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Summary. We prove the first mathematical existence result for a model of dendritic
crystal growth with thermal fluctuations. The incorporation of noise is widely believed
to be important in solidification processes. Our result produces an evolving crystal shape
and a temperature field satisfying the Gibbs-Thomson condition at the crystal interface
and a heat equation with a driving force in the form of a spatially correlated white noise.
We work in the regime of infinite mobility, using a sharp interface model with a smooth
and elliptic anisotropic surface energy. Our approach permits the crystal to undergo
topological changes.

A time discretization scheme is used to approximate the evolution. We combine
techniques from geometric measure theory and stochastic calculus to handle the singular
geometries and take advantage of the cancellation properties of the white noise.
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1. Introduction

We prove the mathematical existence for dendritic crystal growth in a model that in-
corporates stochastic perturbations. This is an example of a curvature-driven evolution.
Such processes appear frequently in the modeling of various physical phenomena—for
example, solidification processes, fluid flows, and bacteria growths. Crystal growth is
one of the most vivid examples of pattern formation. It can be described by relatively

∗ This paper is based on part of the author’s doctoral dissertation [Yip].
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simple equations, and yet it demonstrates rich and complex structures. The nonlinearities
and singularities involved in such evolutions pose many difficult questions, including
the existence and regularity of their mathematical solutions.

The effects of noise in such systems have been investigated at length by the physics
community through both experiments and theory. See for example [Kar] in the case of
crystal growth. It is believed that certain forms of fluctuations must be present in order to
generate the observed patterns. Due to the nonlinearity of the evolution, a tiny amount of
noise can be magnified tremendously to produce a macroscopic effect. Many physicists
and material scientists are interested in knowing the selection mechanisms determining
the final pattern. There are still many open questions concerning the formulation of the
models with noise, the origins of the noise, and its relevance for the overall dynamics of
the evolutions.

The study of such processes has also been taken up from a mathematical point of view.
The Stefan problem is a simple model which does not involve any surface tension. A more
refined model incorporates curvature information. It gives a more stable interface and
allows the phenomenon of undercooling. Local in time classical solutions for this refined
model were proved in [CR] and [FR]. [AW] and [Luc] used variational approaches to
give general weak solutions in the infinite mobility framework. [Son] used the phase
field method to give a varifold solution in the finite mobility case. Numerical works have
also been done by (not mentioning the huge physical literatures) [Alr] and [RT] using
variational approaches, and by [Kob] and [WMS] using the phase field approach. All
these works do not consider the effects of noise except that, in simulations, noise very
often is added artificially in order to produce realistic pictures.

In this paper, we introducethermal fluctuations into a model of crystal growth and
prove an existence result for a solution which combines the effects of surface tension—
the Gibbs-Thomson condition—and stochastic heat diffusion. We hope this can be a step
toward a more physical formulation. Using the idea of [AW], we produce an evolving
crystal shape with sharp interface. We work in the regime of infinite mobility. The
surface energy we use is anisotropic, smooth, and elliptic. The crystal is allowed to
undergo topological changes. The whole Theorem is stated in Section 2.2

1.1. Model for Crystal Growth and Stochastic Noise

Our existence theorem is for a model of dendritic crystal growth. This process can be
formulated in a wider context ofcurvature driven flows, which are defined as follows.
Consider a time-varying domainK (t) in the spaceRn. Its boundary∂K (t)—a hyper-
surface (physically also known as theinterface)—evolves according to the following
form:

Norml Velocity|p∈∂K = F
(
Curvature|p∈∂K ,Bulk forces

)
,

where F is some prescribed function. The bulk forces are quantities defined on the
ambient space. They can be the temperature field, concentration of solutes, impurities,
nutrients, and so forth. The use of such a formulation in various physical systems can be
found in [KKL] and [Lan].

In the case of crystal growth, the above heuristic equation becomes

v∂K (p) = M(n∂K (p)) (h8(p)+ C(p, t)) , p ∈ ∂K , (1.1)
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wherev∂K (p) = (inward) normal velocity atp ∈ ∂K ; n∂K (p) = (outward) normal to
∂K ; M =mobility function;8= surface energy integrand;h8(p)= (8-weighted)-mean
curvature1; C = undercooling;t = time.

Themobility function M assigns a value to each normal direction. It describes the
response of the interfaceK (t) in terms of the attachment kinetics—the ease with which
atoms attach to (or detach from) the interface∂K (t) or the crystal lattice.

There are two driving forces. The first one is the8-weighted mean curvature, h8,
which captures the reduction of the8 surface energyof ∂K—8(∂K ). (Surface energy
arises whenever there is an interface separating two phases or material composites. In
our case, they are the solid and liquid phases.) The system will evolve in such a way that
8(∂K ) (together with some other bulk quantities) decreases. The relationship between
8 andh8 is given in Section 2.1.7.

The other driving force is theundercoolingC which is a function of the temperature
valueT . It describes how muchT is lower than the melting pointT∗ of the material.2 C
can be approximated asC(p, t) = T(p, t) − T∗(p, t) whenT is close toT∗. Negative
(positive) values ofC gives a growing (shrinking) tendency of the crystal. These two
forces are competing against each other. Their relative effects govern whether the crystal
is growing or shrinking.

Another important ingredient of our model is thediffusion of latent heat, which
controls the rate of growth. Recall that freezing of the liquid phase releases latent heat.
If this heat is not diffused away, it will warm up the interface and then slow down the
growth. Thus, in order to have a proper growth model, (1.1) is coupled with the following
diffusion equation:

d Q= div(6K∇T)dt, (1.2)

where the heat distributionQ is related to the temperature fieldT through the specific
heat capacity:Q = cK T .6K is the diffusivity matrix.

The derivations of (1.1) and (1.2) using thermodynamics can be found in [Gur] and
[Gur2]. The concept of (weighted) mean curvature from the materials science point
of view is described nicely in [Tay]. Several mathematical methods of tackling phase
transition problems are outlined in [TCH].

The motivations for the study of this phenomenon include applications to materials
science. The control of the interfacial structures is an important issue in the manufactur-
ing of alloys and semiconductor materials. The description of various physical processes
involved in solidifications can be found in [Cha] and [Woo]. In addition, even the ques-
tions of how to model and predict the rich patterns pose many fascinating mathematical
problems.

The above model is also an example ofdiffusion controlled growths. The qualitative
picture in such phenomena is that simple shapes such as planar and circular interfaces
are notoriously unstable ([MS], [MS2]). They tend to evolve into a regime of intensive
sidebranching activities, but this is later stabilized by the surface energy effect. It is the

1 The sign convention is thath8 is positive for a sphere.
2 In reality, the melting point of a material depends on the curvature of the interface. This is called the Gibbs-
Thomson Curvature Effect, which is one of the main ingredients in this paper.T∗ means the melting point of
a planar interface.
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interplay between the interfacial kinetics, surface tension, and diffusion that produces
the intricate dendritic patterns observed in the solidification processes. The seemingly
regular and self-similar patterns seen for example in snowflakes is believed to be a
consequence of theanisotropy of 8.

There is extensive physical literature concerning various aspects of these patterns. The
quantities they study include tip radii of the dendrites, the spacings between them, and
their growth velocities. Several nonlinear (deterministic) models have been proposed (see
the accounts in [KKL], [Lan], [Lan2]). However, in some recent works, incorporation of
noise is one of the main considerations ([Lan3], [PL], [WL]). It is widely believed that
fluctuations are important in initiating the onset of morphological instabilities. The noise
is then selectively amplified by the nonlinearity of the process to produce macroscopic
patterns. However, the magnitude of the noise needed to simulate the experimental results
seems to vary a lot depending on the models used. It is also not quite clear in which
stages of growth the effects of noise are most prominent.

Here we take the point of view that thermal fluctuations are natural sources of pertur-
bations. They are always present. They can come from external heat sources, chemical
reactions, impurities, etc. In this paper, they are all put together into one stochastic driv-
ing force that is white in time but correlated in space. We demonstrate the possibility of
a mathematical framework to incorporate such effects and produce an existence result.

Several questions remain open. What are the statistics of our solutions and their long-
time behaviors? The answers can give a test of our formulation in comparison with
the experimental results. In the framework of this paper, we are in effect considering
macroscopic perturbations. Can they be treated as the accumulative effects of micro-
scopic fluctuations? How can we relate quantitatively the noise we use and the physical
parameters? Another approach to introduce perturbations is to consider random initial
data. How can we compare the overall effects of initial randomness and the fluctuations
during the evolutions? We do not know whether our approach gives a unique solution.
How can this be formulated? We believe these are important directions for further work.

In this paper, we study the following simplified version of (1.1).

Infinite Mobility ( M ≡ ∞) and the Gibbs-Thomson Condition. This formally re-
duces the interfacial dynamics (1.1) to

h8(p) = −C(p, t),

i.e., the mean curvature3 balances with the negative of the undercooling. This is called
theGibbs-Thomson Curvature Condition. We further assume that

C(p, t) = H(T(p, t)). (1.3)

H is called theGibbs-Thomson Relation, which is a decreasing function of the temper-
ature value—the lower the undercooling, the higher the corresponding curvature. It is this
effect that provides the barrier to nucleations and gives the possibilities ofundercooled
liquid andsuperheated solid.

3 From now on, we will drop the word “8-weighted.” It is understood that mean curvature is always with
respect to some surface energy integrand8.
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Note that the above is anequilibrium condition. However, the crystal shape and tem-
perature field are constantly changing. Due to the infinite mobility, the crystal interface
can respond as fast as possible to compensate any deviations from the equilibrium.

As far as we know, there has not been any rigorous justification of why such a
simplification is considered in much of the literature. Numerically, the inclusion of the
curvature termh8 is necessary to give a well-posed problem, but the mobility’s being
finite is not important for such a purpose [Alr]. A finite mobility regime is simulated in
[RT], [Kob], and [WMS].

However, the hypothesis of finite mobility is necessary to produce a crystal evolution
that iscontinuous in time. In [AW], which considers (1.3), there is an actual example
of a discontinuous evolution of the crystal shape. Mathematically, existence results for
the motion law (1.1) are harder to establish than (1.3). We need a stronger regularity
property for the crystal interface. [Son] gives a solution for (1.1), but the interface is
of a varifold nature. A modified version of the approach used in this paper can indeed
produce a continuous crystal evolution, but we do not know how to formulate and prove
(1.1). The relationship between the solutions for the finite and infinite mobility cases
remains to be resolved.

Models for Thermal Fluctuations. We add a stochastic driving force to the diffusion
equation to imitate thermal fluctuations. Loosely speaking, we will consider the following
stochastic heat equation:

d Q= div(6K∇T)dt + cK f (T)dWt , (1.4)

whereWt is aspatially correlated infinite dimensional Brownian motion anddWt is
the Ito’s differential. We show the existence of an evolution satisfying (1.3) and (1.4). The
spatial correlation ofWt is important in our approach to give good regularity properties
of the temperature fields so that (1.3) can be shown to be true.

We compare our formulation with those in the physics literature in whichspace-time
white noisesare considered very often. In [Kar], Langevin noises were introduced to
both (1.3) and (1.4). They showed that this was necessary to be thermodynamically
consistent with the equilibrium fluctuations of the bulk phases and the interface. The
equations therein relevant to our paper are noted as follows:


∂
∂t Tν = Dνdiv∇Tν − ∇ · qν, ν = l , s,
Lvn = n · [csDs∇Ts − cL Dl∇Tl ] + n · [cl ql − cl qs],
vn = M(h8 + C + η),

(1.5)

whereT is the temperature;Dν is the diffusivity; ν denotes the liquid (l ) or solid (s)
phases;vn is the normal velocity;L is the latent heat andcν the specific heat capacities;
M is the mobility;C is the undercooling;q andη are space-time white noises.



496 N. K. Yip

Note that the noises considered there are much more singular than the one used in this
paper. However, (1.5) works in the finite mobility regime,4 which has more regularizing
effects than the infinite mobility case as demonstrated in [Str]. Thus it is conceivable
that (1.5) can support more singular noises than our equations. It will be interesting to
investigate mathematically the “optimal roughness” of the noises permitted in various
regimes and to study the regularity properties of the interfaces.

Other Models. At another extreme, we completely ignore the undercooling and heat
diffusion. Then (1.1) becomes

v∂K (p) = M(n)h8(p). (1.6)

This is calledmotion by mean curvature (if we further assume thatM ≡ 1). It is a
fascinating geometric evolution in its own right. Stochastic perturbations added to (1.6)
have been considered in [Yip].

Another interesting question is whenh8 corresponds to a nonconvex surface energy.
In this case, (1.6) is then backward parabolic in some directions. The interface might
produce infinitesimal wrinkles. Such and related issues are discussed in [Gur2].

1.2. Mathematical Approach

The most difficult aspect of solving (1.3) and (1.4) is the singular behavior of the equa-
tions. Singularities may form even from smooth initial data. Topological changes of the
crystal shapes may happen during the evolution. Upon the addition of white noise—time
derivative of Brownian motion—we need to make sure that the effects of noise are can-
celed locally in time. The approach employed here can tackle the above difficulties quite
efficiently. We combine the machinery of geometric measure theory and stochastic cal-
culus. The function spaces we use can handle the singular geometries, and they have nice
compactness and regularity results at our disposal. Furthermore, we have a meaningful
formulation of (1.3) even when the curvature is unbounded.

The idea is to write the whole evolution as a gradient flow with respect to an energy
functional. Under such a flow, the energy is always decreasing. We minimize a related
functional using a time-stepping scheme to approximate the flow. The novel parts in this
scheme are the choice of the inner product for the function spaces and the proof of the
convergence to a limit.

In the deterministic setting, such an approach was used in [AW], [ATW], [Luc], and
[LS] to solve (1.2), (1.3), and (1.6). Here we follow the idea in [AW]. The difficulty in
the stochastic case is to control the energy globally in time and then prove the tightness
of the probability measures. A technical device used is the smoothing of the noise term to
preserve the regularity property of the functions inherited from the minimization steps.
The spatial correlation ofWt is crucial in the argument. Ito’s Formula and martingale
inequality are the main tools from stochastic calculus.

4 In the infinite mobility limit, (1.5) essentially becomesh8 = −C + η andd Q = div(6∇T)dt + ∇ · qt ,
whereQ is the heat distribution.
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In order to carry out the above scheme, we take the following analog from the stochas-
tic differential equation:

d Xt = A(Xt )dt + B(Xt )dWt , (1.7)

whereXt denotes some heuristic state variable,A(Xt ) is a driving force describing the
unperturbed motion law, andB(Xt ) is some operator acting on the white noise term
dWt .5 (1.7) is interpreted as an integral formXt = X0+

∫ t
0 A(Xs)ds+ ∫ t

0 B(Xs)dWs.
In this paper, we employ a time discretization procedure. The integral can then be ap-
proximated as:

Xn = X0+
n∑

i=1

A(Xi )4ti +
n∑

i=1

B(Xi )4Wi , (1.8)

where4Wi = W(ti+1)−W(ti ). Within each discrete time interval, we minimize some
energy functional to approximateA(Xi )4ti , and then we solve a stochastic heat equation
to imitate the effects ofB(Xi )4Wi . These discrete evolutions will be shown to converge.

2. Statement of Result and Outline of Proof

Our goal is to prove the existence of an evolution process of crystal shape and heat distri-
bution satisfying (1.3) and (1.4). First we define the terminologies and notations involved.
Further concepts of varifolds and probability theory will be given in the appendix.

The domain we are working in is ann-dimensional torusO so that we do not need to
worry about boundary conditions.|O| = Ln(O) = ρn denotes the volume ofO. (ρ is
the side length ofO.)

2.1. Definition of Function Spaces

2.1.1. Crystal Position (K). These are described by subsets ofOwith finite perimeter.
K is called such a set if

|∂K | = sup

{∫
K

divg dLn: g ∈ C1
0(O, Rn), ‖g‖∞ ≤ 1

}
<∞. (2.1)

|∂K | is called theperimeter of K .K is metrized by theL1 norm,

‖K − L‖L1 =
∫

x∈O
|K (x)− L(x)| dLnx = Ln(K4L). (2.2)

By abuse of notation,K can mean either the setK or its characteristic functionχ K .
The main properties we need for this kind of set arecompactnessunderL1 of the

collection{K ∈ K: |∂K | ≤ M <∞} and the existence of a well-defined notion of nor-
mal and boundary—approximate normal (nK ) andreduced boundary (∂∗K ). These
concepts are elaborated nicely in [EG] and [Giu]. EachK ∈ K also can be considered
as ann-dimensional integral current in the context of geometric measure theory [Fed].

5 Here we are considering Ito’s differential.
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2.1.2. Surface Energy (8). A surface energy integrand8 is a function fromSn−1 to
R+. It is usually extended to a map fromRn to R+ by positive homogeneity of degree
1:8(λv) = λ8(v) (λ ≥ 0, v ∈ Sn−1

)
.

The8 surface energyof K ∈ K is defined as

8(∂K ) =
∫
∂K
8(nK )dHn−1, (2.3)

wherenK is the outward normal vector of∂K .6

In this paper, we assume that8 is smoothandelliptic , i.e., it is twice differentiable
and has positive second derivative when restricted to any straight line not passing through
the origin.7

2.1.3. Heat Distribution (Q). A heat distribution is any positiveL2 functionQ defined
onO. They are metrized by themodified Monge-Kantorovich Norm,

‖P − Q‖∼ = ‖P − Q‖∗ +
∣∣P̄ − Q̄

∣∣ , (2.4)

where‖P − Q‖∗ is the number

sup

{∫
O
ϕ(x)(P(x)− Q(x))dLnx: Lip(ϕ) ≤ 1 and

∫
O
ϕ dLn = 0

}
, (2.5)

and P̄ = 1

|O|
∫
O

P dLn is the spatial average ofP.

Such a norm is used in many mass transport problems [Rav]. An important property
ofQ is that{‖Q‖L2 ≤ M <∞} is compact in the‖ · ‖∼ topology ([AW] Appendix B).

2.1.4. Temperature Field (T ). A temperature field is any positiveL2 function T on
O. This space is metrized by theL2 norm,

‖T1− T2‖L2 =
(∫

x∈O
|T1(x)− T2(x)|2 dLnx

)1/2

. (2.6)

We denoteU = 1/T .

2.1.5. Specific Heat Capacity (c) and Diffusivity Matrix ( 6). Specific heat capacity
is a number which relates the heat content and temperature of a material. In general, this
number depends on the phase.

Let K ∈ K be a crystal.{x ∈ K } is called thesolid phaseand{x 6∈ K } the liquid
phase. Thespecific heat capacityis a piecewise constant function defined onO,

cK = csχ K + cl (1− χ K ), (2.7)

6 In this paper,∂K always denotes the reduced boundary ofK .
7 This condition is not necessary in every result. However, in order to prove the existence of minimizers
involving8, it is at least required to be a convex function.
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wherecs, cl are constants of the material. Usuallycs < cl . Heat content and temperature
are related by

Q = cK T. (2.8)

Another quantity we need is thediffusivity matrix for heat diffusion,

6K ≡ 6sχ K +6l (1− χ K ). (2.9)

6s and6l are positive symmetric matrices with6l usually taken to be a multiple of the
identity.

Note that bothcK and6 arediscontinuousfunctions of the spatial variable.

2.1.6. State Space for Time Evolution (S). As we are studying evolution processes,
time will be incorporated into our state space. Precisely, we define

S= L1([0,1],K)× L2([0,1], L2(O))× L2([0,1], L2(O))× C([0,1],Q). (2.10)

Each elementX ∈ S consists of time-varying crystal position, temperature field, recip-
rocal temperature field, and heat distribution:(K (t), T(t),U (t), Q(t))t∈[0,1]. The metric
for S is given by

‖X1− X2‖S =
∫ 1

0
‖K1(t)− K2(t)‖L1 dt +

∫ 1

0
‖T1(t)− T2(t)‖2L2 dt

+
∫ 1

0
‖U1(t)−U2(t)‖2L2 dt + sup

t∈[0,1]
‖Q1(t)− Q2(t)‖∼ . (2.11)

2.1.7. The Gibbs-Thomson Condition and First Variation. The Gibbs-Thomson
condition (1.3) is the equilibrium relationship between the curvature of the crystal bound-
ary and the temperature value. In order to formulate this condition in the case when the
crystal boundary is not smooth enough to define its curvature, we make use of the concept
of first variation of surface energy.

Given the previous definitions of surface energy and integrand (Section 2.1.2), we
describe how the (mean) curvature is related to the changes of the surface energy when
the set is deformed by vector fields.

• Given aC1 vector fieldg: Rn −→ Rn, let Gs(x) ≡ x + sg(x) for x ∈ Rn. ThenG(·)
is a one-parameter family of diffeomorphisms for small values ofs andG0(·) is the

identity map fromRn to Rn. Note thatg(x) = ∂

∂s
G(s, x)

∣∣∣∣
s=0

.

• Thefirst variation of K with respect tog is defined to be8
d

ds
8
(
Gs]∂K

)∣∣∣∣
s=0

. Some-

times it is also denoted by〈∂K , g〉.

8 In the following, the] means the “push forward” or the diffeomorphic image of∂K under the action ofGs.
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• EH8: ∂K −→ Rn is called the8 first variation vector field of ∂K if, for all g,

d

ds
8
(
Gs]∂K

)∣∣∣∣
s=0

=
∫

x∈∂K
〈 EH8(x), g(x)〉dHn−1x. (2.12)

• If further, EH8(x) = h8(x)nK (x), wherenK is the outward normal of∂K at x, then
h8 is called the8 (weighted) mean curvature9 of ∂K . Rewriting the above, we have

d

ds
8
(
Gs]∂K

)∣∣∣∣
s=0

=
∫

x∈∂K
h8(x)〈nK (x), g(x)〉dHn−1x. (2.13)

Using this point of view,h8 is seen to be therate of change of the8-surface energy of
∂K per volume swept out by deformations.This definition coincides with the classical
one when the boundary is smooth.

2.1.8. Gibbs-Thomson Condition.There is a prescribed function called theGibbs-
Thomson Relation, H : R+ −→ R, which relates the temperature and curvature values
in equilibrium. (By abuse of notation, we use the sameH as the first variation vector
field, but without the arrow.)H is smooth and decreasing. It has the growth rates
H(a) ∼ O(a−2) asa −→ 0+ andH(a) ∼ O(a2) asa −→ +∞. (Its exact form will
be given in Section 3.1.)

K ∈ K and T ∈ T are said to satisfy theGibbs-Thomson conditionif, for arbitrary
C1 vector field g,

d

ds
8
(
Gs]∂K

)∣∣∣∣
s=0

=
∫

K
div(H(T(x))g(x))dLnx. (2.14)

Clearly this formulation corresponds to the classical sense when everything is smooth.

2.2. Statement of Result

The main result gives a precise meaning by which the following statements are true:

d Q = div(6K∇T)dt + cK f (T)dWt , (2.15)

h8 = H(T), (2.16)

where

• Wt is an infinite dimensional Brownian motion10 taking values inL2(O).
• f is a given function of the temperature value (f : R+ −→ R+) with growth rates

f (a) ∼ O(a4) asa −→ 0+; f (a) ∼ O(a−1) asa −→ +∞. It is used to damp the
white noise termdWt in extreme temperature ranges.

9 For historical reason, the8-mean curvature vectoris taken to be thenegativeof the8-first variation vector.
10 Such and related concepts about the stochastic integral will be given in the Appendix.
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We have achieved the following:

There is a probability space(Ä,F, P) equipped with a filtration{Ft }t∈[0,1] and a
Brownian motion{Wt , Ft ; 0≤ t <∞} in L2(O) with its covariance operator given
by a symmetric kernel3(·, ·) ∈ L∞(O × O) such that starting from some admissible
initial condition11 K0 and Q0, there is an almost surely positive stopping timeτ and
a predictable stochastic process X(t) = (K (t), T(t), Q(t))t∈[0,1] defined on(Ä,F, P)
taking values in the crystal shapes, temperature fields, and heat distributions satisfying
the following properties:

1. E

{
sup

t∈[0,1]
8(∂K (t))m + ‖T(t)‖mL2 + ‖U (t)‖mL2

}
< Cm <∞ and

E

(∫ 1

0
‖∇T(t)‖2L2 + ‖∇U (t)‖2L2 dt

)m

< Cm <∞,
where U= T−1 and m is any positive integer.

2. The heat distribution Q(·) with Q(0) = Q0 is evolving continuously in time in the
modified Monge-Kantorovich norm‖ · ‖∼. It satisfies the estimate,

E ‖Q(t)− Q(s)‖2m
∼ ≤ Cm |t − s|m for all 0≤ s< t ≤ 1.

3. Q(t) = cK (t)T(t) for dL1× d P a.s. on{(t, ω): t < τ(ω)}.
4. (K (t), T(t), Q(t))t∈[0,1] solves the stochastic heat equation (2.15) in the following

sense:
For all ϕ ∈ C∞(O),

(Q(t ∧ τ), ϕ) = (Q0, ϕ)−
∫ t∧τ

0
〈6K∇T, ∇ϕ〉 dr +

∫ t∧τ

0
(cK f (T)dWr , ϕ) ,

where( · , · ) denotes the L2 inner product on L2(O). Here f acts as a multiplicative
operator on L2(O).

5. For dL1× d P a.s on{(t, ω): t < τ(ω)}, the Gibbs-Thomson condition (2.16) holds,
i.e.:
Given any C1 vector field g onO,

d

ds
8
(
Gs]∂K (t)

)∣∣∣∣
s=0

=
∫

x∈K (t)
div(H(T(t, x))g(x))dLnx.

The left-hand side is the first variation of the8 energy of∂K when∂K is deformed
by the one-parameter family of diffeomorphisms (for small s) Gs(x) = x + sg(x).

6. For dL1×d P a.s on{(t, ω): t < τ(ω)}, the following regularity statements are true:
n = 2: ∂K (t) is a one-dimensional differentiable submanifold ofO without bound-

ary and for any C1 vector field g onO,

d

ds
8
(
Gs]∂K (t)

)∣∣∣∣
s=0

=
∫

x∈∂K (t)
H(T(x, t))

〈
nK (t), g(x)

〉
dH1x,

11 See the next section.
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where nK is the outward normal of K andH1 is the Hausdorff one-dimensional
measure on∂K.

n = 3: ∂K (t) is the homeomorphic image inO of a compact two-dimensional man-
ifold without boundary.

The whole theorem is split up into Theorems 6.4.5 (Energy Estimates and Heat
Continuity), 7.2.1 (Limiting Heat Equation), 8.0.1 (Gibbs-Thomson condition), and 8.0.2
(Regularity of the Crystal Boundary).

2.2.1. Admissible Condition and Stopping Time.The admissible condition and the
stopping time are introduced artificially by our method of solution. Concisely, the ad-
missible condition says that the whole domainO is not completely frozen or melted.
The stopping time gives the interval of time such that this condition is ensured to be
true. Beyond this, theO mightoscillate without control in between the states of being
completely frozen or melted, and the compactness argument on which our proof relies
heavily will fail. The definition of the admissible condition will be given in Section 6.2.2.

