)dws» =/ B(s)AB*(s)ds. (B.19)
0 t 0

In order to make the above computations rigorous, we need to have some integrability
conditions. Now we give the formal definition of stochastic integration in the infinite
dimensional case as in [Par 1.3.2].

Let{W;, Fi; 0 <t < oo} be anH-valued Wiener Process with covariance operator
A. Gisanother Hilbert Space. Suppd®t), Fi; 0 <t < oo} is apredictable process
taking values in the linear operators frdmto G (not necessarily bounded) such that,
forall T > 0,

T
E/ Tr[B(S)AB(s)*] ds < oo. (B.20)
0
Then we can define
t
(B-W); = / B(s) dWs (B.21)
0

to be theunique element ofM$5(G) such that, for alN € M$5(K) (K is another Hilbert
space),

t
((B- W), N) :/0 B(s) d (W, N))s. (B.22)
In particular,

t
(B- W), = / B(s)AB(s)* ds. (B.23)
0

30 |n the following, B* denotes the adjoint d.
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Integrands for Stochastic Integrations. We useN, (H) to denote the class of pre-
dictable processes taking values irH such that, for alll > 0,

;
E/ (Af(S), f(s)) ds < oo. (B.24)
0

In addition, \, (L(H, G)) denotes the class of predictable procegs&aking values in
the linear operators frorl to G (not necessarily bounded) such that, forial- 0,

.
E/ Tr[B(S)AB(s)*] ds < oo. (B.25)
0

Ito’s Formula in Infinite Dimension. This is the anolog for the finite dimensional
formula.

Let (V, | - |ly) be aseparable Banach Spacwith dualV*. The pairing betweeN
andV*isdenoted by, )y.V isdensely embedded in another Hilbert spdde(, )u).

Then(V, H, V*) forms aGelfand Triple in the sense tha¥ 4 H = H* JL> V* with
each of the embedding being dense and continuous. Furthermore;, ¥, u € H,
then(v, j*(W)y = (j (v), Wy.

B.3.1. Theorem.[KR 1.3.1] Let v(t) be a V-valued and*(t) be a V*-valued pre-
dictable process such that

;
P (/0 O + v @

Let M; be an H-valued continuous martingale, andbe a stopping time. Suppose for
everyé € V, we have for € x dP a.e. on{(t, w): t < t(w)} that

2. dt < oo) —1 forallT >0 (B.26)

t
(). 0O, =/0 e v ), ds+ (] E). M. (8.27

Then there exists a subset ¢ Q with P(®2') = 1 and a predictablecontinuous
H-valued process tt) such that the following statements hold.

1. j(v(t)) = h(t) fordL! x dP a.e. on{(t, w): t < t(w)}.
2. Foranyw € @, t < t(w) and& e V,

t
(J &), ht)y =/0 (&, v* (), ds+ (j (). Moy . (B.28)
3. If for some given t= 0 and any¢ € V, (B.27) is satisfied P a.s. dw: t < 7(w)},

then j(v(t)) = h(t) P a.s. onfw: t < t(w)}.
4, Foranyw € Q' andt < t(w),

t t
IN®IZ = [ Moll +2 /0 (v(9), v*(9)), ds+2 /O (h(S). dMg)y+(M), . (B.29)

This is also calledto’s Formula for the Norm Square of h.



Existence of Dendritic Crystal Growth with Stochastic Perturbations 569

B.4. Trace Class Operators

From Section B.3, it is clear that trace class operators are naturally associated with
Hilbert space valued martingales. Lidtbe a separable Hilbert space dngH) denote
the space of linear operators éh The following definitions are from [Kuo].

An operatorA € L(H) is called aHilbert-Schmidt Operator if, for some O.N.B
{&}i=1 C H, we have) 2, ||Aq I? < oco. We usel » (H) to denote the space of
all Hilbert-Schmidt operators. Define thilbert-Schmidt Norm of A by [|Allp =
(52, 1Aa1?)™.

A compact operatoA is called arace class operatorif ) ; ui < oo where theu;’s
are the eigenvalues ¢AA* A2 wWe usel (3) (H) to denote the space of all trace class
operators. Define thieace class normof A by [|Allq, = Y 2, ui. Thetrace of Ais
defined as TWA) = ) 2, (Ae, &), where{e };-; is any O.N.B. ofH.

