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Abstract—We propose a steepest descent method to compute
optimal control parameters for balancing between multiple per-
formance objectives in stateless stochastic scheduling, wherein the
scheduling decision is effected by a simple constant-time coin toss
operation only. We apply our method to the scheduling of a mobile
sensor’s coverage time among a set of points of interest (PoIs).
The coverage algorithm is guided by a Markov chain, wherein
the sensor at PoI i decides to go to the next PoI j with transition
probability pij . We use steepest descent to compute the transition
probabilities for optimal tradeoff among different performance
goals with regard to the distributions of per-PoI coverage times
and exposure times and the entropy and energy efficiency of
sensor movement. For computational efficiency, we show how we
can optimally adapt the step size in steepest descent to achieve
fast convergence. However, we found that the structure of our
problem is complex, because there may exist surprisingly many
local optima in the solution space, causing basic steepest descent
to easily get stuck at a local optimum. To solve the problem, we
show how proper incorporation of noise in the search process can
get us out of the local optima with high probability. We provide
simulation results to verify the accuracy of our analysis and show
that our method can converge to the globally optimal control
parameters under different assigned weights to the performance
goals and different initial parameters.

Index Terms—Mobile sensor network, multiple-objective opti-
mization, steepest descent.

I. INTRODUCTION

I T IS KNOWN that stochastic scheduling techniques can
achieve service differentiation by maintaining a minimal

scheduling state. For example, stochastic fair queuing (SFQ) [1]
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allows a router to allocate weighted service rates among flows
without bookkeeping of past service that was received by each
flow. In SFQ, to give a pi (0 ≤ pi ≤ 1) fraction of service
to flow i, we toss a coin and, with probability pi, serve the
next packet from i. SFQ has a constant-time computational
complexity. In contrast, the deterministic scheduling technique
of weighted fair queuing (WFQ) [2] selects the next flow for
service based on a sorting of per-flow finish numbers. Book-
keeping the finish numbers has a computational complexity
of O(n2) for n flows. For central processing unit (CPU) time
sharing, lottery scheduling [3] is a probabilistic algorithm that
allows processes to receive long-term CPU rates in proportion
to their assigned numbers of lottery tickets. In contrast, stride
scheduling [4], a deterministic implementation of the lottery
scheduling concept, selects processes to run based on a global
pass number and per-process pass numbers similar to WFQ
scheduling variables.

Aside from service rates, fairness is an important scheduling
metric. Fairness determines how long a client, after receiving
any amount of service, has to wait before being selected again
for service. For example, a flow that is given the first of every
ten packet times of service has the same rate as another flow
that is given the first two of every 20 packet times of service.
However, the first flow achieves finer grained fairness compared
with the second flow. Deterministic schedulers can be designed
for different fairness goals, independent of the service rates. For
example, for the same set of rate guarantees to flows, WF2Q [5]
is designed to achieve finer grained fairness than WFQ. On
the other hand, existing stochastic schedulers do not try to
independently control the rate and fairness performance. For
example, to increase the frequency at which flow i is selected
for service in SFQ, we have to increase pi, but doing so will also
increase the service rate of i. In other words, there is a coupling
between rate and fairness in SFQ.

In this paper, we propose a steepest descent method to
compute control parameters for achieving an optimal tradeoff
between multiple objectives in stateless stochastic scheduling.
By stateless we mean that the scheduling algorithm needs
no bookkeeping of prior service received by clients, but the
scheduling decision is entirely determined by a constant-time
coin toss operation. The notion of optimal balance between
multiple performance objectives is user or application defined.
Our ability to support a wide range of multiobjective perfor-
mance tradeoffs and optimize the tradeoff is absent in existing
stochastic scheduling algorithms.