However, by the suggestion of one of the referees of this paper, if we consider the
Dirichlet boundary condition for the temperature field,T∂O = f > 0, the stopping
time τ in the above main theorem probably could be eliminated. We believe that the
extra estimates coming from the boundary ofO can be handled in very much the same
way as in the present paper. See also the remark in Section 6.1.1.

2.3. Outline of Proof

We will solve (2.15) and (2.16) using a time-stepping approximation scheme. There are
three main ingredients in our method:

• Variational minimizations are used to approximate (or restore) the Gibbs-Thomson
condition (2.16). The singular nature of the curvature condition is handled automati-
cally by the techniques of geometric measure theory.
• Global energy estimates are derived using stochastic calculus (especially Ito’s For-

mula and martingale inequalities) to take advantage of the statistical cancellations of
the Brownian increments. This leads to tightness of the approximating probability
measures.
• Approximating crystals are shown to converge in the varifold sense, which is much

stronger than just theL1 convergence. This allows us to show that the Gibbs-Thomson
condition is true in the limit.

Now we give a symbolic outline of the whole scheme.

2.3.1. Generation of Discrete Approximation.Let {X(t)}t∈[0,1] denote the evolving
state variable.12 For eachX, we associate it with some kind of energy functionalE(X).

12 X = (K , T,U, Q) with U = T−1.
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Let N be a positive integer and4t = 1/N be the discretization interval. Also letXN
i−

(XN
i+ ) be the state variable att−i = (i4t)− (t+i = (i4t)+) for 0 ≤ i ≤ N. We will

produce
{
XN(t)

}
t∈[0,1],

XN
0− −→ XN

0+ −→ XN
1− −→ XN

1+ −→ · · · −→ XN
N−1− −→ XN

N−1+ −→ XN
N− ,

in the following manner:

• XN
i− −→ XN

i+ : XN
i+ is chosen to be aminimizer for the following “heuristic func-

tional”:

E(X)+ 1

4t

∥∥X − XN
i−
∥∥ , (2.17)

where‖·‖ is some metric forX. It acts as apenalty function so thatXN
i+ will not

differ too much fromXN
i− . The form of‖·‖ also serves the purpose of giving the

right motion law. In the present case, the choice is to make the minimizers satisfy
the Gibbs-Thomson condition. As a by-product, the temperature fields enjoy some a
priori regularity properties.
• XN

i+ −→ XN
t (ti ≤ t < ti+1): Theheatdistribution isdiffusedby the followingstochas-

tic heat equation for aduration of 4t with initial condition XN
i+ :

d Q= div(6K N
i+
∇T)dt + cK N

i+
f (T)dWt . (2.18)

Note that thecrystal is kept fixed to be K N
i+ during this procedure. Galerkin’s

scheme is used to solve the above equation. In the actual implementation, wesmooth
out theW in (2.18). This will be explained later in Section 2.3.3.

2.3.2. Derivation of Energy Estimates.The next step is to derive the energy bound
E
{
supλ∈[0,1] E(XN(λ))

} ≤ C. It is carried out formally as

E(XN
i+) ≤ E(XN

i−) (by definition of minimization),

E(XN
i+1−) = E(XN

i+)+ AN(XN
i+)4t + BN(XN

i+)4Wi (by Ito’s Formula),

whereAN andBN are some controllable operators. Thus,E can be estimated as

E(XN(t)) ≤ E(XN(0))+
∫ t

0
AN(XN(s))ds+

∫ t

0
BN(XN(s))dWs.

A Martingale Inequality gives the asserted energy bound. The tightness of the probability
measures follow from the compactness property of the function spaces. We can then
extract a converging subsequence.

2.3.3. Properties of Limit Evolution. Our goal is to show (2.15) and (2.16). The valid-
ity of the stochastic heat equation can be proved by standard procedures using martingale
formulation.

However, the Gibbs-Thomson condition is the heart of the matter. In the present case
with stochastic perturbation, extra care must be taken to obtain good regularity properties
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of the temperature fields during the heat flow process. An intricate step is the smoothing
of the white noise term in (2.18). This is used to preserve the regularity of the temperature
fields inherited from the minimization procedure.

The main ingredient here is to show that the approximating crystals converge in
varifold senseto the limiting ones. Briefly speaking, we will prove the following:∥∥K N − K

∥∥
L1 −→ 0 and 8(∂K N) −→ 8(∂K ).

The key idea is to exploit the fact that theK N are minimizers of the functional (2.17).

3. The Minimization Step

In this section, we describe the minimization procedure and its associated estimates.
During this step, both the crystal and heat distribution will be changed. The purpose is to
restore the Gibbs-Thomson condition. The a priori regularity estimates for the minimizers
turn out to be very important to prove the properties of the limiting evolution.

First we define theenergy of the systemasE ,

E(K , Q) = 8(∂K )+ ∫O cK F(c−1
K Q)dLn, (K ∈ K, Q ∈ Q),

= 8(∂K )+ ∫O cK F(T)dLn, (T = c−1
K Q).

(3.1)

We recall that8 is asmoothandelliptic integrand.F is the bulk energy functional. Its
form and relationship withH—the Gibbs-Thomson relation—will be given in the next
section.

Let α be any fixed positive number less than 1/44.Given P ∈ Q, weminimize

E(K , Q)+ 1

4tα
‖Q− P‖∼ , (3.2)

among allK ∈ K andQ ∈ Q such thatQ = P, i.e.,
∫
O

Q dLn =
∫
O

P dLn. We call

any minimizer(K , Q) of the above functional aminimizer for (E,4t, P).
In the actual application,P will be Qi− , the heat distribution att−i , and the minimizer

will becomeKi+ andQi+ , the crystal position and heat distribution att+i .
As pointed out in [AW], one of the novel features of this scheme is the use of the

Monge-Kantorovich Distance. Its role in (3.2) is to allow a certain degree of heat transport
so as to facilitate crystal changes. Due to this freedom, the minimizers satisfy the Gibbs-
Thomson condition exactly. The condition onα is such that the effect of this term is not
felt when taking the limit4t −→ 0.

3.1. F , H , and their Estimates

Here we follow [AW] Appendix A.F is asmooth positive uniformly convex function
defined onR+. Its form can be described as follows (U = 1/T):

F(T) =
{

U2 if 0 < T ≤ a∗,
T2 if b∗ ≤ T <∞,

F(T∗) = 0 for someT∗ ∈ [a∗,b∗],
F ′′(T) ≥ c > 0 for all T > 0,

(3.3)
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wherea∗ andb∗ are fixed positive numbers andT∗ is interpreted as the melting point of
the planar interface of the material.

The Gibbs-Thomson relation (H ) is derived fromF as

H(T) = (cl − cs)(F(T)− T F′(T)). (3.4)

It is easy to check thatH is a smooth decreasing function such thatH(T∗) = 0.
The following are simple consequences of the above representations:

|F(T1)− F(T2)| ≤ C
(∣∣U2

1 −U2
2

∣∣+ ∣∣T2
1 − T2

2

∣∣)
= C |T1− T2|

(
U1U

2
2 +U2

1U2+ T1+ T2
)
, (3.5)

|H(T1)− H(T2)| ≤ C
(∣∣U2

1 −U2
2

∣∣+ ∣∣T2
1 − T2

2

∣∣)
= C |T1− T2|

(
U1U

2
2 +U2

1U2+ T1+ T2
)
, (3.6)

whereC is a fixed constant. Furthermore, there are bounded Lipschitz functionsJ and
L from R+ to R such that

H(T) = C1(3U2− T2+ J(T)), H ′(T) = C2(−6U3− 2T + L(T)). (3.7)

3.2. The Existence and Properties of Minimizers

The following results are from [AW] Chapter 4.

3.2.1. Theorem (Existence of Minimizer).For all P ∈ Q, 4t > 0, there exists a
minimizer(K , Q) for (E,4t, P), i.e., for all L ∈ K and R∈ Q with R= P,

8(∂K )+
∫
O

cK F(c−1
K Q)dLn + 1

4tα
‖Q− P‖∼

≤ 8(∂L)+
∫
O

cL F(c−1
L R)dLn + 1

4tα
‖R− P‖∼ .

3.2.2. Theorem (Regularity of the Temperature Field).Let T = c−1
K Q where(K , Q)

is a minimizer for(E,4t, P). Then, upon redefining T on a set of measure zero, we have

1. T is bounded from below and above. Precisely,[
A

E(K , Q)+ B

]1/(3n+2)

4tnα/(3n+2) ≤ T(p) ≤ C(Q+4t−α), (p ∈ O). (3.8)

2. T is Lipschitz withLipT ≤ D4t−α, i.e.,

|T(p)− T(q)| ≤ D |p− q| 4t−α, (p,q ∈ O). (3.9)

(A, B, C, and D are constants depending only on the dimension n and the size ofO. Q
is the spatial average of Q.)
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3.2.3. Theorem (Validity of the Gibbs-Thomson Condition forK andT). The Gibbs-
Thomson condition holds for any minimizer(K , Q) of (E,4t, P), i.e., for all g ∈
C1

0(R
n, Rn), Gs(x) = x + sg(x), we have (T= c−1

K Q)

d

ds
8
(
Gs]K

)∣∣∣∣
s=0

=
∫

x∈∂K
H(T(x)) 〈nK (x), g(x)〉 dHn−1x =

∫
K

div(H(T)g)dLn.

(3.10)

For completeness, we also mention some regularity properties of the minimizing
crystals.

3.2.4. Theorem (Regularity of the Minimizing Crystal). Suppose(K , Q) is a mini-
mizer for(E,4t, P). Then,

1. There exist positive numbersδ andµ such that

Hn−1(∂K ∩ Bn(p, r )) ≥ µr n−1,

for each point p in the support of∂[[ K ]] and0< r < δ.
2. The support of∂[[ K ]] (which equals the closure of∂K) has finiteHn−1 measure and

hence zeroLn measure.
3. There exist positive numbersδ and C together with a functionω(r ) = Cr defined

for 0 < r < δ such that∂[[ K ]] is (8,ω, δ)-minimal in the sense of Bomberi [Bom,
Definition 1, p. 101].

4. When8 is an even integrand (8(v) = 8(−v)), there exist positive numbersγ andδ
such that the support of∂[[ K ]] is (γ, δ) restricted with respect to the empty set in the
sense of Almgren [Alm II.1, p. 53].

5. When8 is an even integrand, there exist positive numbersδ and C together with
a functionω(r ) = Cr defined for0 < r < δ such that the support of∂[[ K ]] is
(8,ω, δ)-minimal with respect to the empty set in the sense of Almgren [Alm III.1
p. 75].

6. When8 is smooth and elliptic, then except for a possibly compact singular set of zero
Hn−1 measure, the support of∂[[ K ]] is a two times Ḧolder continuously differentiable
(n− 1)-dimensional submanifold ofO.

7. When8 is smooth and elliptic and n= 2 or 3, the support S of∂[[ K ]] is a two
times Ḧolder continuously differentiable submanifold ofO (with no singular set).
Furthermore, at every point p of S, the weighted mean curvature of S (with respect
to the exterior normal of K ) exists in the classical sense and equals H(T(p)).

3.3. Measurable Selection

If we want to write the whole evolution as a stochastic integral (Section 5.2), we need to
make sure that the evolving crystal positions, heat distributions, and temperature fields
areadaptedto some underlying filtration{Ft }t≥0 of a probability space(Ä,F, P).

Let the state att−i be denoted byX−i =
(
K−i , T

−
i ,U

−
i , Q−i

)
, which is aFti -measurable

random variable (Fti ⊂ F), i.e.,

ω −→ X−i (ω) =
(
K−i (ω), T

−
i (ω),U

−
i (ω), Q−i (ω)

)
: (Ä,Fti ) −→ (S,B) (3.11)
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is measurable. Upon minimization, we get a new stateX+i =
(
K+i , T

+
i ,U

+
i , Q+i

)
at t+i .

In general, the minimizers are not unique. We want to make ameasurable choiceof the
X+i so that it is also aFti -measurable random variable, i.e.,

ω −→ X+i (ω) =
(
K+i (ω), T

+
i (ω),U

+
i (ω), Q+i (ω)

)
: (Ä,Fti ) −→ (S,B). (3.12)

is a measurable map.
To achieve this, it suffices to demonstrate the existence of aBorel map betweenX−i

andX+i :

X−i ∈ (S,B) −→ X+i ∈ (S,B). (3.13)

We omit the proof here. The techniques are from [SV] Chapter 12. For details, see
[Yip].

4. Heat Equation and Estimates (Fixed Crystal)

In this section, we carry out the heat flow process to diffuse the latent heat with the
addition of stochastic noise. We solve (1.4) with the crystal kept fixed. In the next
section, we will derive estimates for the overall solution. This is crucial in proving the
compactness property of the evolution process, which is the crux of the matter in the
stochastic version of the theorem.

An intricate step in this procedure is thesmoothing of the stochastic noisein order
to preserve the regularity of the heat distributions inherited by the minimization steps
(Theorem 3.2.2). The spatial correlation of the noise is essential to achieve this purpose.
The regularity estimates will be important in the proof of the Gibbs-Thomson condition
in Section 8.

We assume the basic notions of stochastic calculus. They are summarized in the
appendix.

4.1. Heat Equation for Fixed Crystal with Smoothing

In between the minimizations, we flow the heat for a duration of4t , keeping the crystal
fixed. LetK be agiven fixed crystal. We will solve the following equation:{

d Q(t) = div (6K∇T(t)) dt + cK f (T(t))dWt ,

Q(t) = cK T(t).
(4.1)

Rewriting the first equation, we have

dT(t) = 1

cK
div (6K∇T(t)) dt + f (T(t))dWt . (4.2)

4.1.1. Form ofWt and f .

• {Wt , Ft ; 0≤ t <∞} is aninfinite dimensional Brownian motion taking values in
L2(O) with covariance operator3 given by asymmetric kernel (still denoted by
3) belonging toL∞(O × O). The filtration{Ft }t≥0 is fixed in this section. Unless
otherwise stated, all adaptedness refers to this filtration.
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• f : R+ −→ R+ is a smooth positive function of temperature value which acts as a
multiplicative operator on L2 functions. We require thatf (a) −→ 0 asa −→ 0+

and+∞ in such a rate thatF ′(a) f (a) and F ′′(a) f (a) are uniformly bounded in
a.13 The purpose of this is to damp the white noise termdWt in extreme temperature
regions.

4.1.2. Smoothed Version of the Heat Equation.As mentioned earlier, in thediscrete
scheme, we are actually solving a smoothed version of (4.2),

dT(t) = 1

cK
div (6K∇T(t)) dt + fδ(T(t))dWε

t . (4.3)

• δ andε are small positive numbers depending on4t and they tend to zero as4t −→ 0.
• fδ is basically the same function asf but with f (a) = 0 for a very large and small.

fδ −→ f in C∞ norm asδ −→ 0. Its exact form is specified in (4.14). Of course, we
still impose thatF ′(a) f ′δ (a) andF ′′(a) f ′δ (a) are uniformly bounded inδ anda.
• Wε = φε ∗Wt whereφε is a standard symmetric smoothing function tending to the

delta function asε −→ 0. In this case, the covariance operator ofWε
t is given by (see

Section B.5.2)

3ε(x, y) = (φε3φε) (x, y) =
∫
(w,z)∈O×O

3(w, z)φε(x − w)φε(y− z)dLnw dLnz

∈ L∞(O ×O). (4.4)

4.1.3. Definition of Solution for (4.3). T : [0,1] −→ L2(O) is called a solution of
(4.3) with initial data T0 if T is predictable, P a.s. belongs to14

C([0,1], L2(O))
⋂

L2([0,1], H1(O))

and for allϕ ∈ C∞(O), t ∈ [0,1], the following identity is satisfied:∫
x∈O

cK (x)T(t, x)ϕ(x)dLnx

=
∫

x∈O
cK (x)T0(x)ϕ(x)dLnx −

∫ t

0

∫
x∈O
〈6K (x)∇T(s, x), ∇ϕ(x)〉 dLnx ds

+
∫ t

0

∫
x∈O

ϕ(x)cK (x) fδ(T(s, x))dWε(s, x)dLnx. (4.5)

Then we set Q(t) = cK T(t).
In the actual scheme, we solve (4.3) during the intervals [t0, t1), [t1, t2), . . .. The initial

conditionT0 will then beT+0 , T
+
1 , . . .—the temperature fields right after minimizations.

The first result we need is as follows.

13 F is the function defined in the energy functionalE in (3.1).
14 H1(O) is the space ofL2 functions onO with L2 spatial derivatives.
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4.1.4. Theorem (Existence and Uniqueness).There is a unique solution T(·) for (4.3)
in the sense of Definition 4.1.3 satisfying

E

{
sup

t∈[0,1]
‖T(t)‖2L2 +

∫ 1

0
‖∇T(t)‖2L2 dt

}
<∞. (4.6)

The Theorem is proved byGalerkin’s SchemeandPicard’s Iteration . The whole
procedure is very similar to the one carried out in [KR] and [Par]. The fact that we have
discontinuous coefficientscK and6 can be remedied by using a weightedL2 norm. For
completeness, we give the proof in Appendix C.1. Now we concentrate on the effects of
the smoothing and the corresponding estimates.

For the use of later sections, we set forth some notations.

4.1.5. Function Spaces and Operators.

• Let H be the Hilbert space ofL2 functions onO with inner product,

(u, v)H =
∫

x∈O
cK (x)u(x)v(x)dLnx. (4.7)

• Let V be the Hilbert space ofH1(O) functions with inner product,

[u, v]V =
∫

x∈O
〈6K∇u, ∇v〉 dLnx +

∫
x∈O

cK (x)u(x)v(x)dLnx. (4.8)

• DenoteV∗ and H∗ to be the dual ofV and H . Then,(V, H,V∗) forms aGelfand
Triple . (See page 568.)
• Let A: V −→ V∗ be defined as

〈Au, v〉 =
∫
O
〈6K∇u, ∇v〉 dLn = 〈61/2

K ∇u, 61/2
K ∇v

〉
L2 . (4.9)

If Au ∈ H, v ∈ V , then〈Au, v〉 = (Au, v)H . Formally, this means that

Au= − 1

cK
div (6K∇u) .

We have the following properties forA:
Boundedness: ‖Au‖V∗ ≤ ‖u‖V .
Positivity: 0≤ 〈Au, u〉 and‖u‖2V = 〈Au, u〉 + ‖u‖2H .
Self-Adjointness: For allu, v ∈ V , 〈Au, v〉 = 〈u, Av〉.
• Let B: H −→ L(H) be the multiplicative operator,

(B(u)h)(x) = f (u(x))h(x), (u, h ∈ H). (4.10)

Let ‖B(u)‖23 = Tr [B(u)3B(u)∗]. Then by Section B.5.1, we have
1. (by theboundednessof f )

‖B(u)‖23 =
∫

x∈O
3(x, x) f (u(x))2 dLnx ≤ C. (4.11)

2. (by theLipschitz property of f )

‖B(u)− B(v)‖23 ≤ C ‖u− v‖2H . (4.12)
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4.2. Lower and Upper Bounds for the Temperature Field

We investigate the role ofδ in (4.3).
From Theorem 3.2.2, we know that right after minimization, the temperature fieldT

is bounded from below and above,[
A

E(K , Q)+ B

]1/(3n+2)

4tnα/(3n+2) ≤ T(p) ≤ C(Q+4t−α), (p ∈ O). (4.13)

Choosefδ: R+ −→ R to be a smooth positive function such that

fδ(T) = 0 for T ≤ (A/B)
1

3n+2 4t
nα

3n+2 and T ≥ C(Q+4t−α), (4.14)

whereA, B, andC are the same as in (4.13).

4.2.1. Theorem.Let T(t) be a solution for (4.3). Suppose the initial condition T0 sat-
isfies (4.13), then so does T(t) for t ≥ 0.

Proof. The idea of the proof is from [Par] p. 152.
SetG4t : R−→ R+ to be a smooth positive convex function such that

G4t (T) = 0 for T ∈
[(

A

E(K , Q)+ B

) 1
3n+2

4t
nα

3n+2 , C(Q+4t−α)

]
,

andG4t (·) tends to a linear function asT −→ ±∞.
Then by the same method as in the derivation of Theorem 5.1.1, we get∫
O

cK G4t (T(t))dLn ≤
∫
O

cK G4t (T0)dLn +
∫ t

0

∫
O

cK G′4t (T) f4t (T)dWε
s dLn

+1

2

∫ t

0
Tr
[
cK G′′4t (T) f4t (T)3

ε f4t (T)
]

ds.

However,

•
∫
O

cK G4t (T0)dLn = 0 asT0 satisfies (4.13);

•
∫ t

0

∫
O

cK G′4t (T) f4t (T)dWε
s dLn = 0 asG′4t (·) f4t (·) = 0;

• 1

2

∫ t

0
Tr
[
cK G′′4t (T) f4t (T)3

ε f4t (T)
]

ds= 0 asG′′4t (·) f4t (·) = 0.

Hence,
∫
O

cK G4t (T(t))dLn = 0, i.e., (4.13) is preserved.

To proceed further for the use of Section 8.3.2, define

mi = inf
(t,x)
{T(t, x), T0(x)} , Mi = sup

(t,x)
{T(t, x), T0(x)} , t ≥ 0, x ∈ O.

(4.15)
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Then, from the above proposition, we have

mi ≥
(

A

E (K , Q)+ B

) 1
3n+2

4t
nα

3n+2 and Mi ≤ C(Q+4t−α),

and so,

m−24
i ≤

(E (K , Q)+ B

A

) 24
3n+2

4t
−24nα
3n+2 and M8

i ≤ C(Q
8+4t−8α).

Using the energy estimates Theorem 5.2.2, we get the following.

4.2.2. Corollary.

E
(
m−24

i

) ≤ C4t
−24nα
3n+2 and E

(
M8

i

) ≤ C4t−8α. (4.16)

4.3. Temperature Gradient Bound

Now we take into account the effect ofε in (4.3).

Remark. As mentioned earlier, the equation we are solving is (4.3) whereε is a small
number depending on4t . Such a smoothing of the noise will help preserve the gradient
bound of the temperature field under the heat flow. In this section and eventually, we
takeε to be4tγ whereγ is a very small positive number.

Our goal is the following:

4.3.1. Theorem (Temperature Gradient Bound).If {T(t)}t≥0 solves (4.3), and sup-
pose‖∇T0‖L2 ≤ C4t−α, then

E

{
sup

t∈[0,4t ]
‖∇T(t)‖8L2

}
≤ C

ε8n+84t8α
. (4.17)

Note that by Theorem 3.2.2, the temperature fields right after minimizations satisfy
the hypothesis in the above proposition concerning the gradient bound.

The method is by Galerkin’s Scheme and Picard’s Iteration, which are used in the
proof of Theorem 4.1.4 (Appendix C.1). But this time, the computations are much more
involved. The crucial fact is that the covariance operator ofWε is given by a smooth
kernel3ε .

In the following, theδ in fδ will be suppressed.

4.3.2. Strategy of Proving Theorem 4.3.1.The following two sections will lead to the
desired result:

Section 4.3.9: Let S(t) be a time-varying temperature field adapted toFt , and let T(t)
be the unique solution of the following:

dT(t) = 1

cK
div

(
61/2

K ∇T(t)
)

dt + f (S(t))dWε
t , (4.18)
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in the sense of (C.2). Suppose‖∇T0‖L2 ≤ C4t−α, then for0≤ t ≤ 4t ,

E

{
sup
λ∈[0,t ]

‖∇T(λ)‖8L2

}
≤ C

ε8n+84t8α
+
∫ t

0
E

{
sup
λ∈[0,r ]

‖∇S(λ)‖8L2

}
dr. (4.19)

Section 4.3.10: Set S(t) = Tn−1(t), T(t) = Tn(t) in (4.18) where{Tn(t)}n≥1 are the
solutions in Picard’s Iteration (Appendix C.1.5) in the process of solving (4.3). We
will iteratively make use of (4.19) to achieve (4.17).

Now we start to prove (4.19). We will show that during the process of solving (4.18)
using Galerkin’s scheme, each approximated solutionTn satisfies (4.19) and hence so
doesT (by the lower-semicontinuity of the gradient norm under uniform or weak con-
vergence).

4.3.3. Special Basis forH . In addition to the notations in Section 4.1.5, we further
defineH0 to be the subspace ofH consisting of elementsu such that

∫
O cK u(x)dLnx = 0

andV0 to be a subspace ofH0 with inner product

〈u, v〉V0
=
∫
O

〈
61/2

K ∇u, 61/2
K ∇v

〉
dLn.

By the Poincar´e Inequality and Rellich’s Lemma,V0 is compactly embeddedin H0.
Now, Au = − 1

cK
div (6K∇u) is a postive elliptic operator. From [Eva] Section 6.5, we

can find a sequence{ui }i≥1 with the following properties:

1. {ui }i≥1 forms a complete sequence of eigenvectors ofA, i.e., Aui = λi ui .
2. {ui }i≥1 forms an orthonormal basis forH0, and it is also an orthogonal basis forV0,

i.e.,

(u, v)H0
= δi j and 〈u, v〉V0

= δi j ‖ui ‖2V0
. (4.20)

3. Foru ∈ V0, if we write u =∑i ci ui as vectors inH0, then the series also converges
in V0.

4. Let5n be the orthogonal projection onto{u1,u2, . . . ,un} in V0. Then, foru, v ∈ V0,

〈u, ui 〉V0
= (u, ui )H0

〈ui , ui 〉V0
, (4.21)

〈5nu, 5nv〉V0
=

n∑
j=1

〈u, ui 〉V0
(v, ui )H0

=
n∑

j=1

(u, ui )H0
(v, ui )H0

〈ui , ui 〉V0
. (4.22)

We then adjoint the constant functionu0 =
(∫
O cK (x)dLnx

)−1
to {ui }i≥1 to form a

complete O.N.B. forH .

4.3.4. Finite Dimensional Approximation for ∇T . Let Tn(t) =
∑n

i=1 ci
n(t)ui . We

know from Section C.1.1 that

dTn(t) = −5n ATn dt +5n f (S(t))dWt
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has a solution with

dci
n(t) = −

n∑
j=1

cj
n(t)

〈
61/2

K ∇uj , 6
1/2
K ∇ui

〉
dt + ( f (S(t))dWε

t , cK ui
)

L2 .

Since∇Tn(t) =
n∑

i=1

ci
n(t)∇ui , we have

〈
61/2

K ∇Tn, 6
1/2
K ∇Tn

〉 = n∑
i j

ci
n(t)c

j
n(t)

〈
61/2

K ∇ui , 6
1/2
K ∇uj

〉
.

Hence,

d
〈
61/2

K ∇Tn(t), 6
1/2
K ∇Tn(t)

〉
= 2

n∑
i j

ci
n(t)dcj

n(t)
〈
61/2

K ∇ui , 6
1/2
K ∇uj

〉+ n∑
i j

d
〈
ci

n(t), cj
n(t)

〉 〈
61/2

K ∇ui , 6
1/2
K ∇uj

〉
= 2

〈
61/2

K ∇Tn(t), d61/2
K ∇Tn(t)

〉+ d Tr
〈〈
61/2

K ∇Tn(t)
〉〉
. (4.23)

We proceed to investigate each term of the above.