Examples of Hilbert-Schmidt and Trace Class Operators.For use in this paper, we
give examples of the above operators in the following setting.

Consider then-fold product of Hilbert spacet.? (0) = L*O) x --- x L*(O).
We denote each element bBs) = (U'(-),...,U"()) with UP() € L%(0), p =
1,2,...n. The inner product is defined &9, V) = [ _,, Zg UP(X)VP(x) dLX.

LetK be an operator ohfm (O) given by am x n matrix valued kernel K(x, y) =

{Kpg(X. y)}zqqzl. The operatoK is defined as

(KU) (x) =/ OK(X, yU(y)dL"y, U e L7, 0. (B.30)
ye

Define the norm of a matriA to be

A% = Tr AAT = Z A2 (B.31)
p.q

B.4.1. Proposition. If [[K(-, -)|| € L(O x 0), thenK is Hilbert-Schmidt on £ (O).

Proof. LetK,(x,y) be thep-th row ofK(x, y). Then, for allU L(zn)(O),

(KU (0 = [ K0 y). Uy) dLTy.
y

Thus, [, IKUCOIZ d2™ = [, 325 (, (Ke(x, v, U)) d£”y>2 dLmx. Now let

{Vi}i>1 be an O.N.B. forLfn)(O). We want to see if the following quantity is finite:

0 00 n 2
Skl =3 [ 3 ( [ ooy vin)acty) aex @32
i i X p y

By the hypothesigjK|| € L?(Ox ). Using Fubini's Theorem, a.g.c O, Kp(X, ) €
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LZ,(O). Then,

Kp(X, ) = Y (/(Kp(x, ), Vi(y)) dE”v) Vi
y

|
[e¢]

2
= / |Kpx. 9| dLty = > (/(Kp(x, y), Vi(y)) dE”y> :
y i y

Hence,

=) 2
//( ) [Kpx, y) || dLMydLMx = Z/ (f(Kp(x, y), Vi(y)) dE”y) dL"x.
X,y i X y

Finally,

n
oo > // IKx, II? dLMy dL"% = // 3 Kpx. y[|* dLMy dLmx
(X,Y) X.y) p

o0 n 2
= Z/Z(/(Kp(x, y). Vi) dﬁ“y) dL™x.
i X p y

This is exactly equal to the R.H.S. of (B.32). HenKds Hilbert-Schmidt. O

B.4.2. Proposition. Let K be apositive Hilbert-Schmidt operator, i.e K(x, y)T =
K(y. x), and for anyu € L2 (0), / ((KU)(x), U(x)) dL"x = 0. If
X

/Tr[K(x, X)] dL"X < oo, (B.33)

X

thenK is a trace class operator onf}n(O), and the above quantity is the tracelof

Proof. Since a Hilbert-Schmidt operator is compact, we can use the Spectral Theorem
to decompos& asK(x, y) = Y & Vi (X)VTi(y), wherep;’s are the eigenvalues ¢f
andV;’s are the corresponding normalized orthogonal eigenvectors written in column
form. Note thaf,; > 0. Then,

TR X) = ) TP [VicoVTio] = 3k Vi ll?

== TrK(x,x)dL"x = A O
I >

B.5. Examples of(( /, B(s) dWs));

By Theorem B.23, we know that foB € WNy(L(H)), (/;B(s)dW), =
fé B(s)AB(s)* ds. Here we computd3 A B* for some explicit examples d8 which
will be useful later.

Recall thatA is given by a kernel (-, -) € L*(O x O).
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B.5.1. Multiplicative Operator. Given afixed functiom € L2(0), letB : L2(0) —
L2(O) be defined as

(BFHY(x) = h(x) f (%), f e L20). (B.34)

Note thatB is unbounded. HoweveBA B* is actually a trace class operator bf(O)
given by a kernel. To compute this kernel, consider

(BAB*f, g) = (AB*f, B* )—/(A(hf)) x)h(x)g(x) dL"x
- / / A Yh(y) f (y)hOg(x) Ly dL"x
xJy

= / (/ h(xX)A (X, y)h(y) f(y) dﬁny> gx)dL"x.  (B.35)
x \Jy
Thus, the kernel oBA B* ish(x) A(X, y)h(y). Note thatB A B* is positive and we have