We apply our method to the problem of scheduling a mobile
sensor’s coverage time among a number of disjoint points of
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interest (PoIs). In this case, the sensor moves between the
PoIs to capture interesting information, and the notions of
rate and fairness have similarly important interpretations. In
particular, rate corresponds to the fraction of time that the
sensor covers a PoI. The larger the fraction of time is, the
more information the sensor can collect about the PoI. Fairness,
on the other hand, determines the average return time of the
sensor to a PoI. The longer the return time is, the longer the
PoI can be exposed to significant incidents that have occurred
but are left undetected. The delay in responding to an incident,
for example, an accident that requires rescue operations, may
increase. In addition to rate and fairness, movement entropy
and energy efficiency are important scheduling metrics. An
increased entropy implies an increased randomness of the cov-
erage schedule, which will make it harder for smart adversaries
to anticipate the sensor’s location and thus avoid detection.
Higher energy efficiency allows the sensor to stay operational
longer, thereby reducing the replacement and management
costs.

One important issue in our problem context is that the
solution space is extremely complex due to a large number
of control parameters that affect multiple performance goals.
In particular, there exist a surprisingly large number of local
minima. Hence the incorporation of noise in the optimiza-
tion is essential to avoid getting stuck at these local op-
tima. We will show that our stochastic optimization method
can optimally balance among the performance metrics. To
the best of our knowledge, there is no existing coverage
algorithm—deterministic or stochastic and constant time or
otherwise—that can provide such optimal tradeoffs.

The case for mobility in monitoring applications has ex-
tensively been discussed in the literature [6]–[8]. In general,
mobile nodes are useful in situations where the installation of
extensive static sensing/communication devices is difficult. For
example, chemical sensors can be deployed at specific locations
in a water distribution system (WDS) to monitor the water
quality for the growth of biological masses, the presence of
contaminants, and other factors [9], [10]. Long-range wireless
communication under water is, however, infeasible due to high
signal attenuation. To solve the problem, a mobile node can be
used to move among the underwater sensors, gather data from
the sensors, and carry the data to a sink for reporting. In this
case, it has been recognized that the overall optimization prob-
lem has multiple objectives that may be antagonistic [10]. For
example, focused data collection near the periphery of the WDS
(in particular, immediate downstream of likely entry points of
contaminants) may minimize the delay of detection, but focused
data collection at the center of the WDS may maximize the
detection probability. Researchers have also deployed mobile
catamarans to monitor water quality in lakes and rivers [11].
A catamaran is energy limited and carries sensors to measure
the temperature, pH, conductivity, and dissolved nutrients of
the water. It autonomously moves on the water surface to cover
different parts of an area of interest over time. When it runs
out of energy, it must be recharged, or the monitoring will
cease to work. Hence, the issue of energy efficiency is critical
for these robotic monitoring agents, although this issue is not
investigated in [11].

Our contributions in this paper are listed as follows.

1) We analyze a general stochastic algorithm to schedule a
mobile sensor’s coverage time among a set of disjoint
PoIs, which is denoted by S. The scheduling is controlled
by a discrete-time Markov chain that takes values in S,
wherein the sensor at PoI i decides to move to PoI j in
the next time step with transition probability pij . (If i = j,
the sensor stays at the same PoI.) The performance of the
Markov chain is measured by its time-limiting measure of
a cost function. The key feature of our setting is that the
cost reflects conflicting criteria such as the distributions
of per-PoI coverage and exposure times. In addition, our
Markov model accounts for physical constraints that are
associated with geographical placements of the PoIs. In
particular, travel from one PoI to another must occur
along a physically feasible route and is subject to speed
constraints. The sensor may also go through other PoIs
that are on the route, thereby affecting the coverage time
of these intermediate PoIs.

2) We provide closed-form analytical formulas in terms of
the Markov transition probabilities to express the cost
function. To provide a specific model example, we con-
sider the following four criteria:

• the achieved distribution of coverage times among
the PoIs;

• the achieved distribution of the per-PoI exposure
times;

• the entropy of the movement schedule;
• the energy efficiency of the schedule.