4.3.5. Computation of2〈61/2
K ∇Tn(t), d61/2

K ∇Tn(t)〉. This term can be written as

2
n∑
i j

ci
n(t)dcj

n(t)
〈
61/2

K ∇ui , 6
1/2
K ∇uj

〉
= 2

n∑
i j

ci
n(t)

{
−

n∑
k

ck
n(t)

〈
61/2

K ∇uk, 6
1/2
K ∇uj

〉
dt + ( f (S(t))dWε

t , cK uj
)}

× 〈61/2
K ∇ui , 6

1/2
K ∇uj

〉
= −2

n∑
i jk

ci
n(t)c

k
n(t)

〈
61/2

K ∇uj , 6
1/2
K ∇uk

〉 〈
61/2

K ∇uj , 6
1/2
K ∇ui

〉
dt

+2
n∑
i j

ci
n(t)

(
f (S(t))dWε

t , cK uj
) 〈
61/2

K ∇ui , 6
1/2
K ∇uj

〉
= −2

n∑
j

〈
61/2

K ∇Tn(t), 6
1/2
K ∇uj

〉2
dt

+
n∑
j

(
f (S(t))dWε

t , cK uj
) 〈
61/2

K ∇Tn(t), 6
1/2
K ∇uj

〉
(4.24)

= −2
n∑
j

〈
61/2

K ∇Tn(t), 6
1/2
K ∇uj

〉2
dt

+ (61/2
K ∇Tn(t), 6

1/2
K ∇

(
f (S(t))dWε

t

))
(4.25)
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= −2
n∑
j

〈
61/2

K ∇Tn(t), 6
1/2
K ∇uj

〉2
dt (4.26)

+ ( f ′(S(t))
(
61/2

K ∇S(t)
)

dWε
t + f (S(t))d

(
61/2

K ∇Wε
t

)
, 61/2

K ∇Tn(t)
)
. (4.27)

Note that, from (4.24) to (4.25), we have made use of the special property (4.22) of
the basis{ui }i≥1.

For (4.26), it is a negative term.
For (4.27), we write it asd M(1)

t + d M(2)
t where

d M(1)
t = (

f ′(S(t))
(
61/2

K ∇S(t)
)

dWε
t , 6

1/2
K ∇Tn(t)

)
, (4.28)

d M(2)
t = (

f (S(t))d
(
61/2

K ∇Wε
t

)
, 61/2

K ∇Tn(t)
)
. (4.29)

Note thatM (1)
t andM (2)

t are martingales.
From (4.23) and (4.27), we have

∥∥61/2
K ∇Tn(t)

∥∥2 ≤ ∥∥61/2
K ∇Tn(0)

∥∥2+ M (1)
t + M (2)

t +
∫ t

0
d Tr

〈〈
61/2

K ∇Tn(t)
〉〉

H⇒ sup
r∈[0,t ]

∥∥61/2
K ∇Tn(r )

∥∥8 ≤ C

{∥∥61/2
K ∇Tn(0)

∥∥8+ sup
r∈[0,t ]

∣∣M (1)
r

∣∣4+ sup
r∈[0,t ]

∣∣M (2)
r

∣∣4
+
∣∣∣∣∫ t

0
d Tr

〈〈
61/2

K ∇Tn(r )
〉〉∣∣∣∣4
}
. (4.30)

Using Burkholder’s Inequality,E
{
supλ∈[0,t ]

∥∥61/2
K ∇Tn(λ)

∥∥8
}

can be bounded by

C

{
E
∥∥61/2

K ∇Tn(0)
∥∥8+ E

〈
M (1)

t

〉2
+ E

〈
M (2)

t

〉2
+ E

∣∣∣∣∫ t

0
d Tr

〈〈
61/2

K ∇Tn(r )
〉〉∣∣∣∣4
}
.

(4.31)
We will treat each term separately.

4.3.6. Computation ofd
〈
M (1)

t

〉
. Recall that

d M(1)
t = (

f ′(S(t))
(
61/2

K ∇S(t)
)

dWε
t , 6

1/2
K ∇Tn(t)

)
= (

f ′(S(t))dWε
t ,
〈
61/2

K ∇S(t), 61/2
K ∇Tn(t)

〉)
.

Hence,

d
〈
M (1)

t

〉
= 〈[

f ′(S(t))3ε f ′(S(t))
] 〈
61/2

K ∇S(t), 61/2
K ∇Tn(t)

〉
,
〈
61/2

K ∇S(t), 61/2
K ∇Tn(t)

〉〉
dt

=
∫ ∫

(x,y)∈O×O
f ′(S(t, x))3ε(x, y) f ′(S(t, y))

× 〈61/2
K ∇S(t, y), 61/2

K ∇Tn(t, y)
〉 〈
61/2

K ∇S(t, x), 61/2
K ∇Tn(t, x)

〉
dLny dLnx dt
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≤ C
∫ ∫

(x,y)
|∇S(t, y)| |∇Tn(t, y)| |∇S(t, x)| |∇Tn(t, x)|dLnx dLny dt

≤ C ‖∇S(t)‖2L2 ‖∇Tn(t)‖2L2 dt.

(In the process, we have made use of (B.37).)
Thus, 〈

M (1)
t

〉
≤ C

∫ t

0
‖∇S(r )‖2L2 ‖∇Tn(r )‖2L2 dr. (4.32)

4.3.7. Computation ofd
〈
M (2)

t

〉
. For simplicity, we will omit the61/2

K factor, which

merely introduces a bounded transform of the function space with a bounded inverse. In
this case,

d
〈
M (2)

t

〉
= 〈 f (S(t))d∇Wε

t , ∇Tn(t)
〉 =∑

p

〈
f (S(t))d∂pWε

t , ∂pTn(t)
〉

dt.

Thus,

d
〈
M (2)

t

〉
=
∑

p

〈
f (S(t))

[
∂pϕε3∂pϕε

]
f (S(t))∂pTn(t), ∂pTn(t)

〉
dt

=
∑

p

∫ ∫
(x,y)

f (S(t, x))
[
∂pϕε3∂pϕε

]
(x, y)

× f (S(t, y))∂pTn(t, y)∂pTn(t, x)dLnx dLny dt

≤ C

ε2n+2

∫ ∫
(x,y)
|∇Tn(t, y)| |∇Tn(t, x)| dLny dLnx dt (by (B.38))

≤ C

ε2n+2
‖∇Tn(t)‖2L2 .

Hence, 〈
M (2)

t

〉
= C

ε2n+2

∫ t

0
‖∇Tn(r )‖2L2 dr. (4.33)

4.3.8. Computation ofd Tr
〈〈
61/2

K ∇Tn(t)
〉〉
. The above equals

n∑
i j

d
〈
ci

n(t), cj
n(t)

〉 〈
61/2

K ∇ui , 6
1/2
K ∇uj

〉
=
∑

i j

(
f (S(t))3ε f (S(t))cK ui , cK uj

) 〈
61/2

K ∇ui , 6
1/2
K ∇uj

〉
dt

=
∑

i

( f (S(t))3ε f (S(t))cK ui , cK ui )
〈
61/2

K ∇ui , 6
1/2
K ∇ui

〉
dt
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=
∫ ∫

(x,y)∈O×O
f (S(t, x))3ε(x, y) f (S(t, y))cK (y)ui (y)cK (x)ui (x)dLny dLnx

× 〈61/2
K ∇ui , 6

1/2
K ∇ui

〉
dt

=
∫

x
cK (x)ui (x) f (S(t, x))

{∫
y
3ε(x, y) f (S(t, y))cK (y)ui (y)dLny

}
× 〈61/2

K ∇ui , 6
1/2
K ∇ui

〉
dLnx dt

=
∫

x
cK (x)ui (x) f (S(t, x))

∫
y

〈
61/2

K (y)∇y (3
ε(x, y) f (S(t, y))), 61/2

K (y)∇yui (y)
〉

dLny dLnx dt

=
∫

x

∫
y
〈61/2

K (x)61/2
K (y)∇y∇x

[
f (S(t, x))3ε(x, y) f (S(t, y))

]
61/2

K (y)∇yui (y),

61/2
K (x)∇xui (x)〉dLny dLnx × 〈61/2

K ∇ui , 6
1/2
K ∇ui

〉−1
dt. (4.34)

(Note the use of (4.21) in the above computations.)
To continue, we setUi = 61/2

K ∇ui /
∥∥61/2

K ∇ui

∥∥
L2. Then,

{
Ui =

(
U1

i , . . . ,U
n
i

)}
i≥1

forms a sequence oforthonormal vectors for thevector-valuedHilbert space,

L2
(n)(O) = L2(O)× · · · × L2(O) (n-fold product).

SetK (t, x, y) = f (S(t, x))3ε(x, y) f (S(t, y)). Then the integrand in (4.34) can be
written as

61/2
K (x)61/2

K (y)
∑

q

∂xq

(∑
p

∂yp K (t, x, y)Up
i (y)

)
Uq

i (x)

= 61/2
K (x)61/2

K (y)
∑
pq

[
∂xq∂yp K (t, x, y)

]
Up

i (y)U
q
i (x).

Let Apq(t, x, y) = 61/2
K (x)61/2

K (y)∂xq∂yp K (t, x, y). (4.34) is the same as

n∑
i

∫ ∫
(x,y)

∑
pq

Apq(t, x, y)Up
i (y)U

q
i (y)dLny dLnx dt.

We can now make use of the formula for vector valued trace class operators as in
Proposition B.4.2:

dTr
〈〈
61/2

K ∇Tn(t)
〉〉

≤ Tr A(t)dt

=
∫

x

∑
p

(
App(t, x, x)

)
dLnx dt

=
∫

x

∑
p

6K (x)∂xp∂yp

[
f (S(t, x))3ε(x, y) f (S(t, y))

]∣∣∣∣∣
x=y

 dLnx dt.
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The term in the bracket equals

f ′(S(t, x))
(
∂xp S(t, x)

) (
∂yp3

ε(x, y)
)

f (S(t, y))

+ f (S(t, x))
(
∂xp3

ε(x, y)
)

f ′(S(t, y))
(
∂yp S(t, y)

)
+ f (S(t, x))

(
∂xp∂yp3

ε(x, y)
)

f (S(t, y))

+ f ′(S(t, x))
(
∂xp S(t, x)

)
3ε(x, y) f ′(S(t, y))

(
∂yp S(t, y)

)
.

Making use of the computations in Section B.5.3 and their simple variants,

dTr
〈〈
61/2

K ∇Tn(t)
〉〉≤C

{∫
x
|∇S(t, x)|2 dLnx+ 1

εn+1

∫
x
|∇S(t, x)| dLnx+ 1

ε2n+2

}
dt.

Absorbing the middle term, we get

Tr
〈〈
61/2

K ∇Tn(t)
〉〉 ≤ C

{∫ t

0
‖∇S(r )‖2L2 dr + t

ε2n+2

}
. (4.35)

4.3.9. Combination of Results.Substituting (4.32), (4.33), and (4.35) into (4.31), we
get (recall that we only care about 0≤ t ≤ 4t)

E

{
sup

r∈[0,t ]
‖∇Tn(r )‖8L2

}
≤ C

{
E ‖∇Tn(0)‖8L2 +4t

∫ t

0
E ‖∇S(r )‖4L2 ‖∇Tn(r )‖4L2 dr

+ 4t

ε4n+4

∫ t

0
E ‖∇Tn(r )‖4L2 dr

+4t3
∫ t

0
E ‖∇S(r )‖8L2 dr + 4t4

ε8n+8

}
.

Let θ be a small positive number to be specified later. Recall the inequalitiesab ≤
1
θ
a2+ θb2 anda ≤ a2+ 1. Then the above can be bounded by

C

{
E ‖∇Tn(0)‖8L2 + 4t

θ

∫ t

0
E ‖∇S(r )‖8L2 dr + θ4t

∫ t

0
E ‖∇Tn(r )‖8L2 dr

+ 4t

ε4n+4

∫ t

0

(
E ‖∇Tn(r )‖8L2 + 1

)
dr +4t3

∫ t

0
E ‖∇S(r )‖8L2 dr + 4t4

ε8n+8

}
≤ C

{
E ‖∇Tn(0)‖8L2 + 4t

ε8n+8
+
(4t

θ
+4t3

)∫ t

0
E ‖∇S(r )‖8L2 dr

+
(
θ4t + 4t

ε4n+4

)∫ t

0
E ‖∇Tn(r )‖8L2 dr

}
. (4.36)

Let Dn(t) = E
{
supλ∈[0,t ] ‖∇Tn(λ)‖8L2

}
, DS(t) = E

{
supλ∈[0,t ] ‖∇S(λ)‖8L2

}
. Since we

have E ‖∇Tn(0)‖8L2 ≤ C4t−8α because of the property of the special basis ((3) in
Section 4.3.3), we can write (4.36) as

Dn(t) ≤ C

{
1

ε8n+84t8α
+
(4t

θ
+4t3

)∫ t

0
DS(r )dr +

(
θ4t2+ 4t2

ε4n+4

)
Dn(t)

}
.
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Chooseθ = 1/(4C4t2) andε4n+4 ≥ 4C4t2. (Recall the remark at the beginning of
Section 4.3.) Then,

Dn(t) ≤ C

ε8n+84t8α
+ C

∫ t

0
DS(r )dr.

Let n −→∞. We have

E

{
sup
λ∈[0,t ]

‖∇T(λ)‖8L2

}
≤ lim inf

n
Dn(t)

≤ C

ε8n+84t8α
+ C

∫ t

0
E

{
sup
λ∈[0,r ]

‖∇S(λ)‖8L2

}
dr. (4.37)

4.3.10. Proof of Theorem 4.3.1.Recall that the solution of (4.3) is obtained by Picard’s
Iteration (Appendix C.1.5).

SetS in the previous section to be the solution in the(n− 1)-th iteration,Tn−1. Let

D(n)(t) = E

{
sup
λ∈[0,t ]

∥∥∇Tn(λ)
∥∥8

L2

}
.

Let alsoA = C

ε8n+84t8α
, B = C. Proceed inductively from (4.37),

D(n)(t) ≤ A+ B
∫ t

0
D(n−1)(t1)dt1 ≤ A+ ABt+ B2

∫ t

0

∫ t1

0
D(n−2)(t2)dt2 dt1

...

≤ A+ ABt+ A
B2t2

2
+ · · · + A

Bntn

n!
+ Bn+1tn+1

(n+ 1)!
.

(We have used the identity as in (C.15).) Taking the limitn −→∞,

lim sup
n

D(n)(t) ≤ Aexp(Bt) ≤ C

ε8n+84t8α
.

Finally,

E

{
sup

r∈[0,4t ]
‖∇T(λ)‖8L2

}
≤ lim inf

n
D(n)(t) ≤ C

ε8n+84t8α
. (4.38)

That is exactly the statement of Theorem 4.3.1.

4.4. Continuity in Time Estimate for the Temperature Field

4.4.1. Theorem. If {T(t)}t≥0 solves (4.3) with‖∇T0‖L2 ≤ C4t−α, then

E

{
sup

t∈[0,4t ]
‖T(t)− T0‖8L2

}
≤ C4t2

ε8n+8
. (4.39)
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Remark. What is crucial here is the positive exponent of the4t . Its exact value is not
important. It can be improved to 3 by estimating in an iterative way.

Proof. The proof makes use of the temperature gradient estimates (4.17).
From the definition of the solution of (4.3),

T(t)− T0 =
∫ t

0
AT(s)ds+

∫ t

0
f (T(s))dWε

s .

By Ito’s Formula,

‖T(t)− T0‖2H
= 2

∫ t

0
〈AT(s), T(s)− T0〉 ds+ 2

∫ t

0

〈
f (T(s))dWε

s , T(s)− T0
〉

+
∫ t

0
Tr
[

f (T(s))3ε f (T(s))
]

ds

= −2
∫ t

0

〈
61/2

K ∇T(s), 61/2
K ∇T(s)

〉
ds+ 2

∫ t

0

〈
61/2

K ∇T0, 6
1/2
K ∇T(s)

〉
ds

+2
∫ t

0

〈
f (T(s))dWε

s , T(s)− T0
〉+ ∫ t

0
Tr
[

f (T(s))3ε f (T(s))
]

ds

H⇒ sup
λ∈[0,t ]

‖T(λ)− T0‖2H

≤ C

{∫ 4t

0
‖∇T0‖ ‖∇T(s)‖ ds+ sup

λ∈[0,t ]

∣∣∣∣∫ λ

0

〈
f (T(s))dWε

s , T(s)− T0
〉∣∣∣∣+4t

}
.

Hence,

sup
λ∈[0,t ]

‖T(λ)− T0‖8L2 ≤ C4t4+ C

(∫ 4t

0
‖∇T0‖ ‖∇T(s)‖ ds

)4

+C sup
λ∈[0,t ]

∣∣∣∣∫ λ

0

〈
f (T(s))dWε

s , T(s)− T0
〉∣∣∣∣4

≤ C4t4+ C4t4

{
sup

t∈[0,4t ]
‖∇T0‖4 ‖∇T(s)‖4

}

+C sup
λ∈[0,t ]

∣∣∣∣∫ λ

0

〈
f (T(s))dWε

s , T(s)− T0
〉∣∣∣∣4

≤ C4t4

{
1+ sup

s∈[0,4t ]

(‖∇T0‖8+ ‖∇T(s)‖8)}

+C sup
λ∈[0,t ]

∣∣∣∣∫ λ

0

〈
f (T(s))dWε

s , T(s)− T0
〉∣∣∣∣4 .
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Upon taking expectation, using (4.17) and Burkholder’s Inequality,

E

{
sup
λ∈[0,t ]

‖T(λ)− T0‖8L2

}

≤ C4t4

{
1

4t8α
+ 1

4t8αε8n+8

}
+C E

(∫ t

0
〈 f (T(s))3ε f (T(s))(T(s)− T0), T(s)− T0〉 ds

)2

≤ C
4t4−8α

ε8n+8
+ C4t E

∫ t

0
‖T(s)− T0‖4L2 ds

≤
(

C
4t4−8α

ε8n+8
+4t2

)
+ C4t E

∫ t

0
‖T(s)− T0‖8L2 ds, (a ≤ a2+ 1)

≤ C
4t2

ε8n+8
+4t

∫ t

0
E

{
sup
λ∈[0,s]

‖T(λ)− T0‖8L2

}
ds. (providedα is small enough.)

By Gronwall’s Inequality, we have the desired result:

E

{
sup

λ∈[0,4t ]
‖T(λ)− T0‖8L2

}
≤ C4t2

ε8n+8
. (4.40)

5. Global Energy Estimates

A crucial step in proving the main theorem is the global in time estimation of the energy
E . It will be used to prove the compactness results in Section 6.3. Two facts in this aspect
are that the energyE is alwaysdecreasingafter each minimization, and its changes
during the heat flow steps can be estimated by means ofstochastic integrals. The final
result then follows from martingale inequalities.

5.1. Ito’s Formula for the Bulk Energy (Fixed Crystal)

To achieve our goal, we make use of an extension of Ito’s Formula (B.29) for the norm
square of a process which takes values in a Hilbert spaceH . It is this formula that takes
into account thestatistical cancellationproperty ofwhite noisetype driving force.

The main result we need is the following Theorem. It was proved in [Par]. In [Yip],
a simpler proof is given making use of thecompact embeddingbetween our function
spaces.

5.1.1. Theorem (Ito’s Formula for Energy—Fixed Crystal). Let F be the bulk energy
functional as in Section 3.1 and T(t) be the solution of the heat equation (4.2) (or (4.3),
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to be exact15). Then,∫
O

cK F(T(t))dLn +
∫ t

0

∫
O

F ′′(T(s)) 〈6K∇T(s), ∇T(s)〉 dLn ds

=
∫
O

cK F(T(0))dLn +
∫ t

0

∫
O

cK F ′(T(s)) f (T(s))dWs dLn

+1

2

∫ t

0
Tr
[
cK F ′′(T(s) f (T(s))3 f (T(s)))

]
ds. (5.1)

Remark.Here,F ′′(T(s)) and f (T(s)) are regarded as multiplicative operators on spatial
functions (Appendix B.5.1).

5.2. Global Energy Estimates (Varying Crystals)

Now we proceed to estimate the energy globally, taking into consideration the mini-
mization steps. Recall the notation

(
K−i , T

−
i ,U

−
i , Q−i

)
as the state att−i (right before

minimization atti ) and
(
K+i , T

+
i ,U

+
i , Q+i

)
the state att+i (right after minimization at

ti ). Note thatT+i −→ T−i+1 by the heat flow process andK−i+1 = K+i . By the measurable
selection (Section 3.3),

(
K+i , T

+
i ,U

+
i , Q+i

)
, isFti -measurable. This allows us to use the

formulas concerning stochastic integrations.
Let E(t) = E (K (t), T(t)). SinceE(t+i ) ≤ E(t−i ) by the minimization procedure, we

deduce

E(t+n ) ≤ E(t−n )
= E(t−n )− E(t+n−1)+ E(t+n−1)

...

≤ E(t+0 )+
n∑

i=1

E(t−i )− E(t+i−1)

≤ E(t−0 )+
n∑

i=1

E(t−i )− E(t+i−1). (5.2)

Making use of Theorem 5.1.1, we arrive at the following.

5.2.1. Proposition (Energy Bound—Varying Crystals).

E(t)+
∫ t

0

∫
O

F ′′(T) 〈6K∇T, ∇T〉 dLn ds

≤ E(0)+
∫ t

0

∫
O

cK F ′(T) f (T)dWs dLn + 1

2

∫ t

0
Tr
[
cK F ′′(T) f (T)3 f (T)

]
ds.

This leads to the following global energy estimates.

15 The smoothing has no effect in the global energy estimate.
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5.2.2. Theorem (Global Energy Estimates).For all positive integers m,

E

{
sup

t∈[0,1]
8(∂Kt )

m

}
, E

{
sup

t∈[0,1]
‖Tt‖mL2 + ‖Ut‖mL2

}
and

E

[(∫ 1

0
‖∇Ts‖2L2 + ‖∇Us‖2L2 ds

)m
]
< Cm. (5.3)

Proof. Let Mt =
∫ t

0

∫
O

cK F ′(T) f (T)dWs dLn =
∫ t

0

〈
cK F ′(T) f (T), dWs

〉
.We then

write Proposition 5.2.1 as:

E(t) +
∫ t

0

∫
O

F ′′(T) 〈6K∇T, ∇T〉 dLn ds

≤ E(0)+ Mt + 1

2

∫ t

0
Tr
[
cK F ′′(T) f (T)3 f (T)

]
ds. (5.4)

By the fact thatF ′(T) f (T) andF ′′(T) f (T) arebounded, we have

〈M〉t =
∫ t

0

〈
3cK F ′(T) f (T), cK F ′(T) f (T)

〉
ds≤ Ct,

1

2

∫ t

0
Tr
[
cK F ′′(T) f (T)3 f (T)

]
ds≤ Ct.

Applying Burkholder’s Inequality (B.4) toMt ,

E

(
sup

t∈[0,1]
|Mt |2m

)
≤ CmE

[〈M〉m1 ] , (m> 0).

Then, starting from (5.4), upon taking power and expectation, we arrive at

• E

{
sup

t∈[0,1]
8(∂Kt )

m

}
≤ Cm;

• E

{
sup

t∈[0,1]

(∫
O

cK F(Tt )dLn

)m
}
≤ Cm;

• E

[(∫ 1

0

∫
O

F ′′(T) 〈6K∇T, ∇T〉 dLn ds

)m
]
≤ Cm.

By the growth form forF (Section 3.1),

T2+U2 ≤ F(T)+ C, C1+ C2U
4 ≤ F ′′(T)

H⇒ |∇T |2+ |∇U |2 ≤ F ′′(T) 〈6K∇T, ∇T〉 + C;

the asserted result follows.
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5.3. Hölder Continuity Estimate for the Heat Evolution

In this section, we are going to show that the heat evolves “H¨older continuously in time”
in the discrete scheme. Precisely, we will establish the following:

5.3.1. Theorem (Hölder Continuity in Time of Heat Evolution). We can decompose
Q(t) as Q′(t)+ R′(t) such that, for all positive integers m and for all0≤ s< t ≤ 1,

E
∥∥Q′(t)− Q′(s)

∥∥2m

∼ ≤ Cm |t − s|m , (5.5)

E sup
t∈[0,1]

∥∥R′(t)
∥∥2m

∼ ≤ Cm4t2mα. (5.6)

Precisely,Q′(t)will describe the evolutions during the heat flow andR′(t) the changes
during the minimizations.16

Recall that the space of heat distributions is endowed with theModified Monge-
Kantorovich Norm (Section 2.1.3),

‖Q− P‖∼ = ‖Q− P‖∗ +
∣∣Q− P

∣∣ .
The proof of the Theorem goes by careful estimations of the corresponding terms.

5.3.2. Decomposition forQ(t). Let Q−i and Q+i be the heat distributions at timet−i
(right before the minimization) andt+i (right after). ThenQ+i is changed toQ−i+1 by the
heat flow process.

Consider (for simplicity, 0≤ tq ≤ 1)

Q+q = Q+q − Q−q + Q−q − Q+q−1+ Q+q−1− Q−q−1+ Q−q−1− Q+q−2

· · · · · · + Q+1 − Q−1 + Q−1 − Q+0 + Q+0

=
q∑

i=1

Q+i − Q−i +
q∑

i=1

Q−i − Q+i−1+ Q+0 .

Set

R′(t) =
∑

0<ti≤t

Q+i − Q−i , (5.7)

Q′(t) = Q(t)− R′(t) =
∑

0<ti≤t

Q−i − Q+i−1+ Q+0 . (5.8)

We will estimateR′(t) andQ′(t) separately. The theorem will then follow.

5.3.3. Lemma (Estimates forR′(t)—Minimization Step). For all positive integers
m,

E sup
t∈[0,1]

∥∥R′(t)
∥∥2m

∼ ≤ C4t2mα. (5.9)

16 Because of the jumps in the heat distribution during the minimization steps, the heat evolution is not
continuous in time, but ratherright continuous with left-hand limit , the so-calledcàdlàgprocess.
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Proof. The terms inR′(t) measure the changes of the heat during the minimization
steps.

By the definition of the minimization procedure, we have

E(t+i )+
1

4tα
∥∥Q+i − Q−i

∥∥
∗ ≤ E(t−i )

H⇒ ∥∥Q+i − Q−i
∥∥
∗ ≤ 4tα

{
E(t−i )− E(t+i )

}
.

Note that the heat contents ofQ+i andQ−i are the same. Hence,∥∥R′(t)
∥∥
∼

≤
q∑

i=0

∥∥Q+i − Q−i
∥∥
∗

≤ 4tα
q∑

i=0

E(t−i )− E(t+i )

≤ 4tα
{

q∑
i=0

E(t−i )− E(t+i−1)+
q∑

i=0

E(t+i−1)− E(t+i−1)

}

≤ 4tα
{
E(t+0 )− E(t+q )

}+4tα
{

q∑
i=0

∫ ti

ti−1

∫
O

cK F ′(T) f (T)dWr dLn

+ 1

2

∫ ti

ti−1

Tr
[
cK F ′′(T) f (T)3 f (T)

]
dr

}
≤ 4tα

{
E(t−0 )+

∫ tq

t0

〈
cK F ′(T) f (T), dWr

〉+ 1

2

∫ tq

tp

Tr
[
cK F ′′(T) f (T)3 f (T)

]
dr

}

≤ 4tα
{
E(0)+

∫ tq

0

〈
cK F ′(T) f (T), dWr

〉+ 1

2

∫ tq

0
Tr
[
cK F ′′(T) f (T)3 f (T)

]
dr

}
.