Tr[BAB*] = /h(x)A(x, x)h(x) dL"x < C[[h]|?;. (B.36)

. 1 x . . .
B.5.2. Smoothing.Let ¢.(X) = —¢(=) be a symmetric smoothing function anti |
€ €
denote the convolution operation wigh. We compute

(CAVNCAN )
= /f( )A(x, V) (e * F)(Y) (@ * 9)(x) ALy dL X
Xy

= ff//A(x, V)9 (Y — 2) f (Dpe (X — w)g(w) dL " w dL"Z dL"y dL"x

- / / (/ / A Y)Pe(Y = g (x — w) AL dﬁ“y> f (@g(w) ALz dCMo.
zZJw XJy
Hence, ] A[¢.]* is given by the kernel,

A(w,2) = //A(x, V)P (Y — 2)pe (X — w) dL"'X dL"Yy € L®(O x 0). (B.37)
x Jy

B.5.3. Differentiation Operator. Letdy[¢.] denote the composition op[] and the dif-
ferentiation with respect to the-th coordinate. Thefy[¢] = [9,¢]. Hence,(9p[¢:]) A
(9p[g<]* is given by the kernel

(9pA“Bp) (w, 2)
= //A(X, Y)(@ppe) (Y — 2)(@pge) (X — w) ALy dL X
xJy

1 _
/X /y AX, y)EnH(apw(yE Z) n+l<ap¢>>( . )dﬁ”ydﬁ”
C

- e2n+2°

(B.38)
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Appendix C. Solution of Heat Equation (4.3)

C.1. Galerkin's Scheme and Picard’s Iteration

N. K. Yip

Recall the notations from Section 4.1.5. The smoothing paramétars ¢ will be

suppressed. The following two statements suffice to solve (4.3).

1. Let G(-) € Nx(L(H)) such thafTr[G(t)AG*(t)] < C forallt € [0, 1]. Then there
is a unique solutiod T (-) };-o with initial data To € H for the following equation:

dT@) = édiv(zKVT(t)) dt + G(t) dW,

in the sense that
e T € C([0, 1], H) and is predictable.

1
o E{ sup ITMII +/ IT©I3 ds} <C.
t€[0,1] 0

e ForallveVv,

t

t
(T®). vy = To. Vu —/0 (AT(S), v) o|s+/O (G(9) AW, V)

Or equivalently,
t
(CKT(t), U)Lz = (CKTo, U)Lz —/ (EKVT(S), VU)Lz ds
0
t
+/ (ck G(s) dWs, v) 2.
0

2. LetX be the space (0, 1], H) with norm

[Ty = sup Ty -
0,1]

te[o,

(C.1)

(C.2)

(C.3)

Givenany T € X, let T2 € X be the unique solution of the following equation with

initial condition To € H and B as defined in (4.10):

dT?(t) = —AT?(t) dt + B(T(t)) dW.

(C.4

Because of 1, Texists. Lef” denote the map from*fo T2. We claimthat ®, T2, ... T" =
(T, ... will converge to a limiting function Te C([0, 1], H), which is clearly

a solution of (4.2).
Such a procedure is calldéicard’s Iteration .

We now start the task of solving (C.1) by meansalerkin's Scheme

C.1.1. Finite Dimensional Approximation. Choose any orthonormal basis (O.N.B.)
of H {uj}i>1 withu; € V. Let Ty (t) = Zi”:l ¢, (tu; andIl, be the projection fronH
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onto the linear span afy, uy, ... u,. Consider the following stochastic ODE which can
be regarded as a finite dimensional approximation for (C.1):

dTa(t) = - AT, dt 4+ I1,G(t) dW

= dgt) = =) _cy®(Ay, u) dt+ (GH) AW, u)y, i=12...1C5)
j=1

By the fact thatG is bounded and independent of thés, the above is a linear
stochastic ODE. A unigue strong solution existsdgt) by the standard techniques of
solving such equations ([KS] 5.2.9).