Such a formulation greatly simplifies the simulation and
optimization procedure. Based on our analytical formu-
las, we develop a steepest descent optimization method
to determine the Markov transition probabilities such that
the cost function, expressed as a weighted sum of the
performance metrics, is minimized. The optimization is
comprehensive, because we search for an optimal solu-
tion in the space of all transition probabilities. The trend
of our optimal solutions agrees with the physical inter-
pretation. In particular, when considering the tradeoff
between coverage time and per-PoI exposure time, we
show that, as we reduce the weight of the exposure time
metric, the sensor can adapt by moving less between the
PoIs, thereby conserving motion energy and more closely
achieving the target per-PoI allocation of coverage
times.

3) As a practical numerical computation issue, we discuss
how we can estimate optimal time steps in the steepest de-
scent to achieve fast convergence to the optimal Markov
transition probabilities.

4) We present empirical evidence that there may exist an ex-
tremely large number of local optima in the solution space
of our problem due to our comprehensive search space of
all the transition probabilities for multiple performance
criteria. Hence, the basic steepest descent method may
become trapped at a local optimum with high probabil-
ity, i.e., from more than 60% of the random positions
where the search starts. We show that, by properly adding
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noise in the search process, we can get out of the local
optima in practically all the test cases, arriving at the
global optimum solution, irrespective of where the search
began.

All of the aforementioned assertions are verified by robust
numerical and simulation results.

II. RELATED WORK

The online scheduling of our mobile sensor is controlled by
a Markov chain that takes values in a set of PoIs covered by
the sensor. When the sensor is at a PoI, e.g., i, it determines the
next PoI j to visit with transition probability pij . Hence, the
online scheduling is effected by a simple coin toss at each
decision point. The approach is similar to existing scheduling
algorithms such as SFQ [1] and lottery scheduling [3]. How-
ever, in SFQ and lottery scheduling, determining the probabil-
ities of the coin toss is simple and based on only the target
service rates for the clients. In this paper, we aim at optimizing
the transition probabilities to achieve a user- or application-
defined notion of the best tradeoff between a number of pos-
sibly conflicting performance objectives. This optimization of
the transition probabilities through stochastic steepest descent
represents a fundamental departure from existing scheduling
approaches.

Markov chain Monte Carlo (MCMC) methods [12], [13] can
be used to determine the Markov transition probabilities if we
target only the distribution of the sensor’s coverage time among
the PoIs, although care is needed to account for the intermediate
PoIs visited as the sensor moves from the current PoI i to
the next PoI j. In this case, the solution that achieves a target
coverage-time distribution is not unique and can be optimized
for maximum entropy. MCMC methods are not applicable
when the tradeoffs between multiple performance objectives
are considered.

The case for multiple performance objectives in schedul-
ing problems has been well recognized. Rate, fairness, delay,
and jitters are common performance metrics for a range of
time-shared resources such as communication and computation
bandwidth. Given one of the performance goals, it is known
that different algorithms may be designed to achieve different
performance for another goal [14]. In sensor networks, the
importance of multiple performance objectives and the chal-
lenge in balancing between the possibly conflicting objectives
have similarly been acknowledged [10]. For the placement
of static sensors against contaminations in a WDS, for ex-
ample, different optimization objectives will lead to differ-
ent placement strategies. To minimize the delay of detecting
contaminants in the WDS, placement of sensors at the pe-
riphery, where the contaminants will likely enter the WDS,
is called for. To maximize the probability of detection, how-
ever, placement in the middle of the WDS may be the most
effective.

However, although the existence of diverse performance ob-
jectives is well known and individual algorithms may approach
their simultaneous achievement differently, the design of a uni-
form approach to support a range of tradeoffs and optimize the

tradeoff according to user/application requirements has been
absent in the literature. This paper aims at providing such an
approach in optimizing tradeoffs between important objectives
in mobile sensor coverage, including the distributions of per-
PoI coverage times and exposure times, energy efficiency, and
entropy of the coverage schedule. To the best of our knowledge,
there is no existing approach that can provide these optimal
tradeoffs in sensor coverage problems.