The lemma follows from taking powers and then invoking Burkholder’s Inequality. It is
quite similar to the proof of Theorem 5.2.2.

5.3.4. Lemma (Estimates forQ′(t) − Q′(s)—Heat Flow Process).For all positive
integers m and for all0≤ s< t ≤ 1,

E
∥∥Q′(t)− Q′(s)

∥∥2m

∼ ≤ C |t − s|m . (5.10)

Proof. The terms inQ′(t)−Q′(s)measure the changes of heat caused by the following
diffusion equation:

d Q = div (6K∇T) dt + cK f (T)dWt ;
i.e., Q′(t)− Q′(s) =

∫ t

s
div (6K∇T) dr +

∫ t

s
cK f (T)dWr .
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Without loss of generality, assumes= tp andt = tq. Now,

∥∥Q′(t)− Q′(s)
∥∥
∼ =

∣∣∣∣∣ q∑
i=p+1

Q−i − Q+i−1

∣∣∣∣∣+
∥∥∥∥∥ q∑

i=p+1

Q−i − Q+i−1

∥∥∥∥∥
∗
.

Step I: Estimation for the Change of the Heat Content
∣∣∣∑q

i=p+1 Q−i − Q+i−1

∣∣∣. Con-

sider (note that∂O = ∅.),∫
O

q∑
i=p+1

(
Q−i − Q+i−1

)
dLn =

∫ tq

tp

∫
O

div (6K∇T) dLn dr + cK f (T)dWr dLn

=
∫ tq

tp

∫
O

cK f (T)dWr dLn =
∫ tq

tp

〈cK f (T), dWr 〉.

Hence, ∣∣∣∣∣ q∑
i=p+1

(
Q−i − Q+i−1

)∣∣∣∣∣ ≤
∣∣∣∣∣
∫ tq

tp

〈cK f (T), dWr 〉
∣∣∣∣∣. (5.11)

By Proposition 5.3.5, we get

E

∣∣∣∣∣ q∑
i=p+1

(
Q−i − Q+i−1

)∣∣∣∣∣
2m

≤ Cm |t − s|m . (5.12)

Step II: Estimation for the Monge-Kantorovich Norm
∥∥∥∑q

i=p+1 Q−i − Q+i−1

∥∥∥
∗
. Let

Lip ϕ ≤ 1 and
∫
O ϕ dLn = 0. Consider:∫

O

q∑
i=p+1

(
Q−i − Q+i−1

)
ϕ dLn

=
∫ tq

tp

∫
O

div (6K∇T) ϕ dLn dr +
∫ tq

tp

∫
O
ϕcK f (T)dWr dLn

= −
∫ tq

tp

∫
O
〈6K∇T, ∇ϕ〉 dLn dr +

∫ tq

tp

〈ϕ, cK f (T)dWr 〉

≤ C

(∫ tq

tp

∫
O
|∇ϕ|2 dLn dr

)1/2(∫ tq

tp

∫
O
|∇T |2 dLn dr

)1/2

+
∣∣∣∣∣
∫ tq

tp

〈ϕ, cK f (T)dWr 〉
∣∣∣∣∣

≤ C
∣∣tq − tp

∣∣1/2

(∫ tq

tp

∫
O
|∇T |2 dLn dr

)1/2

+
∣∣∣∣∣
∫ tq

tp

〈ϕ, cK f (T)dWr 〉
∣∣∣∣∣. (5.13)
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The second term of the above can be estimated as∣∣∣∣∣
∫ tq

tp

〈ϕ, cK f (T)dWr 〉
∣∣∣∣∣ =

∣∣∣∣∣
〈
ϕ,

∫ tq

tp

cK f (T)dWr

〉∣∣∣∣∣ ≤ ‖ϕ‖L2

∥∥∥∥∥
∫ tq

tp

cK f (T)dWr

∥∥∥∥∥
L2

.

However, since Lipϕ ≤ 1 and
∫
O ϕ dLn = 0, by Poincar´e’s Inequality, we have‖ϕ‖L2 ≤

C. Hence, taking powers on both sides of (5.13) leads to∥∥∥∥∥ q∑
i=p+1

Q−i − Q+i−1

∥∥∥∥∥
∗
≤ Cm

∣∣tq − tp

∣∣m(∫ tq

tp

‖∇T‖2L2 ds

)2m

+Cm

∥∥∥∥∥
∫ tq

tp

cK f (T)dWs

∥∥∥∥∥
2m

L2

. (5.14)

The whole lemma then follows by the energy estimates Theorem 5.2.2 and the next
result. (Its proof is elementary.)

5.3.5. Proposition. Let Mt be a continuous square integrable Hilbert space valued
martingale with d〈〈M〉〉t = 0t dt andTr0t ≤ C (a deterministic number). Then, for all
m≥ 1,

E
(‖Mt − Ms‖2m

) ≤ Cm |t − s|m , 0≤ s ≤ t ≤ 1. (5.15)

6. Convergent Subsequence

In this section, we are going to show the tightness of probability measures induced by
the discrete scheme. The notion of convergence we use is theweak convergence of
probability measuresor convergence in distribution(see Appendix B.2).

There are several steps. We need some compactness properties of the function spaces.
In addition, we will introduce astopped versionof the evolution. (This is an artifact
due to the limitation of our compactness results.) Tightness follows from the global
energy estimates. Finally, we will make use of an extended version of Skorokhod’s
Theorem to reformulate weak convergence in terms ofalmost sure convergence on the
same probability space. This last part not only makes many later computations more
transparent but also allows us to freelycompare the discrete and limiting evolutions.
This is crucial when we want to prove varifold convergence of the crystal positions
by exploiting the fact that the discrete evolutions are obtained through minimization
procedures.

6.1. Compactness Properties for Crystals, Temperatures, and Heats

The main idea for the compactness of the function spaces comes from the relationship

Q = cK T or T = c−1
K Q.
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(In practice, they refer toQN = cK N T N , whereN = 1/4t—the discretization level.)
Note thatcK is adiscontinuousfunction in the spatial variable. Now‖T‖L2, ‖1/T‖L2,
‖∇T‖L2 , and‖∇1/T‖L2 can be controlled by Theorem 5.2.2. Hence, ifQN converges,
so mustcK N . But from Theorem 5.3.1, indeed we haveQN converging to some limiting
heat distribution (up to a subsequence).

First we describe the compactness results in the deterministic case. They are proved
in [AW] Chapter 6 and reformulated by an anonymous referee for [AW].

6.1.1. Remark—Nontrivial Crystal Configurations. The compactness criterias de-
veloped here rely on the fact that the crystals arenontrivial , i.e., the domain isnot
totally frozen or melted. In this section, we will assume that there is a (small) positive
numberγ such that every crystalK ∈ K satisfies the condition

γ |O| < Ln(K ) < (1− γ ) |O| . (6.1)

Such a condition is to “force” the crystal to have some boundary inside the domainO.
This will then exclude the wild oscillations of the crystal betweenK = ∅ andK = O
when we apply the following results.

The next proposition is the starting point of our compactness argument. However, we
believe that it is not necessary to restrict to such nontrivial configurations if we impose the
Dirichlet boundary condition for the temperature field (instead of the periodic boundary
condition as in the present setting). This was suggested by one referee of this paper.

6.1.2. Proposition. [AW, Thm 6.1]Suppose

• K and L are two crystals inK withLn(K4L) > 0.
• Q is a single heat distribution inQ.
• T = c−1

K Q and S= c−1
L Q are the corresponding temperature fields.

Then,‖∇T‖L2 + ‖∇1/T‖L2 + ‖∇S‖L2 + ‖∇1/S‖L2 = ∞.

6.1.3. Corollary (Close Crystal Positions).[AW Cor. 6.2] Given any positive numbers
ε (small) and M (large), there existsδ > 0 such that, if

• P and Q are two heat distributions with‖P − Q‖∼ ≤ δ,
• K and L are two crystals inK with8(∂K ) and8(∂L) ≤ M,
• T = c−1

K P and S= c−1
L Q are the corresponding temperature fields,

• ‖T‖L2 + ‖1/T‖L2 + ‖S‖L2 + ‖1/S‖L2 ≤ M,
• ‖∇T‖L2 + ‖∇1/T‖L2 + ‖∇S‖L2 + ‖∇1/S‖L2 ≤ M,

thenLn(K4L) < ε.

6.1.4. Corollary (Close Temperature Fields).[AW Cor. 6.3] Given any positive num-
bersε (small) and M (large), there exists aδ > 0 such that, if

• P and Q are two heat distributions with‖P − Q‖∼ ≤ δ,
• K and L are two crystals withLn(K4L) ≤ δ, 8(∂K ), and 8(∂L) ≤ M,
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• T = c−1
K P and S= c−1

L Q are the corresponding temperature fields,
• ‖T‖L2 + ‖1/T‖L2 + ‖S‖L2 + ‖1/S‖L2 ≤ M,
• ‖∇T‖L2 + ‖∇1/T‖L2 + ‖∇S‖L2 + ‖∇1/S‖L2 ≤ M,

then‖T − S‖L2 + ‖1/T − 1/S‖L2 ≤ ε.
From the above results, we can formulatespace time convergence. This was sug-

gested by an anonymous referee for [AW]. Such an approach makes the convergence
scheme much more transparent and easier to be handled than the original arguments
in [AW].

6.1.5. Theorem (Space Time Compactness for Function Space).Given a sequence
of time-evolving crystal positions, temperature fields, and the corresponding heat distri-
butions Ki (·), Ti (·), Q(·) = cKi (·)Ti (·) such that, for all i ,

• sup
t∈[0,1]

8(∂Ki (t)) ≤ C,

• sup
t∈[0,1]

‖Ti (t)‖L2 + ‖1/Ti (t)‖L2 ≤ C,

•
∫ 1

0
‖∇Ti (t)‖L2 + ‖∇1/Ti (t)‖L2 dt ≤ C,

• Qi (t) −→ Q(t) uniformly in t ∈ [0,1] in the modified Monge-Kantorovich norm,

then there exists K(·) and T(·) such that

∫ 1

0
‖Ki (t)− K (t)‖L1 dt −→ 0, (6.2)∫ 1

0
‖Ti (t)− T(t)‖2L2 + ‖1/Ti (t)− 1/T(t)‖2L2 dt −→ 0, (6.3)

and Q(·) = cK (·)T(·).

Proof. For the first statement, letε be an arbitrary positive number. ChooseM to be
such thatC/M ≤ ε. Let δ be the number gotten by Corollary 6.1.3 for such anε andM .
Next chooseN such that, for alli, j > N,

∥∥Qi (t)− Qj (t)
∥∥
∼ ≤ δ, ∀t ∈ [0,1].

Let Gi andGj be the set ofgood times,

Gi = {t : ‖∇Ti (t)‖L2 + ‖∇1/Ti (t)‖L2 ≤ M} ,
Gj =

{
t :
∥∥∇Tj (t)

∥∥
L2 +

∥∥∇1/Tj (t)
∥∥

L2 ≤ M
}
.

ThenL1([0,1]\Gi ) ≤ C/M, L1([0,1]\Gj ) ≤ C/M, and
∥∥Ki (t)− Kj (t)

∥∥
L1 ≤ ε for
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all t ∈ Gi
⋂

Gj . Hence,

∫ 1

0

∥∥Ki (t)− Kj (t)
∥∥

L1 dt

=
∫

Gi

⋂
Gj

∥∥Ki (t)− Kj (t)
∥∥

L1 dt +
∫

[0,1]\Gi

⋂
Gj

∥∥Ki (t)− Kj (t)
∥∥

L1 dt

≤ ε + 2C/M ≤ 3ε;

i.e., Ki is Cauchy inL1
loc(O × [0,∞)).

For the second statement, letε be any positive number. ChooseM > 0 such that
C/M ≤ ε. Let δ be the number gotten from Corollary 6.1.4 forε andM .

From the first statement, there is anN such that, for alli, j > N,∫ 1

0

∥∥Ki (t)− Kj (t)
∥∥

L1 dt ≤ εδ,∥∥Qi (t)− Qj (t)
∥∥
∼ ≤ δ, ∀t ∈ [0,1].

Let Hi andHj be the set ofgood times,

Hi =
{
t :
∥∥Ki (t)− Kj (t)

∥∥
L1 ≤ δ; ‖∇Ti (t)‖2L2 + ‖∇1/Ti (t)‖2L2 ≤ M,

}
Hj =

{
t :
∥∥Ki (t)− Kj (t)

∥∥
L1 ≤ δ;

∥∥∇Tj (t)
∥∥2

L2 +
∥∥∇1/Tj (t)

∥∥2
L2 ≤ M.

}
Then,L1([0,1]\Hi ) ≤ εδ/δ + C/M = 2ε (similarly,L1([0,1]\Hj ) ≤ 2ε). In addi-

tion, we have
∥∥Ti (t)− Tj (t)

∥∥
L2 ≤ ε for all t ∈ Hi

⋂
Hj . Hence,

∫ 1

0

∥∥Ti (t)− Tj (t)
∥∥2

L2 dt

=
∫

Hi

⋂
Hj

∥∥Ti (t)− Tj (t)
∥∥2

L2 dt +
∫

[0,1]\Hi

⋂
Hj

∥∥1/Ti (t)− 1/Tj (t)
∥∥2

L2 dt

≤ ε + C(4ε);

i.e.,Ti is Cauchy inL2
loc(O × [0,∞)). Similar results hold for 1/Ti .

6.2. Nontrivial Crystal Configurations

Now we return to Remark 6.1.1.
The condition of nontrivial crystal occupancies (necessary for the compactness result)

might not be preserved for all time due to the white-noise driving force in the heat
equation. (In the deterministic case, the energy of the system is always decreasing, so
there are ample initial conditions such that this nontriviality of the crystal shape holds
for all time.) We show thatthis condition is true up to a stopping time.

Let % > 0 be a fixed small number throughout this section.
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6.2.1. Proposition (Sufficient Condition for Nontrivial Crystals). [AW Prop. 3.5]
Given any (large) M> 0, there is a (small)γ > 0 such that, for any L∈ K and P∈ Q
with ∫

O
P2+ P−2 dLn ≤ M and (6.4)

8(∂L)+
∫
O

cL F(c−1
L P)dLn ≤ min

{
cl F(c

−1
l P), csF(c−1

s P)
} |O| − %, (6.5)

whereP is the spatial average of P, then any(E,4t, P) minimizer(K , Q) satisfies

γ |O| ≤ Ln(K ) ≤ (1− γ ) |O| .

Proof. Assume the contrary, i.e., there is anM > 0, γi −→ 0, andLi ∈ K, Pi ∈ Q,
such that ∫

O
P2

i + P−2
i dLn ≤ M, (6.6)

8(∂Li )+
∫
O

cLi F(c
−1
Li

Pi )dLn ≤ min
{
cl F(c

−1
l Pi ), csF(c−1

s Pi )
} |O| − %, (6.7)

and a(E,4t, Pi ) minimizer(Ki , Qi ) satisfies

Ln(Ki ) = γi |O| or Ln(Ki ) = (1− γi ) |O|

By the definition of a minimizer, we have

8(∂Ki )+
∫
O

cKi F(cKi Qi )dLn+ 1

4tα
‖Qi − Pi ‖∗ ≤ 8(∂Li )+

∫
O

cLi F(c
−1
Li

Pi )dLn.

Due to the uniform convexity ofF , the middle term of the L.H.S. of the above is bounded
below by ([AW], Prop. 3.1)∫
O

cKi F

(
Pi

γi cs + (1− γi )cl

)
dLn = (γi cs + (1− γi )cl )F

(
Pi

γi cs + (1− γi )cl

)
|O| .

From (6.6),δ1 ≤ Pi ≤ δ2 for some fixed positive numbersδ1 andδ2 (depending on
M). Taking a convergent subsequence (still denoted byi ) such thatPi −→ a, γi −→ 0,
then

max

{
csF

(
a

cs

)
, cl F

(
a

cl

)}
≤ min

{
csF

(
a

cs

)
, cl F

(
a

cl

)}
− %,

which is absurd.

To apply the above result,(L , P)will be the crystal and heat distribution right before
each minimization andK will be the crystal right after.
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6.2.2. Admissible Initial Conditions. Initial configuration(K0, Q0) is calledadmis-
sible if

8(∂K0)+
∫
O

cK0 F(c−1
K0

Q0)dLn < min
{
csF(c−1

s Q0), cl F(c
−1
l Q0)

} |O| − %. (6.8)
The fact that there exists such an initial condition can be seen as follows.

Let 0< r < 1,Ln(K0) = r |O|, andT0(r )be the constant temperature field satisfying

(rcs + (1− r )cl )T0(r ) = Q0 (preservation of heat content).

We claim the existence ofK0(r ), Q0, andr such that

8(∂K0(r ))+ (rcs + (1− r )cl ) F(T0(r )) |O|
< min

{
csF(c−1

s Q0), cl F(c
−1
l Q0)

} |O| − %. (6.9)

• (Recall thatF is uniformly convex, nonnegative, andF(T∗) = 0 for someT∗ > 0.)
Pick Q0 satisfying

Q0

cl
< T∗ <

Q0

cs
, i.e., csT∗ < Q0 < cl T∗.

• Chooser giving T0(r ) = T∗.
• K0(r ) exists if|O| is large enough.

6.2.3. Proposition. Start from eachinitial admissible configuration of crystal and
heat distribution, at each level of the discrete scheme (4t = 1/N), and there is an
almost surely positivestopping time τ N and a random number γ N such that the
crystal satisfies

γ N |O| ≤ Ln(K N(t)) ≤ (1− γ N) |O| for 0≤ t < τ N . (6.10)

Proof. (The superscriptN is suppressed for what follows until the very last.) From the
previous proposition, at each minimization step, we want to ensure condition (6.5):

E(t−i ) = 8(∂K−i )+
∫
O

cK−i
F(c−1

K−i
Q−i )dLn

< min
{
csF(c−1

s Q−i ), cl F(c
−1
l Q−i )

}
|O| − % (6.11)

The L.H.S. of the above is bounded by (Proposition 5.2.1)

E(0)+
∫ t

0

〈
cK F ′(T) f (T), dWr

〉+ 1

2

∫ t

0
Tr
[
cK F ′′(T) f (T)3 f (T)

]
dr. (6.12)

We tighten the sufficient condition (6.11) to

E(0) +
∫ t

0

〈
cK F ′(T) f (T), dWr

〉+ 1

2

∫ t

0
Tr
[
cK F ′′(T) f (T)3 f (T)

]
dr

< min
{
csF(c−1

s Q−i ), cl F(c
−1
l Q−i )

}
|O| − %.
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Set

Is(t) = E(0)+ 1

2

∫ t

0
Tr
[
cK F ′′(T) f (T)3 f (T)

]
dr

− csF(c−1
s Q(t)) |O| +

∫ t

0

〈
cK F ′(T) f (T), dWr

〉
. (6.13)

The same definition holds forIl (t) with cs replaced bycl .
All the quantities in the above expression arecontinuousin time. We can then define

the stopping time,

τ N = min {ti : Is(ti ) ≥ −% or Il (ti ) ≥ −%.} (6.14)

Choose initial configuration(K0, Q0) such that

E(0) < min
{
csF(c−1

s Q0), cl F(c
−1
l Q0)

} |O| − %; (6.15)

thenτ N > 0 a.s.
The random numberγ N depends on

sup

{∫
O

T N(t)2+ T N(t)−2 dLn, t ∈ [0,1]

}
.

6.3. Tightness of the Discrete Scheme

Using the previous sections, we now show that astopped versionof our discretized
evolutions are compact in the sense of probability measures.

6.3.1. ReviewofNotationsandResults.Let XN=(K N(t),T N(t),U N(t),QN(t))t∈[0,1]

be the evolutions generated by the alternating minimization and heat flow process
(N = 1/4t). Then they are random variables defined on a probability space(Ä, P,F)
taking values inS.17 There is also a Wiener Process{Wt , Ft ; 0≤ t <∞} defined on
Ä. LetµN be the law ofXN on S.

6.3.2. Definition of the Stopped Process.As mentioned earlier, in order to make use
of the compactness results in Section 6.1 to show the tightness of theµN ’s, the crystals
must be nontrivial. This condition is true only up to a stopping timeτ N . We will modify
the evolutionXN afterτ N for mathematical convenience.We will not assert anything
about the evolution afterτ N . We do not know whether such a modification is absolutely
necessary. At the moment, it seems quite artificial. In addition, the state spaceSwill be
expanded to include more information.

17 Note that the heat evolutions are not quite continuous in time due to the jumps in the minimization steps.
We will take care of this in Section 6.3.4.
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1. Let K∗ be any fixed crystal andT∗ be any fixed constant temperature field. We
now introduce thestopped process

XN
∗ (t) =

(
K N
∗ (t), T

N
∗ (t),U

N
∗ (t), QN

∗ (t)
)

t∈[0,1] ,

where

K N
∗ (t) = K N(t) for t < τ N, K∗ for t ≥ τ N,

T N
∗ (t) = T N(t) for t < τ N, T∗ for t ≥ τ N,

U N
∗ (t) = T N

∗ (t)
−1 for t ∈ [0,1],

QN
∗ (t) = QN(t) for t ∈ [0,1].

2. Consider the definition forIs(t) (6.13) (and similarly forIl (t)),

I N
s (t) = E(0)+

1

2

∫ t

0
Tr
[
cK N F ′′(T N) f (T N)3 f (T N)

]
dr

− csF(c−1
s QN(t)) |O| + JN(t), (6.16)

whereJN(·) is aFt -martingale with quadratic variation∫ t

0

〈
3cK N F ′(T N) f (T N), cK N F ′(T N) f (T N)

〉
dr. (6.17)

These processes act like indicators to give extra information about the nontriviality
of the crystals. From them we define

τ N = inf {ti : Is(ti ) ≥ −%, Il (ti ) ≥ −%.} (6.18)

Consider the “revised version” ofI N
s (t) (and similarly forI N

l (t)),

I N
∗s(t) = E(0)+

1

2

∫ t

0
Tr
[
cK N∗ F ′′(T N

∗ ) f (T N
∗ )3 f (T N

∗ )
]

dr

− csF
(
c−1

s QN∗ (t)
)
|O| + JN(t). (6.19)

DenoteJN
∗ (·) = JN(·).

What we have done so far is to define the stopped process from the original one:{
XN = (K N, T N,U N, QN), JN

}
t∈[0,1] −→

{
I N
s , I N

l

}
t∈[0,1] −→ τ N (6.20)

⇓ ⇓ ⇓{
XN
∗ = (K N

∗ , T
N
∗ ,U

N
∗ , QN

∗ ), JN
∗
}

t∈[0,1] −→
{
I N
∗s, I N

∗l
}

t∈[0,1] −→ τ N . (6.20∗)

By (6.18),τ N is also aF XN
∗ ,J

N
∗

t -stopping time, whereF XN
∗ ,J

N
∗

t is the filtration generated
by XN

∗ andJN
∗ .
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6.3.3. Theorem (Tightness of the Stopped Process).Let0N
∗ be the law of{

XN
∗ (t), JN

∗ (t)
}

t∈[0,1] on S× C([0,1], R). (6.21)

Then
{
0N
∗
}

N≥1 is tight.

Proof. Let µN
∗ be the law ofXN

∗ on S. Clearly it satisfies the same estimates asµN

(Theorem 5.2.2). Hence, for allε > 0, there is anM > 0 such that

µN
∗

{
sup

t∈[0,1]
8(∂Kt )+ ‖Tt‖2L2 + ‖Ut‖2L2 ≤ M

}
≥ 1− ε/4,

µN
∗

{∫ 1

0
‖∇Tt‖2L2 + ‖∇Ut‖2L2 dt ≤ M

}
≥ 1− ε/4.

By Theorem 5.3.1 and Theorem B.2.2 (see the remark following this proof), there is
a compact subsetB of C([0,1], Q) such thatµN

∗ (π
−1
4 B) ≥ 1− ε/4.18

Consider the set

A =
{

sup
t∈[0,1]

8(∂K (t))+ ‖T(t)‖2L2 + ‖U (t)‖2L2 ≤ M

}
⋂{∫ 1

0
‖∇T(t)‖2L2 + ‖∇U (t)‖2L2 dt ≤ M

}⋂
(π−1

4 B).

Clearly,µN
∗ (A) ≥ 1−3ε/4. According to Proposition 6.2.1, there is aγ > 0 (depending

on M) such that

γ |O| ≤ Ln(K (t)) ≤ (1− γ ) |O| , µN
∗ a.s. for 0≤ t < τ N .

By Theorem 6.1.5,A is compact in the metric ofS. (Note that even though the relationship
QN = cK N T N does not hold fort ≥ τ N , the compactness result is still applicable since
the crystals and temperature fields are fixed after that.)

SinceJN(t) ∈ C([0,1], R), from (6.17) and Proposition 5.3.5, we can invoke B.2.2
again to conclude the existence of a compact subsetC of C([0,1], R) such that0N

∗ (S×
C) ≥ 1− ε/4.

Finally, we have0N
∗ ((A × C([0,1], R)) ∩ (S × C)) ≥ 1 − ε. The theorem

follows.

6.3.4. Remark—Indirect Usage of Theorem B.2.2.The original version of B.2.2 does
not apply directly in the above proof, as the sample paths of the heat distributionsQN(t),
strictly speaking, are not continuous in time but have jumps. To overcome this, we use
the following twist.

LetC1 = C([0,1],Q) andC2 be the collection of heat evolutions which are piecewise
continuous with a finite number of jumps at

{
j N−1

}
j≥0,N≥1. C2 is given themetric of

18 π4 is the projection fromSonto its fourth factorC([0,1],Q).
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uniform convergence. LetC3 be the completion ofC2. ThenC3 is acomplete separable
metric space. Let νN

∗ be the law ofQN
∗ onC3.

Now, for all N, QN(·) can be decomposed asQN(t)′ + RN(t)′ with QN(·)′ ∈ C1.
(Note that the map Q(t) −→ Q′(t) is a continuous and hence Borel map onC3.)
By Theorem 5.3.1, we apply B.2.2 toQN(·)′ to conclude the existence of a measure
ν∗ on C1 and a subsequence (still denoted byN) such that for allbounded uniformly
continuousfunctions f onC3, we have∫

Ä

f (QN ′)d P =
∫

C1

f (Q′)dνN
∗ −→

∫
C1

f (Q)dν∗.

But, by Lemma 5.3.3,RN(t)′ = QN(t)−QN(t)′ −→ 0 uniformly int in probability and
so doesf (QN)− f (QN ′) ( f is uniformly continuous). By the dominated convergence
theorem, ∫

Ä

f (QN)− f (QN ′)d P −→ 0.