C.1.2. Uniform Energy Estimates for the Tp's. Recall Ty(t) = > c‘n(t)ui. Then,
ITa(OIZ = Y, ¢ (t)% Hence, by Ito’s Formula,

dITa®IZ =Y 2c,®)dd, ) + Y d(ch(), -
i=1 i=1

Now,
i&:‘n(t)dq;(t) = —iZC‘n(t)cA(t) (Au;, u),, dt+i2c‘n<t> (G(t) dW, )y
- = —2L(JEKVTn(t), VTa(t)) dt+2(G£t:)ldV\4, To()h »
and
and(cg(.))t = i(G(t)AG(t)*ui, )y dt=Tr[I,G(t)AG(t) ] dt
i=1 i=1

IA

Cdt (by the boundedness &).

t

ITa 12, +2fo (K VTa(S), VTa(9) ds

t
— T2 + 2/0 (G(S) AW, Ta(®)n

t
/ Tr [TnG(S)AG(9)*T1,] ds (C.6)
0

|
)

By Burkholder’s Inequality (B.4),

A

t
E{ sup ||Tn<t)||2H> < C+2E{ sup / (G(s) dWs, Th(9)y
0

rel0.] rel0.t]

IA

C+2E { sup
1€[0,t]

t
/0 (G(9) AW, Ta(S)s

(by a<a®+1)
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t
=C+ DE/ (GOAG®)*Ta(9), Ta(9), ds
0

IA

t
C+ D/ E ITa(9)11% ds
0

A

t
C+ D/ E{ sup mmu.ﬁ} ds.
0

2€[0,5]

Applying Gronwall’s Inequality foD,(t) = E {SUQE[o,t] IITn()»)II.%. },we deduce that
Dn(t) < Cfort € [0, 1].
Now (C.6) leads to

1
E{ sup ||Tn(t)|||2-| +/ (Zk VTn(s), VTn(9) dS} <C. (C.7)
te0,1] 0

C.1.3. Taking the Limit. LetY be the spacg[0, 1] x Q, PM, d£! x dP), where
PM is the completion of predictable sets. Then, from (C{T)(t)};0,1} n>1 Can be
considered as elementslofY, H) andL (Y, V) with uniform bound on theit.2 norms.
Hence, we can extract a subsequence (still denotet bych that

weakly inL2(Y, H),
weakly inL2(Y, V).

Tn

—~ T
T, —~ S

By the fact thatV is densely embedded i, we havel = S (d£! x dP a.e).
Since theT,’s satisfy the following equation:
t t
(Ta(0), Up = (To, Uiy —/ (ATn(s), Ui) dS+/ (MaG(s) dWs, Ui)y , (C.8)
0 0
then for anyy (bounded function oiY), we have
1
E/ y(®) (Ta(t), ui)y dt
0

1 t t
= E/ y(® {(To, Ui —/ (ATa(s), i) dS+/ (MnG(s) d W, Ui)H} dt
0 0 0

1 t t
- E/ y(t){(To, Uw —f (Ta(9). Au) ds+/ (MaG(S) dWs, ui)H} dt.
0 0 0
(C.9)

Taking the limitn — oo, we obtain that

E/Oly(t) (T(t), ui)H dt

1 t t
= E/ y(t){(To, Uy —/ (8, Aui>ds+f (G(s) AW, ui)H} dt.
0 0 0
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Hence, for alb € V, d£! x dP a.e., as elements &f*, we have
t t t t

Tt =To —/ Aé(s)ds+/ G(s)dW;s = T —/ A'f(s)ds—i—/ G(s) dWs.
0 0 0 0

By Ito's Formula in the infinite dimensional case(B.29), there exists aR®’ C Q
with P(Q") = 1 and aT (t), continuous int, taking values in H such thafT = T
(dP x dtta.e)andorall t € [0,1], w € &,

t t
T(t):To—f AT(s)ds+/ G(s) dW; (C.10)
0 0

i.e., (C.1) is solved.

The energy estimate (C.7) is also true Todue to thdower semicontinuity of the
energy functionals with respect to weak convergence. (It can also be derived from (C.10)
by applying Ito’s Formula for the norm square©ft).)

C.1.4. Uniqueness of Solution for (C.1)Let T; andT, be two solutions. Then,

t

To®) = To(t) = — /O A(TL(S) — Ta(s)) ds.

Using Ito’s Formula again, we have

ITa(t) — Ta)11%,

t
—2/0 (A(T1(s) — T2(9)), Ta(s) — Ta(9)) ds

t
2 / (S V (T2(9) — Ta(8). V (Tu(S) — To(9))) dis
0
i.e., |Ti(t) — T2(t)||]ﬂ = 0 P a.s. ThusT; andT; are indistinguishable.