III. PHYSICAL SETUP

We consider a mobile sensor that moves among a number of
PoIs placed in a geographical area. The sensor has a sensing
range of r. A PoI, e.g., i, is said to be covered by the sensor if i
is within distance r of the sensor, in which case the sensor can
gather useful information about i (e.g., detect any interesting
event that happens at i). The PoIs are disjoint, because no two
PoIs can be covered by the sensor at the same time. However,
they are fully connected, which means that a path exists for the
sensor to move between any two PoIs. As the sensor travels
from PoI i to PoI j on a path, it may pass through (and hence
cover) other intermediate PoIs that are geographically situated
along the path. We allow the user to specify a target allocation,
which is denoted by Φ, of the sensor’s coverage time among the
PoIs, where Φi is the target fraction of the coverage time that
should be received by i. The target allocation may reflect the
different importance of the PoIs.

The scheduling of our mobile sensor is controlled by a
Markov chain, which describes the sensor’s travel between the
PoIs. We design the Markov chain to minimize a general cost
function, which can account for factors such as the distributions
of per-PoI coverage and exposure times, an entropy measure
that quantifies the randomness of the sensor schedule, informa-
tion capture about dynamic events, and energy efficiency. One
key feature of our framework is that it can possibly incorporate
conflicting performance objectives while accounting for the
dependencies between the PoIs that were covered due to their
geographical placement.

For discussion, we will focus on a cost function, denoted as
U , that considers the distributions of per-PoI coverage times,
per-PoI exposure times, randomness, and energy efficiency of
the sensor schedule. Other performance criteria can be in-
cluded without much difficulty. Our approach expresses the cost
function in terms of the transition probabilities of the Markov
chain and uses steepest descent to find the optimal transition
probabilities. The advantages of our method are its simplicity
and the comprehensiveness of the search space.

A. Derivation of the Cost Function U

We now describe details of the mathematical setup. Suppose
there are M PoIs, denoted by the set S = {1, 2, . . . ,M}. Con-
sider a time-homogeneous Markov chain {Xn}n≥1 that takes
values in S. The sensor moves between the PoI locations (i.e.,
states in the Markov chain) as the Markov chain state transi-
tions. The transition probabilities are denoted by {pij}i,j∈S :
pij = P (Xn+1 = j|Xn = i).



MA et al.: STEEPEST DESCENT OPTIMIZATION OF MULTIPLE-OBJECTIVE MOBILE SENSOR COVERAGE 1813

To relate the (discrete) transition time step n and the physical
elapsed time, we use the following notation.

• Tjk is equal to the sum of the travel time from PoI j to PoI
k and the pause time Pk at k. Note that Tjj = Pj .

• Tjk,i is equal to the time the sensor, upon traveling from j
to k, passes by PoI i. These quantities, in essence, reflect
the side effects of coverage imposed by geographical
constraints. A PoI, e.g., i, can still be covered even if
it is not the intended destination of a transition, because
the sensor has to go through i to reach the destination,
although it may not pass through the center of i. We use the
following convention: Tjj,i = 0 for j �= i, and Tjj,j = Pj

(the pause time at j).
With the aforementioned notation, the physical time that

elapsed after N state transitions is given by

T (N) =
N∑

n=1

∑
j,k

Tjk1j(Xn)1k(Xn+1)

where 1i(x) = 1 if x = i; otherwise, it is 0. Furthermore, the
total coverage time of PoI i by the sensor is given by

Ci(N) =
N∑

n=1

∑
j,k

Tjk,i1j(Xn)1k(Xn+1).

We now define three other quantities used in our performance
metric. The first quantity is 〈Ei(N)〉—the average exposure
time—which is the arithmetic average (taken in the first N
transitions) of the lengths of the continuous time intervals
during which the PoI i is out of range of the sensor. More pre-
cisely, let Ei,1, Ei,2, . . . , Ei,m be the consecutive time intervals
during which the sensor is away from i during the first N state
transitions. Then

〈Ei(N)〉 =
Ei,1 + Ei,2 + · · · + Ei,m

m
.