Hence, we conclude that∫
C3

f (Q)dνN
∗ −→

∫
C1

f (Q)dν∗ =
∫

C3

f (Q)dν∗.

By the Prokhorov criterion (Section B.2), given anyε > 0, there is a compact setB
in C3 such that, for allN,

νN
∗ (B) ≥ 1− ε.

Thus, the step in the above proof using B.2.2 is justified.19

6.4. Formulation on a Common Probability Space

From Theorem 6.3.3 and the Prohkorov Criterion, there is a subsequence{0Nj∗ }j and a

probability measure0∗ on S× C([0,1], R) such that0
Nj∗ ⇀ 0∗.

We now formulate this weak convergence in terms ofalmost sure convergence on a
common probability spaceby an extended version of theSkorokhod Theorem(which
is usually stated for the case of complete separable metric space). The reason for doing
this is that later on we will make comparisons between the limiting random variables
and the approximated ones, treating them as defined on the same probability space.

6.4.1. Proposition (Skorokhod Theorem—Extended Version).Let
{
0N
}

N≥1 be a
tight sequence of probability measures on aseparable metric spaceY converging
weakly to a probability measure0 on Y . Then there is a probability space(Ä̃, F̃, P̃)
and random variables̃XN and X̃ taking values in Y such that the law ofX̃N is 0N and
X̃N −→ X̃ P̃ a.s. in the metric of Y .

19 Actually, in the original definition ofS, we can even replaceC([0,1],Q) by C3. Everything remains
unchanged.
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Proof. The proof starts by embeddingY into its completionȲ. Then we can invoke the
usual Skorokhod Theorem [IW] to construct random variablesX̃N andX̃, taking values
in Ȳ satisfying the stated properties.

By using the tightness of
{
0N
}

N≥1, there are compact setsCi in Y (and hence compact

and closed inȲ) such that, for allN ≥ 1, P̃(X̃N ∈ Ci ) = 0N(Ci ) ≥ 1− 2−i . Then,
P̃(X̃N ∈ ∪Ci ) = 1. SinceX̃N ⇀ X̃ P̃ a.s., we also havẽP(X̃ ∈ Ci ) ≥ lim supi P̃(X̃N ∈
Ci ) ≥ 1− 2−i . This leads toP̃(X̃ ∈ ∪Ci ) = 1. Hence, we can treat all thẽXN ’s and X̃
as taking values inY (∪Ci ⊂ Y).

Applying the above to the case of

Y = S× C([0,1], R) = {X = (K (·), T(·),U (·), Q(·)), J(·)}t∈[0,1] ,

we conclude that there is a probability spaceP̃ and random variables
(

X̃N, J̃N
)

taking

values inS× C([0,1], R) with the same law as(XN
∗ , JN

∗ ) and convergingP̃ a.s. to a
random variable(X̃, J̃) in the metric ofS× C([0,1], R). τ̃ N is defined the same way
as in (6.18).

We are going to study the properties of(X̃N, J̃N) and(X̃, J̃). In the following,Ẽ is
with respect toP̃.

6.4.2. Energy Estimates and H¨older Continuity of Heat Evolution. For all positive
integersm, we have

Ẽ

{
sup

t∈[0,1]
8(∂ K̃ N(t))m

}
, Ẽ

{
sup

t∈[0,1]

∥∥∥T̃ N(t)
∥∥∥m

L2
+
∥∥∥Ũ N(t)

∥∥∥m

L2

}
, and

Ẽ

[(∫ 1

0

∥∥∥∇ T̃ N(t)
∥∥∥2

L2
+
∥∥∥∇Ũ N(t)

∥∥∥2

L2
dt

)m
]
≤ Cm <∞. (6.22)

Furthermore,Q̃N can be decomposed as̃QN ′ + R̃N ′ , such that

Ẽ
∥∥∥Q̃N(t)′ − Q̃N(s)′

∥∥∥2m

∼
≤ Cm |t − s|m and Ẽ sup

t∈[0,1]

∥∥∥R̃N(t)′
∥∥∥2m

∼
≤ Cm4t2mα.

(6.23)
In addition,

Ẽ
∣∣∣ J̃N(t)− J̃N(s)

∣∣∣2m
≤ Cm |t − s|m . (6.24)

All the Cm’s are independent ofN.

6.4.3. Minimizing Property. For eachN, we have0N
(⋃

M,i BM,i
) = 1, whereBM,i

is the collection of elements(τ, X) = (τ, (K , T,U, Q)) in ([0,1], S) satisfying:

• sup
t∈[0,1]

{
8(∂K (t))+ ‖T(t)‖2L2 + ‖U (t)‖2L2

} ≤ M.

• τ −4t ≥ ti .
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• For all L ∈ K andR ∈ Q such thatR= Qi− ,

8(∂Ki+) +
∫
O

cKi+ F (Ti+) dLn + 1

4tα
‖Qi+ − Qi−‖∗

≤ 8(∂L)+
∫
O

cL F(c−1
L R)dLn + 1

4tα
‖R− Qi−‖∗ .

It is easy to show thatBM,i is closed. Hence,
⋃

M,i BM,i is a Borel set. Thus, we also
have

P̃

((
τ̃ N, X̃N

)
∈
⋃
M,i

BM,i

)
= 1. (6.25)

6.4.4. Martingale Property. Consider the following filtration:

F̃N
t =

⋂
δ↓0
σ
{(

X̃N(r ), J̃N(r )
)

: 0≤ r ≤ t + δ
}
, 0≤ t <∞. (6.26)

1. Letϕ ∈ C∞(O). We claim thatM̃ N
∗ (t, ϕ)

′, defined as

M̃ N
∗ (t, ϕ)

′ =
〈
Q̃N(t ∧ τ̃ N)′, ϕ

〉
−
〈
Q̃N(0+)′, ϕ

〉
−
∫ t∧τ̃ N

0

〈
6K̃ N∇ T̃ N, ∇ϕ

〉
ds, (6.27)

is a F̃N
t -martingale. The cross variation process betweenM̃ N

∗ (t, ϕ)
′ and M̃ N

∗ (t, ψ)
′

is given by〈
M̃ N
∗ (·, ϕ)′, M̃ N

∗ (·, ψ)′
〉
t
=
∫ t∧τ N

0

〈
3cK̃ N f (T̃ N)ϕ, cK̃ N f (T̃ N)ψ

〉
ds. (6.28)

2. J̃N(t ∧ τ̃ N) is aF̃N
t -martingale with quadratic variation〈

J̃N(· ∧ τ̃ N)
〉
t
=
∫ t∧τ̃ N

0

〈
3cK̃ N F ′(T̃ N) f (T̃ N), cK̃ N F ′(T̃ N) f (T̃ N)

〉
dr. (6.29)

In addition, the cross variation process betweenJ̃N(· ∧ τ̃ N) andM̃ N
∗ (t, ϕ)

′ is given
by〈
J̃N(· ∧ τ̃ N), M̃ N

∗ (·, ϕ)′
〉
t
=
∫ t∧τ̃ N

0

〈
3cK̃ N F ′(T̃ N) f (T̃ N), cK̃ N f (T̃ N)ϕ

〉
dr. (6.30)

(1) can be seen easily by the fact that the process

M N
∗ (t, ϕ)

′ = 〈QN(t ∧ τ N)′, ϕ
〉− 〈QN(0+)′, ϕ

〉− ∫ t∧τ N

0

〈
6K N∇T N, ∇ϕ〉 ds (6.31)

is aFt -martingale. (Recall thatFt is the filtration with respect to whichWt , the Wiener
Process, is adapted.)
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Let2s be any bounded Borel function defined onS× C([0,1], R) which is⋂
δ↓0
σ {(x(r ), y(r )): 0≤ r ≤ s+ δ, x ∈ S, y ∈ C([0,1], R)} -measurable.

Then,

Ẽ

{(〈
Q̃N(t ∧ τ̃ N)′, ϕ

〉
−
〈
Q̃N(0+)′, ϕ

〉
−
∫ t∧τ̃ N

0

〈
6K̃ N∇ T̃ N, ∇ϕ

〉
dr

)
2s(X̃

N, J̃N)

}

= E

{(〈
QN
∗ (t ∧ τ N)′, ϕ

〉− 〈QN
∗ (0
+)′, ϕ

〉− ∫ t∧τ N

0

〈
6K N∗ ∇T N

∗ , ∇ϕ
〉

dr

)
2s(X

N
∗ , JN

∗ )

}

= E

{(〈
QN
∗ (s∧ τ N)′, ϕ

〉− 〈QN
∗ (0
+)′, ϕ

〉− ∫ s∧τ N

0

〈
6K N∗ ∇T N

∗ , ∇ϕ
〉

dr

)
2s(X

N
∗ , JN

∗ )

}

= Ẽ

{(〈
Q̃N(s∧ τ̃ N)′, ϕ

〉
−
〈
Q̃N(0+)′, ϕ

〉
−
∫ s∧τ̃ N

0

〈
6K̃ N∇ T̃ N, ∇ϕ

〉
dr

)
2s(X̃

N, J̃N)

}
.

Similar computations lead to the other assertions.
The final result in this chapter follows (from Section 6.4.2 and Kolmogorov Theo-

rem B.2.1).

6.4.5. Theorem (Energy Estimates and Heat Holder Continuity).The limit evolution
X̃ = (K̃ , T̃, Ũ , Q̃) satisfies the following estimates:

Ẽ

{
sup

t∈[0,1]
8(∂ K̃ (t))m

}
, Ẽ

{
sup

t∈[0,1]

∥∥∥T̃(t)
∥∥∥m

L2
+
∥∥∥Ũ (t)∥∥∥m

L2

}
, and

Ẽ

[(∫ 1

0

∥∥∥∇ T̃(t)
∥∥∥2

L2
+
∥∥∥∇Ũ (t)

∥∥∥2

L2
dt

)m
]
≤ Cm <∞, (6.32)

Ẽ
∥∥∥Q̃(t)− Q̃(s)

∥∥∥2m

∼
≤ Cm |t − s|m , (6.33)

Ẽ
∣∣∣ J̃(t)− J̃(s)

∣∣∣2m
≤ Cm |t − s|m . (6.34)

(The above statements hold because all the functionals inside the expectations are (lower-
semi)-continuous with respect to the metric of S.)

Thus,Q̃(·) is continuous in time in the modified Monge-Kantorovich norm.J̃(·) is
alsocontinuous in time.

6.4.6. Remark. From now on, we will drop the∼ symbol. It is understood that the
random variables(X̃N, J̃N)’s are defined on a common probability spaceÄ̃. They satisfy
all the previously stated properties and converge to(X̃, J̃) P̃ almost surely in the metric
of S× C([0,1], R).
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7. Limiting Heat Equation

The goal of this chapter is to establish (2.15) in the sense set forth in Section 2.2 (4).
We will follow the usual procedure, which is to convert the problem into a martingale

formulation and then construct an extension of the underlying probability space so as to
accommodate a Wiener Process. We have already set up the technical devices (especially
the almost sure convergence in some space-time topology) to carry out this procedure
and, with the special case that our operators arenondegenerate, the whole proof is thus
quite transparent.

7.1. Martingale Formulation

First, we solve (2.15) in the setting of martingale formulation. We define some notations.
From Remark 6.4.6, we know thatP a.s. in the metric ofS× C([0,1], R){

XN = (K N, T N,U N, QN), JN
} −→ {X = (K , T,U, Q), J} .

Consider the following filtrations onP:

FN
t =

⋂
δ↓0
σ
{
(XN(r ), JN(r )): 0≤ r ≤ t + δ} , 0≤ t ≤ 1, (7.1)

Ft =
⋂
δ↓0
σ {(X(r ), J(r )): 0≤ r ≤ t + δ} , 0≤ t ≤ 1. (7.2)

We also introduce the filtration onS× C([0,1], R),

Bt =
⋂
δ↓0
σ {(x(r ), y(r )): 0≤ r ≤ t + δ, x ∈ S, y ∈ C([0,1], R)} , 0≤ t ≤ 1.

(7.3)
Recall the definitions ofI N

s (t), I N
l (t), τ

N in Section 6.3.2. Similarly, we set

Is(t) = E(0)+ 1

2

∫ t

0
Tr
[
cK F ′′(T) f (T)3 f (T)

]
dr − csF(c−1

s Q(t) |O| + J(t)),

(replacecs by cl for Il (t)) (7.4)

τ = inf {t : Is(t) ≥ −%, Il (t) ≥ −%} . (7.5)

It is a simple matter to check thatI N
s (·) andI N

l (·) converge toIs(·) andIl (·) uniformly
in t ∈ [0,1] P a.s. In addition,τ N andτ areFN

t andFt stopping times, respectively.
The result in this section is as follows.

7.1.1. Theorem.

1. Q = cK T, dL1× d P a.s. on{(t, ω): t < τ(ω)}.
2. For all ϕ ∈ C∞(O), the following is a continuousFt -martingale:

M∗(t, ϕ) = 〈Q(t ∧ τ), ϕ〉 − 〈Q0, ϕ〉 +
∫ t∧τ

0
〈6K∇T, ∇ϕ〉 dr. (7.6)
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3. The cross-variation process between M∗(t, ϕ) and M∗(t, ψ) equals

〈M∗(·, ϕ), M∗(·, ψ)〉t =
∫ t∧τ

0
〈3cK f (T)ϕ, cK f (T)ψ〉 dr. (7.7)

4. J(t ∧ τ) is a continuousFt -martingale with quadratic variation

〈J(· ∧ τ)〉t =
∫ t∧τ

0

〈
3cK F ′(T) f (T), cK F ′(T) f (T)

〉
dr. (7.8)

The cross-variation process between J(t ∧ τ) and M∗(t, ϕ) is

〈J(· ∧ τ), M∗(·, ϕ)〉t =
∫ t∧τ

0

〈
3cK F ′(T) f (T), cK f (T)ϕ

〉
dr. (7.9)

Before starting the proof, we present some elementary but useful results that will help
in many of the computations later on.

7.1.2. Lemma. Let 1 < p. If { fn}n≥1 are real valued random variables such that
E | fn|p ≤ C <∞ for all n and fn −→ f P a.s., then E fn −→ E f .

Proof. It suffices to show that{ fn}n≥1 are uniformly integrable, i.e., given anyε > 0,
there existsM > 0 such thatE | fn|1{| fn|≥M} ≤ ε for all n. However,

E | fn|1{| fn|≥M} ≤
(
E | fn|p

)1/p (
E1{| fn|≥M}

)1/q
(1/p+ 1/q = 1.)

≤ C P (| fn| ≥ M)1/q ≤ C
(E | fn|p)1/q

M p/q
≤ C

M p/q
.

Hence,M can be chosen independently ofn to makeE | fn|1{| fn|≥M} arbitrarily small.

7.1.3. Lemma. For all positive integers m,

E

{
sup
λ∈[0,1]

∥∥QN(λ)
∥∥m

∼

}
≤ Cm <∞. (7.10)

Proof. This can be established in the same way as in Lemma 5.3.4. (We just need to
apply Burkholder’s Inequality to (5.11) and (5.14). Note that all the quadratic variation
processes are uniformly bounded by some deterministic number.)

There is a subtlety about stopping time. We would like to haveτ N −→ τ P a.s., but
in general, this is not true. To overcome this, we make use of the following idea (which
the author learned about from the preprint [Fun] Lemma 3.1).

7.1.4. Definition. Letη > 0 and

τ N
η =

{
ti : I N

s (ti ) ≥ −% − η, I N
l (ti ) ≥ −% − η

}
, (7.11)

τη = {ti : Is(t) ≥ −% − η, Il (t) ≥ −% − η}. (7.12)
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η is called apoint of continuity if

P

{
lim
η′→η

τη′ = τη
}
= 1. (7.13)

7.1.5. Proposition.

1. For all but countably manyη > 0, it is a point of continuity.
2. If η is a point of continuity, thenτ N

η −→ τη P a.s.

Proof. For (1). This is becauseτη isdecreasingin η, and hence so isEτη. Any continuity
pointη of Eτη is a point of continuity for our definition.

For (2). Letη be a point of continuity. Without loss of generality, we just need to
consider one functionIs. Given anyε > 0, there is anη′ > η such thatτη < τη′ ≤ τη+ε.
But I N

s (t) −→ Is(t) for all t ∈ [0,1]. Hence, for large enoughN,

I N
s (τη′) −→ Is(τη′) > −% − η.

Therefore,τ N
η′ < τη′ ≤ τη + ε for largeN.

With the above preparations, we will prove Theorem 7.1.1 withτ (τ N) replaced byτη
(τ N
η ) for η a point of continuity, and then take a sequence of suchη −→ 0. Furthermore,

the energy estimates in Section 6.4.2 will be kept in mind.
For the simplicity of notations, we use

cN = cK N , c = cK , 6N = 6K N ,

6 = 6K , τ N = τ N
η , and τ = τη. (7.14)

Now we haveτ N −→ τ P a.s.

7.1.6. Proof of 7.1.1(1)—Relationship betweenK , T, and Q. Let ζ be an arbitrary
random bounded function onO × [0,1]. Consider

E
∫
O×[0,1]

(Q− cT)1{t<τ }ζ dLn dt

= E
∫
O×[0,1]

(Q− cT)
(
1{t<τ } − 1{t<τ N}

)
ζ dLn dt

+E
∫
O×[0,1]

{
(Q−QN)−(c−cN)T−cN(T−T N)+(QN−cNT N)

}
1{t<τ N}ζ dLn dt.

By the dominated convergence theorem, energy estimates, and Lemma 7.1.2, all the
terms tend to zero asN −→∞. (Note that the last term is zero for allN.)



542 N. K. Yip

7.1.7. Proof of 7.1.1 (2)—Martingale Property ofM∗(t, ϕ). What is needed is that,
for all 0 ≤ s ≤ t and any bounded continuous function2s defined onS which is
Bs-measurable (see (7.3)), we should have20

E M∗(t, ϕ)2s(X) = E M∗(s, ϕ)2s(X). (7.15)

Let

M N
∗ (t, ϕ) =

〈
QN(t ∧ τ N), ϕ

〉− 〈QN
0 , ϕ

〉+ ∫ t∧τ N

0

〈
6N∇T N, ∇ϕ〉 dr

= 〈
QN(t ∧ τ N), ϕ

〉− 〈QN
0 , ϕ

〉+ ∫ t

0

〈
6N∇T N, ∇ϕ〉1{r<τ N} dr, (7.16)

M∗(t, ϕ) = 〈Q(t ∧ τ), ϕ〉 − 〈Q0, ϕ〉 +
∫ t∧τ

0
〈6K∇T, ∇ϕ〉 dr

= 〈Q(t ∧ τ), ϕ〉 − 〈Q0, ϕ〉 +
∫ t

0
〈6K∇T, ∇ϕ〉1{r<τ } dr. (7.17)

The proof of (7.15) is established after the following two lemmas.

7.1.8. Lemma.

E M∗(t, ϕ)2s(X) = lim
N

E MN
∗ (t, ϕ)2s(X

N). (7.18)

Proof. First, since
〈
QN(t), ϕ

〉 −→ 〈Q(t), ϕ〉 uniformly in t ∈ [0,1] andτ N −→ τ ,
we have

〈
QN(t ∧ τ N), ϕ

〉 −→ 〈Q(t ∧ τ), ϕ〉 P a.s. But, due to Lemma 7.1.3,

E
∣∣〈QN(t ∧ τ N), ϕ

〉∣∣m ≤ CϕE
∥∥QN(t ∧ τ N)

∥∥m

∼ ≤ Cϕ.

Hence,E
〈
QN(t ∧ τ N), ϕ

〉
2s(XN) −→ E 〈Q(t ∧ τ), ϕ〉2s(X) by Lemma 7.1.2.

Next, consider

E

{
2s(X)

∫ t

0
〈6∇T, ∇ϕ〉1{r<τ } dr −2s(X

N)

∫ t

0

〈
6N∇T N, ∇ϕ〉1{r<τ N} dr

}
= E

{(
2s(X)−2s(X

N)
) ∫ t

0
〈6∇T, ∇ϕ〉1{r<τ } dr

}
+E

{
2s(X

N)

(∫ t

0
〈6∇T, ∇ϕ〉1{r<τ } −

〈
6N∇T N, ∇ϕ〉1{r<τ N} dr

)}
.

The first term of the above will tend to zero by the dominated convergence theorem.

20 Sinceτ is aFt -stopping time,M∗(t, ϕ) is clearly adapted toFt . The requirement aboutM∗(t, ϕ) having
finite first moment is easy to check.
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For the second term, it is bounded by

C E

∣∣∣∣∫ t

0

〈
6N∇T N, ∇ϕ〉1{r<τ N} − 〈6∇T, ∇ϕ〉1{r<τ } dr

∣∣∣∣
≤ C E

∣∣∣∣∫ t

0

(〈
6N∇T N, ∇ϕ〉− 〈6∇T, ∇ϕ〉)1{r<τ N} dr

∣∣∣∣ (7.19)

+C E

∣∣∣∣∫ t

0
〈6∇T, ∇ϕ〉

(
1{r<τ } − 1{r<τ N}

)
dr

∣∣∣∣ .
It suffices to consider only (7.19). We decompose

〈
6N∇T N, ∇ϕ〉− 〈6∇T, ∇ϕ〉 as〈

6N∇T N, ∇ϕ〉− 〈6∇T, ∇ϕ〉
= 〈

(6N −6)∇T N, ∇ϕ〉+ 〈(6 − ξ)∇T N, ∇ϕ〉− 〈(T N − T), div(ξ∇ϕ)〉
+〈(ξ −6)∇T, ∇ϕ〉, (7.20)

whereξ is a smoothed version of6.
Every term in (7.20) can be shown to converge to zero. For example,

E
∫ t

0

〈
(6N −6)∇T N, ∇ϕ〉 dr ≤ C E

∫ t

0
‖6N −6‖L2

∥∥∇T N
∥∥

L2 dr

≤ C

(
E
∫ t

0
‖6N −6‖2L2 dr

)1/2

×
(

E
∫ t

0

∥∥∇T N
∥∥2

L2 dr

)1/2

. (7.21)

The first factor tends to zero by the dominated convergence theorem, while the second
factor is uniformly bounded by the energy estimates.

All the other terms can be handled similarly (upon choosing better and betterξ to
approximate6).

7.1.9. Lemma. We can decompose MN∗ as MN
∗ (t, ϕ) = M N

∗ (t, ϕ)
′ + RN

∗ (t, ϕ), where
M N
∗ (t, ϕ)

′ is a continuousFN
t -martingale and RN∗ (t, ϕ) is an error term such that

E RN
∗ (t, ϕ)

k ≤ Cϕ4tkα. (k ≥ 1.)

Proof. Actually, this is similar to the decomposition in Theorem 5.3.1. For simplicity,
let t = t+q . Then we haveM N

∗ (t, ϕ) = M N
∗ (t, ϕ)

′ + RN
∗ (t, ϕ), where

M N
∗ (t, ϕ)

′ =
q∑

i=1

〈
QN

(
t−i ∧ τ N

)
, ϕ
〉− 〈QN

(
t+i−1 ∧ τ N

)
, ϕ
〉

+
∫ ti

ti−1

〈
6N∇T N, ∇ϕ〉1{r<τ N} dr

= 〈
QN(t−q ∧ τ N)′, ϕ

〉− 〈QN(0+)′, ϕ
〉

+
∫ tq∧τ N

0

〈
6N∇T N, ∇ϕ〉 dr, (7.22)
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RN
∗ (t, ϕ) =

q∑
i=1

〈
QN

(
t+i ∧ τ N

)
, ϕ
〉− 〈QN

(
t−i ∧ τ N

)
, ϕ
〉
. (7.23)

M N
∗ (t, ϕ)

′ consists of terms involving the heat flow process. By Section 6.4.4, it is a
martingale with quadratic variation∫ t∧τ N

0

〈
3εcN fδ(T

N)ϕ, cN fδ(T
N)ϕ

〉
dr. (7.24)

The error termRN
∗ (t, ϕ) is handled by Lemma 5.3.3, which immediately leads to

E
∣∣RN
∗ (t, ϕ)

∣∣k ≤ Cϕ4tkα. (7.25)

7.1.10. The Final Step—Martingale Property ofM∗(t, ϕ). From the previous two
lemmas, we deduce that

E M∗(t, ϕ)2s(X) = lim
N

E MN
∗ (t, ϕ)2s(X

N)

= lim
N

E
[(

M N
∗ (t, ϕ)

′ + RN
∗ (t, ϕ)

)
2s(X

N)
]

= lim
N

E
[(

M N
∗ (s, ϕ)

′ + RN
∗ (t, ϕ)

)
2s(X

N)
]

= E M∗(s, ϕ)2s(X),

i.e., (7.15) is satisfied, and henceM∗(t, ϕ) is anFt -martingale.

7.1.11. Proof of 7.1.1 (3)—Quadratic Variation ofM∗(t, ϕ). The asserted form for
the quadratic variation ofM∗(t, ϕ), is equivalent to the following:

For all 0≤ s ≤ t ,2s: S−→ R, bounded, continuous, andBs-measurable,

E

{
M∗(t, ϕ)M∗(t, ψ)−

∫ t∧τ

0
〈3c f (T)ϕ, c f (T)ψ〉 dr

}
2s(X)

= E

{
M∗(s, ϕ)M∗(s, ψ)−

∫ s∧τ

0
〈3c f (T)ϕ, c f (T)ψ〉 dr

}
2s(X). (7.26)

It suffices to verify the above forψ = ϕ.
Note that, by Section 6.4.4,〈

M N
∗ (·, ϕ)′

〉
t
=
∫ t

0

〈
3εcN fδ(T

N)ϕ, cN fδ(T
N)ϕ

〉
1{r<τ } dr. (7.27)

Consider

E
{
M N
∗ (t, ϕ)

2− 〈M N
∗ (·, ϕ)′

〉
t

}
2s(X

N)

= E
{∣∣M N

∗ (t, ϕ)
′ + RN

∗ (t, ϕ)
∣∣2− 〈M N

∗ (·, ϕ)′
〉
t

}
2s(X

N)
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= E
{
M N
∗ (t, ϕ)

′2− 〈M N
∗ (·, ϕ)′

〉
t

}
2s(X

N)

+E
{
2M N
∗ (t, ϕ)

′RN
∗ (t, ϕ)+ RN

∗ (t, ϕ)
2
}
2s(X

N)

= E
{
M N
∗ (s, ϕ)

′2− 〈M N
∗ (·, ϕ)′

〉
s

}
2s(X

N)

+E
{
2M N
∗ (t, ϕ)

′RN
∗ (t, ϕ)+ RN

∗ (t, ϕ)
2
}
2s(X

N).

Thesecondpart of theaboveare theerror termswhichwill tend tozerobyLemma7.1.9.
Now,

E
(
M N
∗ (s, ϕ)

′2− 〈M N
∗ (·, ϕ)′

〉
s

)
2s(X

N)

= E
(∣∣M N

∗ (s, ϕ)− RN
∗ (s, ϕ)

∣∣2− 〈M N
∗ (·, ϕ)′

〉
s

)
2s(X

N)

= E
(
M N
∗ (s, ϕ)

2− 〈M N
∗ (·, ϕ)′

〉
s

)
2s(X

N)

+error terms involvingRN
∗ (t, ϕ).