C.1.5. Picard’s Iteration. Now we go into the iteration scheme to solve (4.2).
Let {T"(t)}n=1 be such thatl T"(t) = —AT"(t) dt + B(T""*(t)) dW. This implies
that
d(T™ht) — T"(t) = —A(T" (1) — T"(1)) dt+ (B(T"(t)) — B(T"}(t))) dW.
(C.11)
Hence,
[T - Tl

t
= —zf (A(TM(s) = T(9)), T""(s) — T"(9)) ds
0
t
+2 / ((B(T"(s)) — B(T"(s))) dWg, T"H(s) — T™(9)),,
0

t
+/0 Tr[(B(T"(s)) — B(T"(s))) A (B(T"(s)) — B(T"(s)))] ds. (C.12)
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By the positivity of A, we deduce that

sup [T — T "W},

re0,t]
2

s
< C sup /0 ((B(T"(s)) — B(T"*(s))) dWg, T™(5) = T"(9)),,

1€[0,t]

2

t
c [/O Tr[(B(T"(s)) — B(T™%(s))) A (B(T"(5)) — B(T"%(s)))] ds}

2}
t 2

+CE/O (Tr[(B(T"(s)) — B(T"X(s)) A (B(T"(s)) — B(T"X(s)))])" ds.
(C.13)

— E{ sup | T —T“(x)||‘,:}
A1€[0,t]

A
< CE{ sup / ((B(T"(s)) — B(T™(s))) dWs, T (s) — T"(9)),
0

rel0.1]

Using Burkholder’s Inequality (B.4), the first term in the R.H.S. of the above is bounded
by

t
CE /O (A (B(T"(®) — BT™X()) (T™(s) — T'(9)).
(B(T"(s)) — B(T"1(s) (T (s) — T"(9))) ds,

which in turn is bounded by (recall that € L (O x 0))
CE/: [T - T [Z [T — T, ds
Hence, we can rewrite (C.13) as
E { sup [T™ () — T ") HA,:}
1€[0,t]

‘1 n n—1 4 n+1 n 4
CE/O5||T ) —T" )|, +0 [T -T (9|, ds

IA

t
1
+C/ ETs) — T"(s) Hi‘ ds (we have useab < 5a2 + 6b?)
0

IA

t
c// E{ sup ||T“(,\)—T“—1(,\)||‘L} ds
0

Ar€[0,9]

t
+C9/ E{ sup [T™(s) —T“(s)||j‘_|} ds
0

2e[0,]
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t 4
= c’/ E{ sup [T"W) —T" )| ¢ ds
0 A1€[0,s]

+C9tE[ sup |[T™() — T“()\)||‘,:} : (C.14)
A1€[0,t]

Choose& small enough such th&6 < 1/2. Then, forallO<t <1,
€[

t
E{ sup [T™() — T“(x)||‘:|} < C’/ E{ sup [T"() — T“—l()\)n‘,:} ds.
r€[0.t] 0 1€[0,5]

Let DW(t) = E [SUHe[o.t] [T —T“‘l()»)H‘,:}. The above sayD™(t) <
C f, D™ (s) ds. Proceeding inductively,

t t t1
D™t) < C f D™V (t;)dy, < C? / / D2 (t,) dt,dty

0 0 Jo

' t 1 to th—2 th-1

5cnff f / / dtydt_1dty o dty
0 0 0 0 0

cnn
<= (C.15)

HenceY , P {suge[o.l] |Tr0) = Tt | = Zi} < ¥, £ < o0. By theBorel-
Cantelli Lemma, we conclude thafT "} ..., almost surely converges uniformly to some
T € C([0, 1], H).

Now, if we go back to (C.12), and use (C.14) and (C.15), we have

! 2 n n+1 n
n+1 n 2 ,C ,C C
E(/O [vT™ie) = VT L. ds) =C L +C—— <.

Hence,Y"2° E [5 [VT™(s) — VT"(s) ||i2 ds< >, (‘rf—!")l/2 < oo. Now it is easy

to verify thatT is a solution for (4.2). The procedure is the same as in Section C.1.3.
Uniqueness is very similar to Section C.1.4.
The whole Theorem 4.1.4 is thus proved.
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