The second quantity is entropy. Its main significance is
introducing randomness into the mobile sensor schedule for its
unpredictability. Hence, it is natural to search for the transition
rates so that the Markov chain achieves maximum entropy. Let
pij be the probability for the sensor to travel from PoI i to PoI j
and {X1,X2, . . . , XN} be the sequence of the PoIs visited by
the sensor in N steps. Then, the entropy of the sensor schedule
is approximated by [15, p. 76]

〈H(N)〉 = − 1
N

ln P (X1,X2, . . . , XN )

= − 1
N

ln
(
P(X1)ΠN−1

k=1 pXkXk+1

)
. (1)

The third quantity is 〈D(N)〉: the average energy cost of the
sensor measured as the distance traveled by the sensor. Let dij

indicate the travel cost from PoI i to j. The cost of energy of
the sensor is given by

〈D(N)〉 =

∑N
n=1

∑
j,k djk1j(Xn)1k(Xn+1)

T (N)
.

With the aforementioned expression, we define the cost
function U to be the following long time limit:

lim
N→∞

{∑
i∈S

1
2
αi

(
Ci(N)
T (N)

− Φi

)2

+
∑
i∈S

1
2
βi 〈Ei(N)〉2

− 1
2
η 〈H(N)〉 +

1
2
ρ 〈D(N)〉

}

where αi’s, βi’s, η, and ρ are user-defined constants, and
Φi’s represent the prescribed distribution of per-PoI coverage
times.

The intuition of the aforementioned cost function is given as
follows. The part with the αi terms measures the discrepancy
between the actual and prescribed distributions of per-PoI cov-
erage times. The part with the βi terms measures the average
per-PoI exposure time. The part with the η term measures the
randomness of the sensor schedule. The part with the ρ term
measures the energy cost of the sensor schedule. Intuitively,
minimizing the function U attempts to reduce the coverage-
time discrepancy, the expected exposure time, and the energy
cost while increasing the randomness of the schedule. However,
the coverage time, exposure time, and energy cost measures
are generally antagonistic; therefore, the optimal choice of
the transition probabilities is the result of a delicate tradeoff
between them. The parameters αi’s, βi’s, η, and ρ express
the relative importance of the four measures, and they can be
adjusted by the user.

B. Formula of the Cost Function U

Our next goal is to express the aforementioned cost function
as an explicit function of the pij’s, which completely character-
ize the Markov chain. For this case, we will assume, for the rest
of this paper, that the Markov chain is ergodic.

Let {πi}i∈S be the stationary distribution of the Markov
chain. By ergodicity, we have

lim
N→∞

T (N)
N

=
∑
j,k

πjpjkTjk, lim
N→∞

Ci(N)
N

=
∑
j,k

πjpjkTjk,i.

Hence, the long-term average of the coverage time distribution
C̄i can be defined and computed as

C̄i = lim
N→∞

Ci(N)
T (N)

=

∑
j,k πjpjkTjk,i∑
j,k πjpjkTjk

. (2)

To simplify the mathematical expression for the long time
limit limN→∞〈Ei(N)〉, we will make the following assump-
tions, which will not qualitatively change our conclusions.

1) If a PoI is simply passed by while the sensor travels
between two other PoIs in a transition, then the passing-
by is not considered a return visit.

2) We assume that the time elapsed during each travel is
always equal to one unit of time—this assumption is only
enforced in the computation of the 〈Ei〉’s. [The exact
analytical expression for the exposure times, without the
aforementioned assumptions, are derived in Remark 4;
see (12). However, its usage will unnecessarily increase
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the computational load without giving any new interpreta-
tion.] With this simplification, physically, each exposure
time segment {Ei,l}l=1,2,... is measured from the PoI
location (e.g., i) immediately after the sensor has left
i. Let Rji be the expected value of the time the sensor
takes to reach (or return to) i from j. This quantity is
also traditionally called the expected first passage time.
Because the probability of traveling from i to j is given
by pij , we have the following expression for the long time
average of the exposure times:

Ēi = lim
N→∞

〈Ei(N)〉 =

∑
j �=i pijRji∑

j �=i pij
=

∑
j �=i pijRji

1 − pii
. (3)

For the entropy of the Markov chain, the long time limit of
the expression (1) is given by [15, p. 76]

H̄ = −
∑

i

πi


∑

j

pij ln pij


 . (4)

In addition, we can give the following analytical formula for
the average energy cost of the sensor:

D̄ =
∑

i

πi


∑

j �=i

pijdij


 (5)

where dij indicates the travel cost from PoI i to j (for j �= i).
The factor πi represents the stationary distribution of the sensor
locations in the long run.

With the aforementioned expression, the cost function U can
be written as

U =
∑
i∈S

1
2
αi


∑

j,k

πjpjk(Tjk,i − ΦiTjk)




2

+
∑
i∈S

1
2
βi

[∑
j �=i pijRji

1 − pii

]2

+
1
2
η

∑
i∈S

πi


∑

ij

pij ln pij




+
1
2
ρ

∑
i∈S

πi


∑

j �=i

pijdij


 . (6)

Note that, in (6), the cost of matching is expressed in absolute
time instead of a relative fraction in (2), because it has an easier
computational expression. Qualitatively, both of them mea-
sure the discrepancy between the actual and desired coverage
profiles.

Remark 1—Search Space of the Optimization: In the current
setting, we search within the space of all transition probabili-
ties. This approach is in contrast to most problems in stochastic
control, in which the search or action space is usually parame-
terized by a finite number of parameters. Thus, the novelty of
our approach is that the solution gives the true optimal among
the class of all Markov chains. Because of the comprehen-
siveness of our search space, we are faced with the following

two major difficulties, although our explicit analytical formulas
have greatly simplified the problem.

1) Superlinear growth of the number of search variables. Let
n be the total number of PoIs. The number of transition
probabilities pij’s is of the order O(n2). Because of
this high number of search directions, the optimization
algorithm can be extremely time consuming.

2) Large number of local minima. Our cost function U is
nonlinear, and as indicated by the large number of local
optima in the solution space illustrated in the simulation
results, our cost function U is also highly nonconvex.
Hence, appropriate stochastic perturbation is essential
for the search algorithm to get out of the local optimal
solutions.

Even with the aforementioned difficulties, our algorithm,
which is adaptive (by incorporating changing time steps) and
stochastic (by the addition of noise), shows that optimal solu-
tions can be achieved within realistic time budgets.

Remark 2—Utility Viewpoint of the Cost Function: We min-
imize a cost function in our problem formulation. This mini-
mization of a cost function is equivalent to the maximization
of a corresponding utility function. According to this utility
viewpoint, we assume that the user derives a “utility” (i.e.,
level of satisfaction) for each achieved value of a metric. Our
procedure then optimizes the aggregate utility of all the metrics.

In the aforementioned derivations, because we weight the
entropy and energy metrics by a constant factor in the cost
function, we implicitly assume that the corresponding utility
functions of these two metrics are linear. On the other hand,
we use a square function, which is convex, for the terms of
matching and unfairness in the cost function. This approach
implicitly assumes that the corresponding utility functions of
these two metrics are concave—a convex function in the cost
minimization is equivalent to a concave function in the utility
maximization. Concave utility functions are meant to model
the law of diminishing marginal returns for certain quantities.
Hence, the weights of different metrics in the cost function
can all be obtained directly from the user’s utility functions
for these metrics. For the linear functions, the weights give the
slopes of the functions. For the concave functions, the weights
give the scaling factors of the square functions in the cost
minimization.

Our problem formulation can easily be adapted to consider
general forms of utility functions, provided that the functions
are differentiable. For example, the optimization objective can
be in the form of

∑
i ui(vi), where i is a given metric, ui is its

utility function in general form, and vi is the value of the metric
achieved, given the control parameters (i.e., transition proba-
bilities). In addition, we can account for certain constraints on
performance metrics if a general utility function is used. For
example, to enforce a maximum constraint on exposure time,
we can define the utility to be zero if the achieved exposure
time is higher than the constraint.