Thus, what needs to be shown is that, for 0≤ s ≤ t ,

E M∗(t, ϕ)22s(X) = lim
N

E MN
∗ (t, ϕ)

22s(X
N), (7.28)

E2s(X)
∫ t

0
〈3c f (T)ϕ, c f (T)ϕ〉1{r<τ } dr

= lim
N

E2s(X
N)

∫ t

0
〈3εc fδ(T)ϕ, c fδ(T)ϕ〉1{r<τ N} dr. (7.29)

Proof of (7.28).This is very similar to the proof for Lemma 7.1.8.

Proof of (7.29).As everything is bounded, by the dominated convergence theorem it
is enough to show thatP a.s.∫ t

0

〈
3εcN fδ(T

N)ϕ, cN fδ(T
N)ϕ

〉
1{r<τ N} dr −→

∫ t

0
〈3c f (T)ϕ, c f (T)ϕ〉1{r<τ } dr.

Since3ε is given by a bounded kernel (4.4), the L.H.S of the above can be written
as (we omit the harmlessτ N andτ )∫ t

0

∫∫
(x,y)∈(O×O)

{
3ε(x, y)cN(x)cN(y)ϕ(x)ϕ(y) fδ(T

N(x)) fδ(T
N(y))

}
dLnx dLny dr.

From this, it is clear that the asserted convergence holds because of the following
convergence inL2(O ×O) and with all the functionals being bounded (recall thatfδ is
uniformly Lipschitz inδ):

3ε(·, ·) −→ 3(·, ·); cN(·) −→ c(·); fδ(T
N(·)) −→ f (T(·)).

7.1.12. The Remaining Steps of Theorem 7.1.1.Statement (4) of the theorem can be
verified in exactly the same way as above.

Finally, we take a sequence ofη −→ 0 consisting of points of continuity. Then
τη −→ τ . By Lemma 7.1.3, the whole theorem remains true.
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7.2. Weak Formulation

In this section, we reformulate the previous statement of the heat equation in terms of
stochastic integration with respect to an infinite dimensional Wiener Process. Precisely,

7.2.1. Theorem.There is a probability space(Ä̃, F̃, P̃) (which is anextensionof

(Ä,F, P)) and an L2(O)-valued Wiener Process
{

W̃t ,
♥Ft ; 0≤ t <∞

}
with covari-

ance operator3 such that

1. P̃ a.s. for allϕ ∈ C∞(O)

(Q(t ∧ τ), ϕ) = (Q0, ϕ)−
∫ t∧τ

0
〈6K∇T, ∇ϕ〉 dr +

∫ t∧τ

0

(
cK f (T)dW̃r , ϕ

)
.

(7.30)
The above can also be written as

d Qt = div(6K∇T)dt + cK f (T)dW̃t for 0≤ t < τ. (7.31)

2. J(t ∧ τ) =
∫ t∧τ

0

(
cK F ′(T) f (T), dW̃r

)
. (7.32)

The general technique for converting the martingale formulation to a statement of this
sort is standard ([DZ] 8.2 and [MM] p. 77). For completeness, we outline the procedure
here, which is simplified due to the existence of the inverse of the multiplicative operator
cK f (T)—(cK f (T))−1.

7.2.2. Step I—Construction of a ContinuousL2(O)-Valued Martingale. Let {ϕi }i≥1
be a O.N.B. ofL2(O)with ϕi ∈ C∞(O). DefineH(t) =∑i M∗(t, ϕi )ϕi . Using the fact
that

∑
i E |M∗(t, ϕi )|2 =

∑
i E

∫ t
0 〈3cK f (T)ϕi , cK f (T)ϕi 〉 dr < ∞, we conclude

that H(t) is a continuous square integrableL2(O)-valued martingale with covariance
operator

〈〈H〉〉t =
∫ t∧τ

0
cK f (T)3cK f (T)dr. (7.33)

In addition, for allϕ ∈ C∞(O),

(Q(t ∧ τ), ϕ) = (Q(0), ϕ)−
∫ t∧τ

0
〈6K∇T, ∇ϕ〉 dr + (H(t), ϕ). (7.34)

7.2.3. Step II—Construction of a Wiener Process.Let(Ä′,F ′, P′)be a new probabil-
ity space (“independent” of (Ä,F, P)) equipped with a Wiener Process{
W′t , F ′t ; 0≤ t <∞} with covariance operator3. Construct the following extension

of Ä:

Ä̃ = Ä×Ä′ = {(ω, ω′)} , F̃ = F ⊗ F ′,
P̃ = P ⊗ P′, F̃i = Ft ⊗ F ′t , t ∈ [0,1]. (7.35)
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For (ω, ω′) ∈ Ä×Ä′, define

W̃′(t, ω, ω′) = W′(t, ω′), (7.36)

and make the following obvious modifications:

K (t, ω, ω′) = K (t, ω), T(t, ω, ω′) = T(t, ω),

Q(t, ω, ω′) = Q(t, ω), H(t, ω, ω′) = H(t, ω). (7.37)

Note that the multiplicative operatorcK f (T) has an inverse given by(cK f (T))−1

(unbounded). We perform the following operations:

H(t) =
∫ t∧τ

0
d Hr =

∫ t∧τ

0
(cK f (T))(cK f (T))−1 d Hr

=
∫ t∧τ

0
cK f (T)

{
1{r<τ }(cK f (T))−1 d Hr + 1{r≥τ } dW̃′r

}
. (7.38)

Set

W̃t =
∫ t

0
1{r<τ }(cK f (T))−1 d Hr +

∫ t

0
1{r≥τ } dW̃′r . (7.39)

Compute〈〈
W̃(·)

〉〉
t
=
∫ t

0
1{r<τ }

[
(cK f (T))−1d 〈〈H〉〉r (cK f (T))−1

]+ ∫ t

0
1{r≥τ }d

〈〈
W̃′
〉〉

r

=
∫ t

0
1{r<τ }

[
(cK f (T))−1(cK f (T))3(cK f (T))(cK f (T))−1

]
dr

+
∫ t

0
1{r≥τ }3dr

=
∫ t

0
1{r<τ }3+ 1{r≥τ }3dr = t3. (7.40)

Hence,W̃t is a Wiener Process oñÄ with covariance operator3.
Now (7.38) is the same as

H(t) =
∫ t∧τ

0
cK f (T)dW̃r . (7.41)

From (7.34), (7.30) holds.

7.2.4. Step III—Representation ofJ. Statement (2) aboutJ can be seen by the fol-
lowing computations:

〈J(·)〉t∧τ =
∫ t∧τ

0

〈
3cK F ′(T) f (T), cK F ′(T) f (T)

〉
dr,

〈J(·), H(·, ϕ)〉t∧τ = 〈J(·), M∗(·, ϕ)〉t∧τ =
∫ t∧τ

0

〈
3cK F ′(T) f (T), cK f (T)ϕ

〉
dr,〈∫ ·

0

(
cK F ′(T) f (T), dW̃r

)〉
t∧τ
=
∫ t∧τ

0

〈
3cK F ′(T) f (T), cK F ′(T) f (T)

〉
dr.
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Note thatW̃t∧τ =
∫ t∧τ

0

(
(cK f (T))−1, d Hr

)
. (See (7.39).) Now compute21

〈
J(·),

∫ ·
0

(
cK F ′(T) f (T), W̃r

)〉
t∧τ

=
〈
J(·),

∫ ·
0

(
cK F ′(T) f (T), (cK f (T))−1d Hr

)〉
t∧τ
=
〈
J(·),

∫ ·
0

(
F ′(T), d Hr

)〉
t∧τ

=
〈

J(·),
∫ ·

0

∑
i

(
F ′(T), ϕi

)
(d Hr , ϕi )

〉
t∧τ

=
∑

i

∫ t∧τ

0

(
F ′(T), ϕi

) 〈
3cK F ′(T) f (T), cK f (T)ϕi

〉
dr

=
∫ t∧τ

0

〈
3cK F ′(T) f (T), cK F ′(T) f (T)

〉
dr.

From the above, we deduce that

〈
J(·)−

∫ ·
0

(
cK F ′(T) f (T), dW̃r

)〉
t∧τ

equals

〈J(·)〉t∧τ +
〈∫ ·

0

(
cK F ′(T) f (T), dW̃r

)〉
t∧τ
−2

〈
J(·),

∫ ·
0

(
cK F ′(T) f (T), dW̃r

)〉
t∧τ
,

which is zero. Hence,

J(t ∧ τ) =
∫ t∧τ

0

(
cK F ′(T) f (T), dW̃r

)
. (7.42)

8. The Gibbs-Thomson Condition

Our goal is as follows.

8.0.1. Theorem (Gibbs-Thomson Condition).P a.s. on{(t, ω): t < τ(ω)}, for all C1

time-varying random vector fields g,22

〈∂K (t), g〉 =
∫

K (t)
div (H(T(t))g) dLn, (8.1)

where〈∂K , g〉 = d

ds
8
(
Gs]∂K

)∣∣∣∣
s=0

, with Gs(t, x) = x + sg(t, x).

This is the heart of the whole paper. Its proof involves an intricate combination of the
estimates from the minimization steps and the smoothed heat flow.

As a by-product of the above theorem, we can also show that, in low dimensions, the
∂K ’s enjoy some regularity properties. Precisely,

21 The unboundedness of some of the functionals can be easily dealt with by some cut-off and truncation
arguments.
22 The notations are from Section 2.1.7.



Existence of Dendritic Crystal Growth with Stochastic Perturbations 549

8.0.2. Theorem.For dL1× d P a.s. on{(t, ω): t < τ(ω)}, the following is true.

n = 2: ∂K (t) is a one-dimensional differentiable submanifold ofO without boundary
and, for any C1 vector field g onO,

d

ds
8
(
Gs]∂K (t)

)∣∣∣∣
s=0

=
∫

x∈∂K (t)
H(T(x, t))

〈
nK (t), g(x)

〉
dH1x. (8.2)

n = 3: ∂K (t) is the homeomorphic image inO of a compact two dimensional manifold
without boundary.

For Theorem 8.0.1, we will actually prove the following:

E
∫ τ

0
〈∂K (t), g(t)〉 dt = E

∫ τ

0

∫
x∈K (t)

div (H(T(t, x))g(t, x)) dLnx dt. (8.3)

Essentially, it says that, for allg, 〈∂K (t), g〉 = ∫
K (t) div (H(T(t))g) dLn, P a.s.

{(t, ω): t < τ(ω)}. By the fact that the space ofC1 vector fields is separable, we can
then find an almost sure event (independent ofg) in {(t, ω): t < τ(ω)} such that (8.1)
is true.

8.1. Strategy for Proving the Gibbs-Thomson Condition

The underlying picture is as follows. The Gibbs-Thomson condition is restored after
every minimization (Theorem 3.2.3). In between them, the heat is diffused. This will
destroy the Gibbs-Thomson condition. In order to prove Theorem 8.0.1, two points need
to be taken care of:

• The total error due to heat flow tends to zero as4t −→ 0. For this part, we will make
full use of the regularity properties of the temperature fields under heat flow.
• The approximated crystals need to converge in a topology stronger thanL1. The

reason is that (8.1) involves the convergence of a quantity defined on the boundary of
a crystal that is a lower dimensional set. This condition is too singular for theL1 norm.
In order to achieve the stated result, we will improve the crystal convergence to the
varifold sense. Under this notion, the tangent planes of the boundary of the convergent
crystals also match up with those of the limiting crystal. Precisely, we will show that
8(∂K ) = limN 8(∂K N).23 The proof exploits the fact that the approximating crystals
are minimizers of some energy functionals.

For the following, superscriptN denotes the approximations corresponding to4t =
1/N, and subscripti means thatti = i4t and i+ = t+i . For all t , let i be such that
ti ≤ t < ti+1.

23 TheL1 convergence only gives the lower semicontinuity.
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We start from the identities for the discrete time approximations. Consider the fol-
lowing ε/3-type argument:∫ τ

0

∣∣∣∣〈∂K (t), g〉 −
∫

K (t)
div (H(T(t)g)) dLn

∣∣∣∣ dt

≤
∫ τ

0

∣∣〈∂K (t), g〉 − 〈∂K N(t), g
〉

dLn
∣∣ dt

+
∫ τ

0

∣∣∣∣〈∂K N(t), g
〉− ∫

K (t)
div (H(T(t)g)) dLn

∣∣∣∣ dt

≤
∫ τ

0

∣∣〈∂K (t), g〉 − 〈∂K N(t), g
〉

dLn
∣∣ dt (8.4)

+
∫ 1

0

∣∣∣∣〈∂K N(t), g
〉− ∫

K (t)
div (H(T(t)g)) dLn

∣∣∣∣ ∣∣∣1{t<τ } − 1{t<τ N}
∣∣∣ dt (8.5)

+
∫ τ N

0

∣∣∣∣〈∂K N(t), g
〉− ∫

K (t)
div (H(T(t)g)) dLn

∣∣∣∣ dt. (8.6)

By Theorem 3.2.3, right after each minimization step, the Gibbs-Thomson condition
holds. Hence, we have

〈
∂K N

i+ , g
〉 = ∫K N

i+
div

(
H(T N

i+ )g
)

dLn. Since the crystals do not

change shapes in between the minimization steps, (8.6) can then be rewritten and bounded
by ∫ 1

0

∣∣∣∣∫
K N (t)

div
(
H(T N

i+ )g
)

dLn −
∫

K (t)
div (H(T(t))g) dLn

∣∣∣∣ dt

≤
∫ 1

0

∣∣∣∣∫
K N (t)

div
(
H(T N(t))g

)
dLn −

∫
K (t)

div (H(T(t))g) dLn

∣∣∣∣ dt

+
∫ 1

0

∣∣∣∣∫
K N (t)

div
(
H(T N

i+ )g
)

dLn −
∫

K N (t)
div

(
H(T N(t))g

)
dLn

∣∣∣∣ dt

= L2+ L3. (8.7)

We are going to show that:

(Section 8.2) E L2 −→ 0—convergence of the temperature fields.
(Section 8.3) E L3 −→ 0—vanishing of the error for the Gibbs-Thomson condition

during heat flow.
(Section 8.4)

〈
∂K N

t , g
〉 −→ 〈∂Kt , g〉 dt × d P a.s. on{(t, ω): t < τ }—varifold con-

vergence of the crystal positions. This will take care of (8.4).

(Section 8.5) E
∫ 1

0

∣∣〈∂K N
t , g

〉∣∣2 dt < C for all N—this enables us to use Lemma 7.1.2

to take care of (8.4) and (8.5).

The assertion of the theorem will then follow.
The most difficult parts are Section 8.3 and Section 8.4. The basic ideas follow [AW]

Chapter 8, together with the probability estimates. In the following, we implicitly assume
the functional form ofF andH in Section 3.1.
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8.2. Convergence ofE L2 to 0

The following restatement of [AW] Theorem 8.1 will lead to the asserted convergence
of E L2.

8.2.1. Theorem.Suppose KN(t)and TN(t)are crystal positions and temperature fields
converging to K(t) and T(t) in the following sense (U= 1/T ):

1. E
∫ 1

0

∥∥K N(t)− K (t)
∥∥

L1 dt −→ 0;

2. E
∫ 1

0

∥∥T N(t)− T(t)
∥∥2

L2 dt and E
∫ 1

0

∥∥U N(t)−U (t)
∥∥2

L2 dt −→ 0;

3. E
∫ 1

0

∥∥∇T N(t)
∥∥2

L2 +
∥∥∇U N(t)

∥∥2

L2 dt = C <∞ for all N (and hence the same

estimate holds for T and U).

Then, for all random time-varying bounded C1 vector fields g, we have

E
∫ 1

0

∣∣∣∣∫
K N (t)

∂

∂xi

(
H(T N(t))g(t)

)
dLn −

∫
K (t)

∂

∂xi
(H(T(t))g(t)) dLn

∣∣∣∣ dt −→ 0.

(8.8)

Proof. Considering the growth rate forH(T) andH ′(T) (3.7), we have

∂

∂xi
(H(T)g) = H ′(T)

∂T

∂xi
g+ H(T)

∂g

∂xi

= C2(−6U3− 2T + L(T))
∂T

∂xi
g+ C2(3U2− T2+ J(T))

∂g

∂xi

= C2

(
6U

∂U

∂xi
− 2T

∂T

∂xi
+ L(T)

∂T

∂xi

)
g

+C1(3U2− T2+ J(T))
∂g

∂xi
. (8.9)

Hence,

K N ∂

∂xi

(
H(T N)g

)− K
∂

∂xi
(H(T)g)

= K N

[
C2

(
6U N ∂U

N

∂xi
− 2T N ∂T N

∂xi
+ L(T N)

∂T N

∂xi

)
g

]
−K

[
C2

(
6U

∂U

∂xi
− 2T

∂T

∂xi
+ L(T)

∂T

∂xi

)
g

]
+K N

[
C1(3U N2− T N2+ J(T N))

∂g

∂xi

]
−K

[
C1(3U2− T2+ J(T))

∂g

∂xi

]
. (8.10)
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We will consider some “typical” terms and show their convergence. For example,

E
∫ 1

0

∣∣∣∣∫
O

K NT Ng
∂T N

∂xi
− K T g

∂T

∂xi
dLn

∣∣∣∣ dt

= E
∫ 1

0

∣∣∣∣∫
O

(
K NT N − K T

)
g
∂T N

∂xi
+ K T g

(
∂T N

∂xi
− ∂T

∂xi

)
dLn

∣∣∣∣ dt

≤ C E
∫ 1

0

∥∥K NT N − K T
∥∥

L2

∥∥∥∥∂T N

∂xi

∥∥∥∥
L2

dt

+E
∫ 1

0

∣∣∣∣∫
O
(K T g− ψ)

(
∂T N

∂xi
− ∂T

∂xi

)
dLn

∣∣∣∣ dt

+E
∫ 1

0

∣∣∣∣∫
O
ψ

(
∂T N

∂xi
− ∂T

∂xi

)
dLn

∣∣∣∣ dt,

whereψ is a smooth approximation ofK T g. We will consider each term of the above.

•
(

C E
∫ 1

0

∥∥K NT N − K T
∥∥

L2

∥∥∥∥∂T N

∂xi

∥∥∥∥
L2

dt

)2

is bounded by

(
E
∫ 1

0

∥∥K NT N − K T
∥∥2

L2 dt

)(
E
∫ 1

0

∥∥∥∥∂T N

∂xi

∥∥∥∥2

L2

dt

)

≤ C E
∫ 1

0

∥∥K N(T N − T)+ (K N − K )T
∥∥2

L2 dt

≤ C E
∫ 1

0

∥∥T N − T
∥∥2

L2 dt + C E
∫ 1

0

∥∥(K N − K )T
∥∥2

L2 dt.

The first term tends to zero by assumption, while the second term tends to zero by the
dominated convergence theorem.

• E
∫
O×[0,1]

∣∣∣∣(K T g− ψ)
(
∂T N

∂xi
− ∂T

∂xi

)∣∣∣∣ dLn dt is bounded by

(
E
∫ 1

0
‖K T g− ψ‖2L2 dt

)1/2
(

E
∫ 1

0

∥∥∥∥∂T N

∂xi
− ∂T

∂xi

∥∥∥∥2

L2

dt

)1/2

.

This can be made as small as possible by choosing better and betterψ and by the
assumption on the uniform bound on the Dirichlet integral of theT N ’s.

• E
∫ 1

0

∣∣∣∣∫
O
ψ

(
∂T N

∂xi
− ∂T

∂xi

)
dLn

∣∣∣∣ dt can be bounded by

E
∫ 1

0

∫
O
|∇ψ | ∣∣T N − T

∣∣ dLn dt,

which will tend to zero by arguments similar to those above.

Each term converges to zero either by assumption or by the dominated convergence
theorem.

All the other terms can be handled similarly.
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8.3. Convergence ofE L3 to 0

We actually prove the following slightly stronger version (Theorem 8.3.3):

lim
N

E
∫ 1

0

∣∣∣∣∫
K N (t)

div
(
H(T N

i+ )g
)

dLn −
∫

K N (t)
div

(
H(T N(t))g

)
dLn

∣∣∣∣2 dt −→ 0.

(8.11)
It is at this point that we will use the regularity estimates of the temperature fields

right after minimizations (Theorem 3.2.2) and the estimates concerning the smoothed
version of the heat equation (4.3).

First we invoke a tool. It estimates the integration of the trace of a function on a
hypersurface.

8.3.1. Proposition (AW, Thm. 8.2).Let K be a set of finite perimeter; f is an H1(O)
vector field. Then, for all M> 0,∣∣∣∣∫

p∈∂K
〈 f (p), nK 〉 dHn−1 p

∣∣∣∣2
≤ C

{
M ‖ f ‖L2 ‖∇ f ‖L2 + M−1/2

(
Hn−1 (∂K )+ 1

) ‖∇ f ‖2L2

}
,

where C is a universal constant depending on the size and dimension ofO. nK is the
outward normal to∂K, andHn−1 refers to the(n−1)-Hausdorff measure. The L2 norms
on the right-hand side refer to L2(O).

To make use of it, we letfi (t) =
[
H(T N(t+i ))− H(T N(t))

]
g, ti ≤ t < ti+1. Now

consider the following form ofL3:

L ′3 =
∫ 1

0

∣∣∣∣∫
K N (t)

div
(
H(T N(t+i ))g

)− div
(
H(T N(t))g

)
dLn

∣∣∣∣2 dt

=
N−1∑
i=0

∫ ti+1

ti

∣∣∣∣∫
K N (t)

div
(
H(T N(t+i ))g

)− div
(
H(T N(t))g

)
dLn

∣∣∣∣2 dt

=
N−1∑
i=0

∫ ti+1

ti

∣∣∣∣∫
K N (t)

div ( fi (t)) dLn

∣∣∣∣2 dt

=
N−1∑
i=0

∫ ti+1

ti

∣∣∣∣∫
∂K N (t)

〈 fi (t), nK N 〉 dHn−1

∣∣∣∣2 dt

H⇒ E L′3 =
N−1∑
i=0

∫ ti+1

ti

E

∣∣∣∣∫
∂K N (t)

〈 fi (t), nK N 〉 dHn−1

∣∣∣∣2 dt; (8.12)

i.e., we have writtenE L′3 as a sum of all the deviations from the Gibbs-Thomson condition
caused by the heat flow process in between the minimizations. We will make use of the

above proposition to boundE|
∫

p∈∂K N

〈 fi (t, p), nK N 〉 dHn−1 p|2. (In what follows, the

N’s will be suppressed.)
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• E

∣∣∣∣∫
p∈∂K
〈 fi (t, p), nK 〉 dHn−1 p

∣∣∣∣2—For all M > 0,

E

∣∣∣∣∫
p∈∂K
〈 fi (t, p), nK 〉 dHn−1 p

∣∣∣∣2
≤ C

{
ME

(‖ fi ‖L2 ‖∇ fi ‖L2

)+ 1

M1/2
E
(
Hn−1 (∂Ki )+1

)‖∇ fi ‖2L2

}
≤ C

{
M
(
E ‖ fi ‖2L2

)1/2(
E ‖∇ fi ‖2L2

)1/2+ 1

M1/2

[
E
(
Hn−1 (∂Ki )+1

)2]1/2[
E ‖∇ fi ‖4L2

]1/2
}

≤ C

{
M
(
E ‖ fi ‖2L2

)1/2(
E ‖∇ fi ‖4L2

)1/4+ 1

M1/2

[
E
(
Hn−1 (∂Ki )+1

)2]1/2[
E ‖∇ fi ‖4L2

]1/2
}
.

(8.13)

• E ‖ fi ‖2L2—We repeat the notation of (4.15): Fort ∈ [ti , ti+1), x ∈ O,

mi = inf
(t,x)

{
T(t, x), T(t+i , x)

}
, Mi = sup

(t,x)

{
T(t, x), T(t+i , x)

}
. (8.14)

From (3.6),

| fi (t)| = |(H(T(t))− H(T(ti ))) g|
≤ C ‖g‖∞ |T(t)− T(ti )|

(
1

T2(ti )T(t)
+ 1

T(ti )T2(t)
+ T(t)+ T(ti )

)
.

Hence (C depends on‖g‖∞),

‖ fi (t)‖2L2 ≤ C ‖T(t)− T(ti )‖2L2

(
m−3

i + Mi
)2
, t ∈ [ti , ti+1),

E ‖ fi (t)‖2L2 ≤ C E
(
‖T(t)− T(ti )‖2L2

(
m−3

i + Mi
)2)

,

≤ C
(
E ‖T(t)− T(ti )‖8L2

)1/4
[(

Em−24
i

)1/4+ (E M8
i

)1/4
]
. (8.15)

• E ‖∇ fi ‖4L2—Now,

∇ fi (t) = [∇H(T(t))− ∇H(T(ti ))] g+ [H(T(t))− H(T(ti ))] ∇g.

This implies that (C depends on‖g‖∞ and Lipg)

|∇ fi (t)| ≤ ‖g‖∞
{∣∣H ′(T(t))∣∣ |∇T(t)| + ∣∣H ′(T(ti ))∣∣ |∇T(ti )|

}
+ (Lip g) |H(T(t))− H(T(ti ))|

≤ C {|∇T(t)| + |∇T(ti )| + |T(t)− T(ti )|}
[
m−3

i + Mi
]
.

Hence,

‖∇ fi (t)‖4L2 ≤ C
{‖∇T(t)‖4L2 + ‖∇T(ti )‖4L2 + ‖T(t)− T(ti )‖4L2

} [
m−3

i + Mi
]4
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E ‖∇ fi (t)‖4L2 ≤ C
(
E
{‖∇T(t)‖8L2 + ‖∇T(ti )‖8L2 + ‖T(t)− T(ti )‖8L2

})1/2

×
(

E
[
m−3

i + Mi
]8)1/2

≤ C
[(

E ‖∇T(t)‖8L2

)1/2+(E ‖∇T(ti )‖8L2

)1/2+(E ‖T(t)−T(ti )‖8L2

)1/2
]

×
[(

Em−24
i

)1/2+ (E M8
i

)1/2
]
. (8.16)

8.3.2. The Final Step for Convergence ofE L′3. From (8.15) and (8.16), we thus need
to estimate

E
(
m−24

i

)
, E

(
M8

i

)
, E ‖∇T(t)‖8L2 , E ‖T(t)− T(ti )‖8L2 , t ∈ [ti , ti+1).

This is exactly the reason we consider the smoothed heat equation (4.3) and prove
estimates for the temperature value and gradient.

Now apply Theorems 4.2.2, 4.3.1, and 4.4.1 to (8.15) and (8.16),

E ‖ fi (t)‖2L2 ≤ C4t1/2ε−2n−2
(
4t−

6nα
3n+2 +4t−2α

)
≤ C4t1/2−2αε−2n−2,

E ‖∇ fi (t)‖4L2 ≤ C

[
1

ε4n+44t4α
+ 4t

ε4n+4

] [
4t−

12nα
3n+2 +4t−4α

]
≤ Cε−4n−44t−8α.

Substitute the above into (8.13),

E

∣∣∣∣∫
p∈∂K

fi (t, p)dHn−1 p

∣∣∣∣2 ≤ C
{
M4t1/4−αε−n−1ε−n−14t−2α + M−1/2ε−2n−24t−4α

}
≤ C

{
M4t1/4−3αε−2n−2+ M−1/24t−4αε−2n−2

}
.

SetM = 4t−β, ε2n+2 = 4tγ ,24 and the above becomes

C
{4t−β4t1/4−3α4t−γ +4tβ/24t−4α4t−γ

} ≤ C
{4t1/4−β−3α−γ +4tβ/2−4α−γ }.

Chooseα, β, γ such that

1 > 4β + 12α + 4γ,

β > 8α + 2γ.

As long asα < 1/44, such a choice can always be made. For example,

γ = 1

64
, α = 1

64
, β = 11

64
.

24 Recall the remark at the beginning of Section 4.3.
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Then,

E

∣∣∣∣∫
p∈∂K

fi (t, p)dHn−1 p

∣∣∣∣2 ≤ C
{4t (16−11−3−1)/64+4t (5.5−4−1)/64

}
≤ C

{4t1/64+4t0.5/64
} ≤ C4t1/128.

Put the above into (8.12), and we finally get the following.

8.3.3. Theorem.

E L′3 ≤
∫ 1

0
C4t1/128dt −→ 0 as4t −→ 0.

8.4. Varifold Convergence of the Crystals

The purpose is to show

lim
N

〈
∂K N

t , g
〉 = 〈∂Kt , g〉 , dL1× d P a.s. on {(t, ω): t < τ(ω)}. (8.17)

This will then lead to the convergence to zero of (8.4).
As mentioned at the beginning of Section 8.1,L1 norm is not sufficient to conclude

the above. Instead, we will prove varifold convergence of the crystals. By Appendix A,
the following statement implies varifold convergence.

8.4.1. Theorem (Convergence of Surface Energy).

lim
N
8
(
∂K N

t

) = 8(∂Kt ) , dL1× d P a.s. on {(t, ω): t < τ(ω)}. (8.18)

The strategy of proving the above is as follows (heuristically).
SinceK N

t −→ Kt in L1, this implies8(∂Kt ) ≤ lim inf N 8(∂Kt ) by the lower semi-
continuity of the surface energy.But the K N

t ’s are the minimizers of some functionals,
precisely(3.2). Thus, with some errors, which can be controlled as4t −→ 0, we have
8(∂K N

t )
<∼ 8(∂Kt ). That means lim supN 8(∂K N

t ) ≤ 8(∂Kt ). This gives the desired
result. The main step is to control the error in the proof of the upper semicontinuity.

We now go into the details. The scheme is basically the same as [AW] Theorem 8.6. We
will need the regularity results of the temperature fields. We set the following notations:

• K N = K N(t) = K N(t+i ), t+i ≤ t < ti+1; cN(t) = cK N (t).
• Let QN(t) andT N(t) be the heat distribution and temperature field of the discrete

scheme at time t. (QN(t) = cN(t)T N(t)).
• PN

i = QN(t+i ), the heat distribution att+i . SN
i = T N(t+i ), the temperature field att+i .

• K (t), Q(t), andT(t) are the limiting crystal position, heat distribution, and temper-
ature field att . (Q(t) = c(t)T(t)).

There are some preliminary lemmas. They are all used to control the error during the
heat flow. In the following, we recall the functional form ofF—Section 3.1.
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8.4.2. Lemma. For all t ∈ [ti , ti+1) and ti+1 ≤ τ N,

E

{
sup

t∈[ti ,ti+1)

∣∣∣∣∫
O

L F(L−1PN
i )dLn − L F(L−1QN(t))dLn

∣∣∣∣
}
≤ C4t1/4−α−δ, (8.19)

where L is the specific heat capacity of any time varying crystal.δ is some very small
positive number.

Proof. ∣∣∣∣∫
O

L F(L−1PN
i )dLn − L F(L−1QN(t))dLn

∣∣∣∣
≤ C

∫
O

∣∣∣∣∣
(

PN
i

cN

)2

−
(

QN(t)

cN

)2
∣∣∣∣∣+

∣∣∣∣∣
(

cN

PN
i

)2

−
(

cN

QN(t)

)2
∣∣∣∣∣ dnx

≤ C
∫
O

∣∣SN
i − T N(t)

∣∣ ∣∣∣∣∣ 1

SN
i

2
T N(t)

+ 1

SN
i T N(t)2

+ SN
i + T N(t)

∣∣∣∣∣ dLn

≤ C
(
m−3

i + Mi
) ∥∥SN

i − T N(t)
∥∥

L2 (using the notation of (8.14))

≤ C
(
m−3

i + Mi
) {

sup
t∈[ti ,ti+1)

∥∥SN
i − T N(t)

∥∥
L2

}
.

Now,

E
(
m−3

i + Mi
) {

sup
t∈[ti ,ti+1)

∥∥SN
i − T N(t)

∥∥
L2

}

≤ C
[
E
(
m−6

i + M2
i

)]1/2

(
E

{
sup

t∈[ti ,ti+1)

∥∥SN
i − T N(t)

∥∥8

L2

})1/8

≤ C
(
4t

−3nα
3n+2 +4t−α

)(4t1/4

εn+1

)
(Theorems 4.2.2 and 4.4.1)

≤ C4t1/4−αε−n−1.

The result follows by takingε = 4tγ with γ small enough.25

8.4.3. Lemma.

E
∫ 1

0

∣∣∣∣∫
O

cN F(T N)− cF(T)dLn

∣∣∣∣ dt −→ 0.

25 Recall the remark at the beginning of Section 4.3.
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Proof. We write∣∣∣∣∫
O

cN F(T N)− cF(T)dLn

∣∣∣∣
≤
∫
O

∣∣cN
(
F(T N)− F(T)

)+ (cN − c)F(T)
∣∣ dLn

≤ C
∫
O

∣∣∣T N2− T2
∣∣∣+ ∣∣∣U N2−U2

∣∣∣+ |cN − c| F(T)dnx

≤ C{∥∥T N − T
∥∥

L2

∥∥T N + T
∥∥

L2 +
∥∥U N −U

∥∥
L2

∥∥U N +U
∥∥

L2

+
∫
O
|cN − c| F(T)dLn}.

Hence,

E
∫ 1

0

∣∣∣∣∫
O

cN F(T N)− cF(T)dLn

∣∣∣∣ dt

≤ C

(
E
∫ 1

0

∥∥T N − T
∥∥2

L2 dt

)1/2(
E
∫ 1

0

∥∥T N + T
∥∥2

L2 dt

)1/2

+C

(
E
∫ 1

0

∥∥U N −U
∥∥2

L2 dt

)1/2(
E
∫ 1

0

∥∥U N +U
∥∥2

L2 dt

)1/2

+E
∫ 1

0

∫
O
|cN − c| F(T)dLn dt

−→ 0

(by the convergence ofT N −→ T , U N −→ U andcN −→ c).

8.4.4. Lemma. E
∫ 1

0

∣∣∣∣∫
O

L F(L−1QN)− L F(L−1Q)dLn

∣∣∣∣ dt −→ 0, where L is the

specific heat capacity of an arbitrary time-varying crystal.

Proof. The proof is similar to the previous lemma. We write∣∣L F(L−1QN)− L F(L−1Q)
∣∣

≤ C

{∣∣∣∣ 1

QN2 −
1

Q2

∣∣∣∣+ ∣∣∣QN2− Q2
∣∣∣}

= C
{∣∣∣c−2

N U N2− c−2U2
∣∣∣+ ∣∣∣c−2

N T N2− c−2T2
∣∣∣}

≤ C
{
c−2

N

∣∣∣U N2−U2
∣∣∣+ ∣∣c−2

N − c−2
∣∣U2+ c2

N

∣∣∣T N2− T2
∣∣∣+ ∣∣c2

N − c2
∣∣ T2

}
.

The asserted convergence follows easily.
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8.4.5. Remark. Fromtheabove lemmas (and the fact thatE
∫ 1

0

∥∥K N − K
∥∥

L1 dt −→ 0),

there isasubsequence (still denotedbyN) such that fordL1×d Pa.e.on{(t, ω): t < τ(ω)},
asN −→ 0, we have

1. K N
t −→ Kt in L1 and hence8(∂Kt ) ≤ lim inf

N
8(∂K N

t ).

2.

∣∣∣∣∫
O

L F(L−1PN
i )dLn −

∫
O

L F(L−1QN(t))dLn

∣∣∣∣ −→ 0 (wheret ∈ [ti , ti+1)).

3.
∫
O

cN F(T N
t )dLn −→

∫
O

cF(Tt )dLn.

4.
∫
O

L F(L−1QN
t )dLn −→

∫
O

L F(L−1Qt )dLn.

8.4.6. Final Steps in the Proof of Theorem 8.4.1.We just need to show that8(∂Kt ) ≥
lim supN 8(∂K N

t ).
The negation of the above means the existence ofε and largeNj ( j will be suppressed

for simplicity) such that8(∂Kt )+ ε ≤ 8(∂K N
t ). This implies

8(∂Kt )+
∫
O

cF(c−1PN
i )+ ε

≤ 8(∂K N
i+)+

∫
O

cF(c−1PN
i ) (wheret ∈ [ti , ti+1))

= 8(∂K N
i+)+

∫
O

cN F(c−1
N PN

i )+
∫
O

cF(c−1PN
i )−

∫
O

cN F(c−1
N PN

i )

= 8(∂K N
i+)+

∫
O

cN F(c−1
N PN

i )+
(∫
O

cF(c−1PN
i )−

∫
O

cF(c−1QN(t))

)
−
(∫
O

cN F(c−1
N PN

i )−
∫
O

cN F(c−1
N QN(t))

)
+
(∫
O

cF(c−1QN(t))−
∫
O

cF(c−1Q(t))

)
+
(∫
O

cF(c−1Q(t))−
∫
O

cN F(c−1
N QN(t))

)
.

Each of the quantities in the above parentheses tends to zero by the remark before this
theorem.

Thus, choosing large enoughN implies that

8(∂Kt )+
∫
O

cF(c−1PN
i )+ ε/2≤ 8(∂K N

i+)+
∫
O

cN F(c−1
N PN

i ).

This clearly contradicts the minimality property of theK N
i+ andPN

i (Section 6.4.3).
Remark.Note that in the above few steps, we can putK , K N , and other quantities in

the same inequality as they are defined on the same probability space. This is due to the
use of the Skorokhod Theorem—Section 6.4.
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8.5. Uniform Bound for E
∫ 1

0

∣∣〈∂K N
t , g

〉∣∣2 dt

8.5.1. Proposition. For all N,

E
∫ 1

0

∣∣〈∂K N
t , g

〉∣∣2 dt ≤ C <∞. (8.20)

Proof.

E
∫ 1

0

∣∣〈∂K N
t , g

〉∣∣2 dt

= E
∫ 1

0

∣∣∣∣∫
O

div
(
H(T N

i+ )g
)

dLn

∣∣∣∣2 dt, (t ∈ ti ≤ t ≤ ti+1)

(The Gibbs-Thomson condition holds right after minimization.)

≤ C E
∫ 1

0

∣∣∣∣∫
O

div
(
H(T N

i )g
)

dLn −
∫
O

div
(
H(T N(t))g

)
dLn

∣∣∣∣2 dt

+C E
∫ 1

0

∣∣∣∣∫
O

div
(
H(T N(t))g

)
dLn

∣∣∣∣2 dt

≤ C E L′3+ C E
∫ 1

0

∣∣∣∣∫
O

div
(
H(T N(t))g

)
dLn

∣∣∣∣2 dt.

The termE L′3 is handled in Theorem 8.3.3. To estimate the second term, suppressing
the N’s and making use of (8.9),

C E
∫ 1

0

∣∣∣∣∫
O

div (H(T(t))g) dLn

∣∣∣∣2 dt

≤ C E
∫ 1

0

∣∣∣∣∫
O

T |∇T | +U |∇U | + |∇T | + T2+U2 dLn

∣∣∣∣2 dt

≤ C E
∫ 1

0

{‖T‖2L2 ‖∇T‖2L2 + ‖U‖2L2 ‖∇U‖2L2 + ‖∇T‖2L2 + ‖T‖4L2 + ‖U‖4L2

}
dt

≤
{

C E

(
sup

t∈[0,1]
‖T‖4L2 + ‖U‖4L2

)}1/2{
E

(∫ 1

0
‖∇T‖2L2 + ‖∇U‖2L2 dt

)2
}1/2

+C E
∫ 1

0
‖∇T‖2L2 dt

≤ C (by the energy estimates).

8.6. Minimality and Regularity of Limiting Crystals

The method used to prove the varifold convergence in Section 8.4 can also be employed
to establish some regularity properties of the limiting crystals—Theorem 8.0.2.
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First of all, we prove the following minimizing property of theK (t)’s, which has its
own interest. (The notations are the same as those in the proof of Theorem 8.4.1.)

8.6.1. Theorem (Limit Crystals as Minimizers). For dL1 × d P a.s. on{(t, ω):
t < τ(ω)},

E(K (t), Q(t)) = inf {E(R, Q(t)): R ∈ K}. (8.21)

Proof. The negation of the theorem means the existence of anR ∈ K and anε > 0
such that

8(∂R)+
∫
O

cRF(c−1
R Q(t))+ ε ≤ 8(∂K )+

∫
O

cF(c−1Q(t)).

Let ti ≤ t < ti+1. Now the L.H.S. equals

8(∂R)+
∫
O

cRF(c−1
R PN

i ) +
(∫
O

cRF(c−1
R QN(t))−

∫
O

cRF(c−1
R PN

i )

)
+
(∫
O

cRF(c−1
R Q(t))−

∫
O

cRF(c−1
R QN(t))

)
.

Using the lower semicontinuity of the surface energy8, the R.H.S. can be bounded by
(for large enoughN)

ε/2+8(∂K N
i+) +

∫
O

cN F(cN PN
i )+

(∫
O

cN F(c−1
N QN(t))−

∫
O

cN F(c−1
N PN

i )

)
+
(∫
O

cF(c−1Q(t))−
∫
O

cN F(c−1
N QN(t))

)
.

By Remark 8.4.5, all the terms in the parentheses will tend to zero. Hence, for large
enoughN, we get

8(∂R)+
∫
O

cRF(c−1
R PN

i ) < 8(∂K N
i+)+

∫
O

cN F(c−1
N PN

i ),

which contradicts the minimality property of theK N
i+ andPN

i (Section 6.4.3).

Thus we have shown that the crystals and temperature fields satisfy the hypothesis of
[AW] Theorem 8.8, which gives the asserted statements of Theorem 8.0.2.

Appendix A. Varifolds and Sets of Finite Perimeter

We are going to introduce the notion of varifolds and their convergence in the case of
co-dimension one.26

26 A full account of varifold can be found in [All]. A concise introduction is in the Appendix of [AW]. Here
we just mention the concepts needed in this paper.
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An (n−1) varifold in Rn is aradon measureoverRn×Sn−1. A sequence of(n−1)-
varifolds {Vi }i≥1 is said to converge in thevarifold senseto V , written asVi ⇀ V ,
if ∫

Rn×Sn−1
ϕ dVj −→

∫
Rn×Sn−1

ϕ dV (A.1)

for all continuous functionsϕ: Rn × Sn−1 −→ R with compact support.
Given any set of finite perimeterK (Section 2.1.1), we naturally associate with it the

following (n− 1)-varifold:

V(ϕ) =
∫

x∈∂K
ϕ(x,nK )dHn−1x, (A.2)

where∂K refers to the reduced boundary ofK andnK the (approximate) exterior normal
vector to∂K . We say a sequence of sets of finite perimeter{Ki }i≥1 converges in the
varifold sense if their associated varifolds do so.

In [AW] Appendix C, a sufficient condition is established for the varifold convergence
of Ki to K . Namely,

1. The union of supports ofKi is bounded.
2. supi |∂Ki | <∞.
3. Ki −→ K in L1.
4. There is an elliptic integrand8 (Section 2.1.2) such that the8 surface energies also

converge, i.e., limi 8(∂Ki ) −→ 8(∂K ).

From this, it is clear that varifold convergence is much stronger than theL1 conver-
gence. Not only does the set converge, but the normals of the boundaries of the sets do,
as well.

It is easy to establish from the definition of8 first variation (Section 2.1.7) that, ifKi

converges toK in the varifold sense, then for allC1 vector fieldsg, we have

lim
i

d

ds
8
(
Gs]∂Ki

)∣∣∣∣
s=0

= d

ds
8
(
Gs]∂K

)∣∣∣∣
s=0

,

whereG(x) = x + sg(x).

Appendix B. Concepts from Probability

We describe very briefly the main concepts from probability theory used in this paper. It
is a collection of definitions and notations. We will however elaborate the case of infinite
dimensional stochastic calculus. The main references are [KS], [Par], and [KR].

B.1. Basic Definitions

A probability space is a collection of elements{ω ∈ Ä} equipped with aσ -algebra F
of subsets ofÄ and ameasureP onF such thatP(Ä) = 1. Let S be a measurable
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space withσ -algebraB.27 An S-valuedrandom variable (r.v.) is a measurable mapX
fromÄ to S. In caseX is real valued, we useE X to denote the expectation ofX with
respect toP, i.e.,

E X =
∫
ω∈Ä

X(ω)d P(ω). (B.1)

A stochastic processis a collection of random variables,{Xt }t∈I , where the index set
I is R+ or [0, T ] regarded as a time interval. A stochastic process can also be considered
as a map,

(t, ω)→ Xt (ω) : I ×Ä −→ S. (B.2)

Upon fixing at ∈ I , we are observing the random variableXt at timet . On the other
hand, fixing anω ∈ Ä, the collection of elements{Xt (ω)}t∈I is called asample path. X
is calledcontinuous (left or right continuous) if the sample paths satisfy this property
almost surely with respect toP.

A filtration {Ft }t∈I is a time parametrized increasing family of sub-σ -algebras ofF :

Fs ⊂ Ft ⊂ F for all 0≤ s ≤ t and s, t ∈ I . (B.3)

A stochastic processX is said to beadaptedto a filtration{Ft } if Xt isFt -measurable
for all t. In this case, we writeX = {Xt , Ft ; 0≤ t <∞}. X is calledprogressively
measurableto {Ft } if (s, ω) −→ Xs(ω): ([0, t ] ×Ä, B([0,1])⊗ Ft ) −→ (S, B) is
measurable for allt ∈ R+. Predictable (completely measurable) sets28 are subsets
of [0,∞) × Ä, which are elements of the smallestσ -algebra relative to which all real
Ft -adapted, right-continuous processes with left-hand limit are measurable in(t, ω). A
processX : [0,∞) × Ä −→ S is calledpredictable (completely measurable)if, for
any Borel subsetB ∈ S, {(t, ω); X(t, ω) ∈ B} is predictable.

All the processes in this paper are predictable. They are either continuous or can be
approximated by piecewise continuous processes.

A positive random variableT is called astopping time (with respect to the filtration
{Ft }t≥0) if for all 0 ≤ t , {T ≤ t} ∈ Ft . This concept is used to indicate the occurrence
of some random event.

The conditional expectationof a real-valued random variableX with respect to a
sub-σ -algebraG of F is denoted byE (X|G) or EGX.

We assume the well-known definitions of(continuous) martingale processes—
{Mt , Ft ; 0≤ t <∞}; their associatedquadratic variation processes—〈M〉t ; (one-
dimensional) Brownian motion—{Wt , Ft ; 0≤ t <∞}; stochastic integralwith re-
spect toWt andIto’s Formula . However, we single out the following result, which is
used frequently in this paper.

Burkholder-Davis-Gundy Inequalities ([KS] 3.3.28). Let M be a continuous martin-
gale withM0 = 0. Then, for allm> 0, there are universal positive constantskm andKm

27 WhenS is a topological space, we always takeB to be theBorel σ -algebraof S.
28 The following definition is from [KR].
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(not depending onM) such that

kmE
(〈M〉mτ ) ≤ E

(
(M∗τ )

2m
) ≤ KmE

(〈M〉mτ ) , (B.4)

where τ is any stopping time,〈M〉t is the quadratic variation ofM , and M∗t =
sup0≤s≤t |Ms|.

B.2. Weak Convergence of Probability Measures on Metric Space

Here we takeSto be a metric space. A sequence of probability measures{Pn}n≥1 ⊂ P(S)
is said toconverge weaklyto P ∈ P(S), denoted byP = w limn Pn or P ⇀ Pn if for
all f , bounded and continuous onS,

lim
n

∫
S

f (x) Pn(dx) =
∫

S
f (x) P(dx), ∀ f ∈ Cb(S). (B.5)

In the above definition, we can restrictf to be only uniformly continuous. We have the
following important criterion for compactness inP(S), developed byProkhorov:

A collection of probability measures0 ⊂ P(S) is calledtight if for all ε > 0, there
is a compact set K⊂ S such that

P(K ) ≥ 1− ε, ∀P ∈ 0. (B.6)

If 0 is tight, then it isrelatively compact. The reverse is true if S iscomplete.

Tightness Criteria on C([0,1], S). Let Sbe acomplete separable metric space. We
describe here an explicit tightness condition on a collection of probability measures
on C([0,1], S)—the space of continuous functions from [0,1] to S. The condition is
summarized by the following two statements.

B.2.1. Theorem (Kolmogorov-̌Centsov). Suppose an S-valued stochastic process de-
fined on(Ä, P,F) satisfies the condition

E |Xt − Xs|α ≤ C |t − s|1+β , for all 0≤ s, t ≤ 1, (B.7)

whereα, β,C > 0. Then X has acontinuous version X̃ which is locally Hölder
continuouswith exponentγ for every0< γ < β/α, i.e.,

P

ω: sup
0<t−s<h(ω)
s,t∈[0,1]

∣∣∣X̃t (ω)− X̃s(ω)

∣∣∣
|t − s|γ ≤ δγ

 = 1, (B.8)

where h(ω) is an almost surely positive random variable andδγ is some appropriate
constant depending onγ .
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B.2.2. Theorem. Let
{
XN

t

}
t∈[0,1],N≥1 be a sequence of continuous process satisfying

E
∣∣XN

0

∣∣p ≤ M <∞, (B.9)

E
∣∣XN

t − XN
s

∣∣α ≤ C |t − s|1+β , (B.10)

where p, α, β,M, and C are positive numbers independent of N.
Then the collection of measures

{
PN
}

N≥1 induced on C([0,1], S) by XN is tight.

B.3. Infinite Dimensional Stochastic Calculus

Here we describe the basic notations and terminology for stochastic calculus when
random variables and stochastic processes take values in aseparable Hilbert spaceH .
Many of the concepts related to real valued stochastic processes can be extended to the
present infinite dimensional case. We denote the norm and inner product inH by ‖ · ‖
and( , ). Let (Ä,F, P) be a probability space.

A random variableX taking values inH is a measurable map from(Ä,F) to (H,B)
with B being the Borelσ -algebra ofH . If

∫
Ä
‖X‖ d P < ∞, we can defineE X =∫

Ä
X d P, and we have‖E X‖ ≤ E ‖X‖.
Let G be a sub-σ -algebra ofF . SupposeE ‖X‖ <∞. We defineE (X|G) to be the

G-measurableH -valued random variable such that for allh ∈ H ,

(E (X|G), h) = E ( (X, h)|G) P a.s. (B.11)

ContinuousSquare IntegrableMartingales inH. Let{Ft }t≥0 beafiltration.Astochas-
tic processMt , adapted toFt , written as{Mt , Ft ; 0≤ t <∞} is called amartingale
if, for all 0 ≤ s ≤ t ,

E ‖Xt‖ <∞ and E (Xt |Fs) = Xs P a.s. (B.12)

A continuous martingale{Mt , Ft ; 0≤ t <∞} taking values inH is calledsquare
integrable if, for all 0 ≤ t , E ‖Xt‖2 < ∞. We useMc

2(H) to denote such processes
with M0 = 0.

Let Mt ∈ Mc
2(H). Similar to the real valued case, we can define〈M〉t to be the

adapted, continuous nondecreasingprocess such that‖Mt‖2− 〈M〉t is a martingale.
However, in the case of infinite dimensional martingales, we have a more general object
than just the〈M〉t .

Covariance Operators for Mc
2(H). Given any M ∈ Mc

2(H), there is aunique
adapted, continuous nondecreasing process(and hence of bounded variations on com-
pact time intervals)〈〈M〉〉t taking values in the space ofpositive trace class operators,29

such that for allx, y ∈ H ,

(〈〈M〉〉t x, y) = 〈(M., x), (M., y)〉t . (B.13)

29 The basic properties of trace class operators will be described in Section B.4.
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(The right-hand side is the cross-variation process between(Mt , x) and(Mt , y)—the
inner products ofMt with x andy.) 〈〈M〉〉 is called thecovariance operatorfor M .

Let alsoN ∈Mc
2(G)whereG is another Hilbert space. Then there is a unique adapted

process of bounded variations on compact time intervals〈〈M, N〉〉t taking values in the
trace class operators fromG to H such that, for allx ∈ H andy ∈ G,

(〈〈M, N〉〉t y, x) = 〈(M., x), (N., y)〉t . (B.14)

〈〈M, N〉〉 is called thecross-covariance operatorfor M andN.

Brownian Motion in H. Let3 be a positive trace class operator. AWiener Processor
Brownian motion in H with covariance operator3 is a processWt ∈Mc

2(H) such
that

〈〈W〉〉t = t3. (B.15)

The existence of such a process can be demonstrated as follows. Let{λi }i≥1 be the
eigenvalues of3 with {ei }i≥1 being the corresponding normalized eigenvectors. Since
3 is a positive trace class operator, we haveλi ≥ 0 and Tr3 = ∑i λi < ∞. Also let{
Wi

t

}
i≥1 be a sequence of independent real valued Brownian motions. Then the following

definition can be shown to satisfy (B.15):

Wt =
∑

i

√
λi ei W

i
t . (B.16)

Infinite Dimensional Stochastic Integrations. We can define stochastic integrations in
the same way as the real valued case. Before giving the formal definition, we first perform
two heuristic computations. Take the construction of infinite dimensional Brownian
motion from (B.16).

Let f (·) be a predictable function inH . We define∫ t

0
( f (s), dWs) =

∑
i

√
λi

∫ t

0
( f (s), ei ) dWi

s . (B.17)

Consider〈∫ .

0
( f (s), dWs)

〉
t

=
∑
i, j

√
λiλj

〈∫ .

0
( f (s), ei ) dWi

s,

∫ .

0

(
f (s), ej

)
dWj

s

〉
t

=
∑
i, j

√
λiλj

∫ t

0
( f (s), ei )

〈
f (s), ej

〉
d
〈
Wi , W j

〉
s

=
∑

i

λi

∫ t

0
( f (s), ei )

2 ds=
∫ t

0
(3 f (s), f (s)) ds.

For another kind of stochastic integration, we replacef (·) by a predictable linear
operatorB(·) from H to G. We then define

Mt =
∫ t

0
B(s)dWs =

∑
i

√
λi

∫ t

0
B(s)ei dWi

s . (B.18)
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For all x, y ∈ G, consider30

〈(Mt , x), (Mt , y)〉t
=
〈∑

i

√
λi

∫ .

0
(B(s)ei , x) dWi

s,
∑

j

√
λj

∫ .

0

(
B(s)ej , y

)
dWj

s

〉
t

=
∑

i

λi

∫ t

0
(B(s)ei , x) (B(s)ei , y) ds=

∑
i

λi

∫ t

0

(
ei , B∗(s)x

) (
ei , B∗(s)y

)
ds

=
∫ t

0

(
3B∗(s)x, B∗(s)y

)
ds=

∫ t

0

(
B(s)3B∗(s)x, y

)
ds

=
((∫ t

0
B(s)3B∗(s)ds

)
x, y

)
.

Hence, 〈〈∫ .

0
B(s)dWs

〉〉
t

=
∫ t

0
B(s)3B∗(s)ds. (B.19)

In order to make the above computations rigorous, we need to have some integrability
conditions. Now we give the formal definition of stochastic integration in the infinite
dimensional case as in [Par I.3.2].

Let {Wt , Ft ; 0≤ t <∞} be anH -valued Wiener Process with covariance operator
3. G is another Hilbert Space. Suppose{B(t), Ft ; 0≤ t <∞} is a predictable process
taking values in the linear operators fromH to G (not necessarily bounded) such that,
for all T > 0,

E
∫ T

0
Tr
[
B(s)3B(s)∗

]
ds<∞. (B.20)

Then we can define

(B ·W)t =
∫ t

0
B(s)dWs (B.21)

to be theunique element ofMc
2(G) such that, for allN ∈Mc

2(K ) (K is another Hilbert
space),

〈〈(B ·W), N〉〉t =
∫ t

0
B(s)d 〈〈W, N〉〉s. (B.22)

In particular,

〈〈B ·W〉〉t =
∫ t

0
B(s)3B(s)∗ ds. (B.23)

30 In the following,B∗ denotes the adjoint ofB.
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Integrands for Stochastic Integrations. We useN3 (H) to denote the class of pre-
dictable processesf taking values inH such that, for allT > 0,

E
∫ T

0
(3 f (s), f (s)) ds<∞. (B.24)

In addition,N3 (L(H,G)) denotes the class of predictable processesB taking values in
the linear operators fromH to G (not necessarily bounded) such that, for allT > 0,

E
∫ T

0
Tr
[
B(s)3B(s)∗

]
ds<∞. (B.25)

Ito’s Formula in Infinite Dimension. This is the anolog for the finite dimensional
formula.

Let (V, ‖ · ‖V ) be aseparable Banach Spacewith dualV∗. The pairing betweenV
andV∗ is denoted by〈 , 〉V . V is densely embedded in another Hilbert space(H, ( , )H ).

Then(V, H,V∗) forms aGelfand Triple in the sense thatV
j
↪→ H = H∗

j ∗
↪→ V∗ with

each of the embedding being dense and continuous. Furthermore, ifv ∈ V, u ∈ H ,
then〈v, j ∗(u)〉V = ( j (v), u)H .

B.3.1. Theorem. [KR I.3.1] Let v(t) be a V -valued andv∗(t) be a V∗-valued pre-
dictable process such that

P

(∫ T

0
‖v(t)‖2V +

∥∥v∗(t)∥∥2
V∗ dt <∞

)
= 1 for all T > 0. (B.26)

Let Mt be an H-valued continuous martingale, andτ be a stopping time. Suppose for
everyξ ∈ V , we have for dL1× d P a.e. on{(t, ω): t < τ(ω)} that

( j (ξ), j (v(t)))H =
∫ t

0

〈
ξ, v∗(s)

〉
V

ds+ ( j (ξ), Mt )H . (B.27)

Then there exists a subsetÄ′ ⊂ Ä with P(Ä′) = 1 and a predictablecontinuous
H-valued process h(t) such that the following statements hold.

1. j (v(t)) = h(t) for dL1× d P a.e. on{(t, ω): t ≤ τ(ω)}.
2. For anyω ∈ Ä′, t < τ(ω) andξ ∈ V ,

( j (ξ), h(t))H =
∫ t

0

〈
ξ, v∗(s)

〉
V

ds+ ( j (ξ), Mt )H . (B.28)

3. If for some given t≥ 0 and anyξ ∈ V , (B.27) is satisfied P a.s. on{ω: t < τ(ω)},
then j(v(t)) = h(t) P a.s. on{ω: t < τ(ω)}.

4. For anyω ∈ Ä′ and t< τ(ω),

‖h(t)‖2H = ‖M0‖2H+2
∫ t

0

〈
v(s), v∗(s)

〉
V ds+2

∫ t

0
(h(s), d Ms)H+〈M〉t . (B.29)

This is also calledIto’s Formula for the Norm Square of h.
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B.4. Trace Class Operators

From Section B.3, it is clear that trace class operators are naturally associated with
Hilbert space valued martingales. LetH be a separable Hilbert space andL(H) denote
the space of linear operators onH . The following definitions are from [Kuo].

An operatorA ∈ L(H) is called aHilbert-Schmidt Operator if, for some O.N.B
{ei }i≥1 ⊂ H , we have

∑∞
i=1 ‖Aei ‖2 < ∞. We useL(2) (H) to denote the space of

all Hilbert-Schmidt operators. Define theHilbert-Schmidt Norm of A by ‖A‖(2) =(∑∞
i=1 ‖Aei ‖2

)1/2
.

A compact operatorA is called atrace class operatorif
∑

i µi <∞ where theµi ’s
are the eigenvalues of(A∗A)1/2. We useL(1) (H) to denote the space of all trace class
operators. Define thetrace class normof A by ‖A‖(1) =

∑∞
i=1µi . The trace of A is

defined as Tr(A) =∑∞i=1 〈Aei , ei 〉, where{ei }i≥1 is any O.N.B. ofH .

Examples of Hilbert-Schmidt and Trace Class Operators.For use in this paper, we
give examples of the above operators in the following setting.

Consider then-fold product of Hilbert space:L2
(n)(O) = L2(O) × · · · × L2(O).

We denote each element asU(·) = (
U1(·), . . . ,Un(·)) with Up(·) ∈ L2(O), p =

1,2, . . .n. The inner product is defined as〈U, V〉 = ∫x∈O
∑n

p Up(x)V p(x)dLnx.
Let K be an operator onL2

(n)(O) given by ann× n matrix valued kernel K(x, y) ={
Kpq(x, y)

}n

p,q=1. The operatorK is defined as

(KU) (x) =
∫

y∈O
K(x, y)U(y)dLny, U ∈ L2

(n)(O). (B.30)

Define the norm of a matrixA to be

‖A‖2 = Tr AAT =
∑
p,q

A2
pq. (B.31)

B.4.1. Proposition. If ‖K(·, ·)‖ ∈ L2(O ×O), thenK is Hilbert-Schmidt on L2(n)(O).

Proof. Let Kp(x, y) be thep-th row of K(x, y). Then, for allU ∈ L2
(n)(O),

(KU)p (x) =
∫

y

〈
Kp(x, y), U(y)

〉
dLny.

Thus,
∫

x ‖KU(x)‖2 dLnx = ∫
x

∑n
p

(∫
y

〈
Kp(x, y), U(y)

〉
dLny

)2
dLnx. Now let

{Vi }i≥1 be an O.N.B. forL2
(n)(O). We want to see if the following quantity is finite:

∞∑
i

‖KVi ‖2 =
∞∑
i

∫
x

n∑
p

(∫
y

〈
Kp(x, y), Vi (y)

〉
dLny

)2

dLnx. (B.32)

By the hypothesis,‖K‖ ∈ L2(O×O). Using Fubini’s Theorem, a.e.x ∈ O, Kp(x, ·) ∈
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L2
(n)(O). Then,

Kp(x, y) =
∞∑
i

(∫
y

〈
Kp(x, y), Vi (y)

〉
dLny

)
Vi

H⇒
∫

y

∥∥Kp(x, y)
∥∥2

dLny =
∞∑
i

(∫
y

〈
Kp(x, y), Vi (y)

〉
dLny

)2

.

Hence,∫ ∫
(x,y)

∥∥Kp(x, y)
∥∥2

dLnydLnx =
∞∑
i

∫
x

(∫
y

〈
Kp(x, y), Vi (y)

〉
dLny

)2

dLnx.

Finally,

∞ >

∫ ∫
(x,y)
‖K(x, y)‖2 dLny dLnx =

∫ ∫
(x,y)

n∑
p

∥∥Kp(x, y)
∥∥2

dLny dLnx

=
∞∑
i

∫
x

n∑
p

(∫
y

〈
Kp(x, y), Vi (y)

〉
dLny

)2

dLnx.

This is exactly equal to the R.H.S. of (B.32). Hence,K is Hilbert-Schmidt.

B.4.2. Proposition. Let K be a positive Hilbert-Schmidt operator, i.e.,K(x, y)T =
K(y, x), and for anyU ∈ L2

(n)(O),
∫

x
〈(KU)(x), U(x)〉 dLnx ≥ 0. If∫

x
Tr [K(x, x)] dLnx <∞, (B.33)

thenK is a trace class operator on L2(n)(O), and the above quantity is the trace ofK.

Proof. Since a Hilbert-Schmidt operator is compact, we can use the Spectral Theorem
to decomposeK asK(x, y) =∑∞i λi Vi (x)VT

i (y), whereλi ’s are the eigenvalues ofK
andVi ’s are the corresponding normalized orthogonal eigenvectors written in column
form. Note thatλi ≥ 0. Then,

Tr K(x, x) =
∞∑
i

λi Tr
[
Vi (x)VT

i (x)
] = ∞∑

i

λi ‖Vi (x)‖2

H⇒
∫

x
Tr K(x, x)dLnx =

∞∑
i

λi .

B.5. Examples of〈〈∫ ·0 B(s)dWs〉〉t
By Theorem B.23, we know that forB ∈ N3(L(H)),

〈〈∫ ·
0 B(s)dWs

〉〉
t
=∫ t

0 B(s)3B(s)∗ ds. Here we computeB3B∗ for some explicit examples ofB which
will be useful later.

Recall that3 is given by a kernel3(·, ·) ∈ L∞(O ×O).
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B.5.1. Multiplicative Operator. Given a fixed functionh ∈ L2(O), let B : L2(O) −→
L2(O) be defined as

(B f )(x) = h(x) f (x), f ∈ L2(O). (B.34)

Note thatB is unbounded. However,B3B∗ is actually a trace class operator onL2(O)
given by a kernel. To compute this kernel, consider〈

B3B∗ f , g
〉 = 〈

3B∗ f , B∗g
〉 = ∫

x
(3(h f )) (x)h(x)g(x)dLnx

=
∫

x

∫
y
3(x, y)h(y) f (y)h(x)g(x)dLny dLnx

=
∫

x

(∫
y

h(x)3(x, y)h(y) f (y)dLny

)
g(x)dLnx. (B.35)

Thus, the kernel ofB3B∗ is h(x)3(x, y)h(y). Note thatB3B∗ is positive and we have

Tr
[
B3B∗

] = ∫
x

h(x)3(x, x)h(x)dLnx ≤ C ‖h‖2L2 . (B.36)

B.5.2. Smoothing.Let φε(x) = 1

εn
φ(

x

ε
) be a symmetric smoothing function and [φε ]

denote the convolution operation withφε . We compute〈
[φε ]3[φε ]

∗ f , g
〉

=
∫ ∫

(x,y)
3(x, y)(φε ∗ f )(y)(φε ∗ g)(x)dLny dLnx

=
∫

x

∫
y

∫
z

∫
w

3(x, y)φε(y− z) f (z)φε(x − w)g(w)dLnw dLnz dLny dLnx

=
∫

z

∫
w

(∫
x

∫
y
3(x, y)φε(y− z)φε(x − w)dLnx dLny

)
f (z)g(w)dLnz dLnw.

Hence, [φε ]3[φε ]∗ is given by the kernel,

3ε(w, z) =
∫

x

∫
y
3(x, y)φε(y− z)φε(x − w)dLnx dLny ∈ L∞(O ×O). (B.37)

B.5.3. Differentiation Operator. Let∂p[φε ] denote the composition of [φε ] and the dif-
ferentiation with respect to thep-th coordinate. Then∂p[φ] = [∂pφ]. Hence,(∂p[φε ])3
(∂p[φε ])∗ is given by the kernel

(∂p3
ε∂p)(w, z)

=
∫

x

∫
y
3(x, y)(∂pφε)(y− z)(∂pφε)(x − w)dLny dLnx

=
∫

x

∫
y
3(x, y)

1

εn+1
(∂pφ)

(
y− z

ε

)
1

εn+1
(∂pφ)

(
x − w
ε

)
dLny dLnx

≤ C

ε2n+2
. (B.38)
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Appendix C. Solution of Heat Equation (4.3)

C.1. Galerkin’s Scheme and Picard’s Iteration

Recall the notations from Section 4.1.5. The smoothing parametersδ and ε will be
suppressed. The following two statements suffice to solve (4.3).

1. Let G(·) ∈ N3(L(H)) such thatTr [G(t)3G∗(t)] ≤ C for all t ∈ [0,1]. Then there
is a unique solution{T(·)}t≥0 with initial data T0 ∈ H for the following equation:

dT(t) = 1

cK
div (6K∇T(t)) dt + G(t)dWt , (C.1)

in the sense that
• T ∈ C([0,1], H) and is predictable.

• E

{
sup

t∈[0,1]
‖T(t)‖2H +

∫ 1

0
‖T(s)‖2V ds

}
≤ C.

• For all v ∈ V ,

(T(t), v)H = (T0, v)H −
∫ t

0
〈AT(s), v〉 ds+

∫ t

0
(G(s)dWs, v)H . (C.2)

Or equivalently,

(cK T(t), v)L2 = (cK T0, v)L2 −
∫ t

0
〈6K∇T(s), ∇v〉L2 ds

+
∫ t

0
(cK G(s)dWs, v)L2 .

2. LetX be the space C([0,1], H) with norm

‖T‖X = sup
t∈[0,1]

‖T(t)‖H . (C.3)

Given any T1 ∈ X , let T2 ∈ X be the unique solution of the following equation with
initial condition T0 ∈ H and B as defined in (4.10):

dT2(t) = −AT2(t)dt + B(T1(t))dWt . (C.4)

Becauseof1, T2 exists. Let0 denote themap from T1 to T2.Weclaim that T1, T2, . . . Tn =
0(Tn−1), . . . will converge to a limiting function T∈ C([0,1], H), which is clearly
a solution of (4.2).
Such a procedure is calledPicard’s Iteration .

We now start the task of solving (C.1) by means ofGalerkin’s Scheme.

C.1.1. Finite Dimensional Approximation. Choose any orthonormal basis (O.N.B.)
of H {ui }i≥1 with ui ∈ V . Let Tn(t) =

∑n
i=1 ci

n(t)ui and5n be the projection fromH
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onto the linear span ofu1,u2, . . .un. Consider the following stochastic ODE which can
be regarded as a finite dimensional approximation for (C.1):

dTn(t) = −5n ATn dt +5nG(t)dWt

H⇒ dci
n(t) = −

n∑
j=1

ci
n(t)

〈
Auj , ui

〉
dt + (G(t)dWt , ui )H , i = 1,2, . . .n.(C.5)

By the fact thatG is bounded and independent of theci ’s, the above is a linear
stochastic ODE. A unique strong solution exists forci

n(t) by the standard techniques of
solving such equations ([KS] 5.2.9).

C.1.2. Uniform Energy Estimates for theTn’s. Recall Tn(t) =
∑

i ci
n(t)ui . Then,

‖Tn(t)‖2H =
∑

i ci
n(t)

2. Hence, by Ito’s Formula,

d ‖Tn(t)‖2H =
n∑

i=1

2ci
n(t)dci

n(t)+
n∑

i=1

d
〈
ci

n(·)
〉
t .

Now,

n∑
i=1

2ci
n(t)dci

n(t) = −
n∑

i, j

2ci
n(t)c

j
n(t)

(
Auj , ui

)
H

dt +
n∑

i=1

2ci
n(t) (G(t)dWt , ui )H

= −2 〈6K∇Tn(t), ∇Tn(t)〉 dt + 2(G(t)dWt , Tn(t))H ,

and

n∑
i=1

d
〈
ci

n(·)
〉
t
=

n∑
i=1

(
G(t)3G(t)∗ui , ui

)
H

dt = Tr
[
5nG(t)3G(t)∗5n

]
dt

≤ C dt (by the boundedness ofG).

Hence,

‖Tn(t)‖2H + 2
∫ t

0
〈6K∇Tn(s), ∇Tn(s)〉 ds

= ‖Tn(0)‖2H + 2
∫ t

0
(G(s)dWs, Tn(s))H∫ t

0
Tr
[
5nG(s)3G(s)∗5n

]
ds (C.6)

By Burkholder’s Inequality (B.4),

E

{
sup
λ∈[0,t ]

‖Tn(t)‖2H
}
≤ C + 2E

{
sup
λ∈[0,t ]

∣∣∣∣∫ t

0
(G(s)dWs, Tn(s))H

∣∣∣∣
}

≤ C + 2E

{
sup
λ∈[0,t ]

∣∣∣∣∫ t

0
(G(s)dWs, Tn(s))H

∣∣∣∣2
}

(by a ≤ a2+ 1)
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= C + DE
∫ t

0

(
G(s)3G(s)∗Tn(s), Tn(s)

)
H ds

≤ C + D
∫ t

0
E ‖Tn(s)‖2H ds

≤ C + D
∫ t

0
E

{
sup
λ∈[0,s]

‖Tn(λ)‖2H
}

ds.

Applying Gronwall’s Inequality forDn(t) = E
{
supλ∈[0,t ] ‖Tn(λ)‖2H

}
, we deduce that

Dn(t) ≤ C for t ∈ [0,1].
Now (C.6) leads to

E

{
sup

t∈[0,1]
‖Tn(t)‖2H +

∫ 1

0
〈6K∇Tn(s), ∇Tn(s)〉 ds

}
≤ C. (C.7)

C.1.3. Taking the Limit. Let Y be the space([0,1] × Ä, PM, dL1 × d P), where
PM is the completion of predictable sets. Then, from (C.7),{Tn(t)}t∈[0,1],n≥1 can be
considered as elements ofL(Y, H) andL(Y,V) with uniform bound on theirL2 norms.
Hence, we can extract a subsequence (still denoted byn) such that

Tn ⇀ T̃ weakly inL2(Y, H),

Tn ⇀ S̃ weakly inL2(Y,V).

By the fact thatV is densely embedded inH , we haveT̃ = S̃ (dL1× d P a.e.).
Since theTn’s satisfy the following equation:

(Tn(t), ui )H = (T0, ui )H −
∫ t

0
〈ATn(s), ui 〉 ds+

∫ t

0
(5nG(s)dWs, ui )H , (C.8)

then for anyy (bounded function onY), we have

E
∫ 1

0
y(t) (Tn(t), ui )H dt

= E
∫ 1

0
y(t)

{
(T0, ui )H −

∫ t

0
〈ATn(s), ui 〉 ds+

∫ t

0
(5nG(s)dWs, ui )H

}
dt

= E
∫ 1

0
y(t)

{
(T0, ui )H −

∫ t

0
〈Tn(s), Aui 〉 ds+

∫ t

0
(5nG(s)dWs, ui )H

}
dt.

(C.9)

Taking the limitn→∞, we obtain that

E
∫ 1

0
y(t)

(
T̃(t), ui

)
H

dt

= E
∫ 1

0
y(t)

{
(T0, ui )H −

∫ t

0

〈
S̃(s), Aui

〉
ds+

∫ t

0
(G(s)dWs, ui )H

}
dt.
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Hence, for allv ∈ V , dL1× d P a.e., as elements ofV∗, we have

T̃(t) = T0−
∫ t

0
AS̃(s)ds+

∫ t

0
G(s)dWs = T0−

∫ t

0
AT̃(s)ds+

∫ t

0
G(s)dWs.

By Ito’s Formula in the infinite dimensional case(B.29), there exists anÄ′ ⊂ Ä
with P(Ä′) = 1 and aT(t), continuous in t , taking values in H such thatT = T̃
(d P× dL1 a.e.) andfor all t ∈ [0,1], ω ∈ Ä′,

T(t) = T0−
∫ t

0
AT(s)ds+

∫ t

0
G(s)dWs; (C.10)

i.e., (C.1) is solved.
The energy estimate (C.7) is also true forT due to thelower semicontinuity of the

energy functionals with respect to weak convergence. (It can also be derived from (C.10)
by applying Ito’s Formula for the norm square ofT(t).)

C.1.4. Uniqueness of Solution for (C.1).Let T1 andT2 be two solutions. Then,

T1(t)− T2(t) = −
∫ t

0
A(T1(s)− T2(s))ds.

Using Ito’s Formula again, we have

‖T1(t)− T2(t)‖2H = −2
∫ t

0
〈A(T1(s)− T2(s)), T1(s)− T2(s)〉 ds

= −2
∫ t

0
〈6K∇ (T1(s)− T2(s)), ∇ (T1(s)− T2(s))〉 ds;

i.e.,‖T1(t)− T2(t)‖2H = 0 P a.s. Thus,T1 andT2 are indistinguishable.

C.1.5. Picard’s Iteration. Now we go into the iteration scheme to solve (4.2).
Let {Tn(t)}n≥1 be such thatdTn(t) = −ATn(t)dt + B(Tn−1(t))dWt . This implies

that

d(Tn+1(t)− Tn(t)) = −A
(
Tn+1(t)− Tn(t)

)
dt + (B(Tn(t))− B(Tn−1(t))

)
dWt .

(C.11)
Hence,∥∥Tn+1(t)− Tn(t)

∥∥2

H

= −2
∫ t

0

〈
A
(
Tn+1(s)− Tn(s)

)
, Tn+1(s)− Tn(s)

〉
ds

+2
∫ t

0

((
B(Tn(s))− B(Tn−1(s))

)
dWs, Tn+1(s)− Tn(s)

)
H

+
∫ t

0
Tr
[(

B(Tn(s))− B(Tn(s))
)
3
(
B(Tn(s))− B(Tn(s))

)]
ds. (C.12)
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By the positivity ofA, we deduce that

sup
λ∈[0,t ]

∥∥Tn+1(λ)− Tn(λ)
∥∥4

H

≤ C sup
λ∈[0,t ]

∣∣∣∣∫ λ

0

((
B(Tn(s))− B(Tn−1(s))

)
dWs, Tn+1(s)− Tn(s)

)
H

∣∣∣∣2
+C

[∫ t

0
Tr
[(

B(Tn(s))− B(Tn−1(s))
)
3
(
B(Tn(s))− B(Tn−1(s))

)]
ds

]2

H⇒ E

{
sup
λ∈[0,t ]

∥∥Tn+1(λ)− Tn(λ)
∥∥4

H

}

≤ C E

{
sup
λ∈[0,t ]

∣∣∣∣∫ λ

0

((
B(Tn(s))− B(Tn+1(s))

)
dWs, Tn+1(s)− Tn(s)

)
H

∣∣∣∣2
}

+C E
∫ t

0

(
Tr
[(

B(Tn(s))− B(Tn−1(s))
)
3
(
B(Tn(s))− B(Tn−1(s))

)])2
ds.

(C.13)

Using Burkholder’s Inequality (B.4), the first term in the R.H.S. of the above is bounded
by

C E
∫ t

0

(
3
(
B(Tn(s))− B(Tn−1(s))

) (
Tn+1(s)− Tn(s)

)
,(

B(Tn(s))− B(Tn−1(s))
) (

Tn+1(s)− Tn(s)
))

ds,

which in turn is bounded by (recall that3 ∈ L∞(O ×O))

C E
∫ t

0

∥∥Tn(s)− Tn−1(s)
∥∥2

H

∥∥Tn+1(s)− Tn(s)
∥∥2

H
ds.

Hence, we can rewrite (C.13) as

E

{
sup
λ∈[0,t ]

∥∥Tn+1(λ)− Tn(λ)
∥∥4

H

}

≤ C E
∫ t

0

1

θ

∥∥Tn(s)− Tn−1(s)
∥∥4

H + θ
∥∥Tn+1(s)− Tn(s)

∥∥4

H ds

+C
∫ t

0
E
∥∥Tn(s)− Tn−1(s)

∥∥4

H ds (we have usedab≤ 1

θ
a2+ θb2)

≤ C′
∫ t

0
E

{
sup
λ∈[0,s]

∥∥Tn(λ)− Tn−1(λ)
∥∥4

H

}
ds

+Cθ
∫ t

0
E

{
sup
λ∈[0,t ]

∥∥Tn+1(s)− Tn(s)
∥∥4

H

}
ds
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= C′
∫ t

0
E

{
sup
λ∈[0,s]

∥∥Tn(λ)− Tn−1(λ)
∥∥4

H

}
ds

+Cθ t E

{
sup
λ∈[0,t ]

∥∥Tn+1(λ)− Tn(λ)
∥∥4

H

}
. (C.14)

Chooseθ small enough such thatCθ ≤ 1/2. Then, for all 0≤ t ≤ 1,

E

{
sup
λ∈[0,t ]

∥∥Tn+1(λ)− Tn(λ)
∥∥4

H

}
≤ C′

∫ t

0
E

{
sup
λ∈[0,s]

∥∥Tn(λ)− Tn−1(λ)
∥∥4

H

}
ds.

Let D(n)(t) = E
{
supλ∈[0,t ]

∥∥Tn(λ)− Tn−1(λ)
∥∥4

H

}
. The above saysD(n)(t) ≤

C
∫ t

0 D(n−1)(s)ds. Proceeding inductively,

D(n)(t) ≤ C
∫ t

0
D(n−1)(t1)dt1 ≤ C2

∫ t

0

∫ t1

0
D(n−2)(t2)dt2dt1

...

≤ Cn
∫ t

0

∫ t1

0

∫ t2

0
· · ·
∫ tn−2

0

∫ tn−1

0
dtndtn−1dtn−2 · · ·dt1

≤ Cntn

n!
. (C.15)

Hence,
∑

n P
{
supλ∈[0,1]

∥∥Tn(λ)− Tn−1(λ)
∥∥4

H ≥ 1
2n

}
≤∑n

2nCn

n! <∞. By theBorel-
Cantelli Lemma, we conclude that{Tn}n≥1 almost surely converges uniformly to some
T ∈ C([0,1], H).

Now, if we go back to (C.12), and use (C.14) and (C.15), we have

E

(∫ 1

0

∥∥∇Tn+1(s)− ∇Tn(s)
∥∥2

L2 ds

)2

≤ C′
Cn

n!
+ C′

Cn+1

n!
≤ Cn

n!
.

Hence,
∑∞

n=1 E
∫ 1

0

∥∥∇Tn+1(s)− ∇Tn(s)
∥∥2

L2 ds≤∑∞n=1

(
Cn

n!

)1/2
< ∞. Now it is easy

to verify thatT is a solution for (4.2). The procedure is the same as in Section C.1.3.
Uniqueness is very similar to Section C.1.4.

The whole Theorem 4.1.4 is thus proved.
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