C. Analytical Representation of U Using Generalized Inverse

Although (6) for the cost function is highly explicit, it still
requires the computation of the stationary distribution {πi} and
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the first passage time matrix {Rij}. To efficiently compute
them, we employ the concept of generalized inverse. In the
following paragraphs, we review the basic properties of this
mathematical object, with particular application toward Markov
transition matrices. The material is mainly based on [16].

Let P = {pij}i,j∈S be an ergodic Markov transition matrix.
Consider the generalized inverse A� of A = I − P , which is
defined as the matrix that satisfies

AA�A = A, A�AA� = A�, and A�A = AA�.

The existence and computation of A� is given by [16, Th. 2.1
and 5.1].

Using A�, the stationary distribution π = {πi} and the
expected first passage time matrix R = {Rij} can be ex-
pressed as

W = I − AA�, ([16, Th. 2.3]) (7)

R =
(
I − A� + JA�

dg

)
, ([16, Th.3.3, 3.6]) (8)

where W is the matrix such that all of its rows are the stationary
distribution π, J is the M × M square matrix, with all of its
entries equal to one, A�

dg is the diagonal matrix that consists
of the diagonal entries of A�, and D is the diagonal matrix
such that Dii = (1/πi). Note that we can have such a simple
expression (8) for the Rij’s due to the simplifying assumptions
that we have for the exposure times.

The generalized inverse is also related to the commonly
known fundamental matrix Z = (I − P + W )−1 by the for-
mula [16, Th. 3.1]

Z = I + PA�. (9)

Using Z, R can then be expressed as

R = (IZ + JZdg)D, where Rij =
1i(j) − zij + zjj

πj
. (10)

The aforementioned result is the one used in the actual numeri-
cal computation.

Remark 3: Note that there are constraints for the pij’s.
First, they must satisfy that condition that 0 ≤ pij ≤ 1 and∑

j∈S pij = 1, i.e., they lie in a higher dimensional polytope.
Although this property is manageable within the realm of
nonlinear optimization theory, to simplify the computational
algorithm, we add a small penalization term ε to handle the case
of pij = 0 or 1. More specifically, we consider the following
penalized version Uε of U :

Uε =
∑

i

1
2
αi


∑

j,k

πjpjk(Tjk,i − ΦiTjk)




2

+
∑

i

1
2

βi

π2
i (1 − pii)2


∑

j �=i

pij (1j(i) − zji + zii)




2

+
1
2
η

∑
i

πi


∑

ij

pij ln pij


 +

1
2
ρ

∑
i

πi


∑

j �=i

pijdij




−
∑
ij

1
ε
[ln pij ](ε − pij)2sgn(ε − pij)

−
∑
ij

1
ε

[ln(1 − pij)] (1 − ε − pij)2sgn(pij − 1 + ε)

(11)

where sgn(x) is equal to one for x ≥ 0; otherwise, it is zero.
Note that Uε −→ +∞ as any of the pij converges to 0 or 1.
This condition is prohibited by the steepest descent algorithm,
whose purpose is to minimize U . The constraint

∑
j pij = 1

can easily be handled by a projection method, which will be
described later.

Second, in the current setting, all transitions between any
two PoIs are possible. However, if some of the transitions are
not allowed or are physically infeasible, we can simply set the
corresponding pij’s to be zero or small.

Remark 4—General Formula for the Rij’s: Here, we derive
the exact analytical formulas for Rij’s and the exposure times
without the simplifying assumption (2) in Section III-B. Recall
that the exposure time for a PoI is defined as the average of the
time segments during which the sensor is away from the PoI.
This is closely related to the first passage time Rij used in the
analysis of Markov chains problems.

Define Tji = min{t : Xt = i,X0 = j} and Rji = ETji,
then, Ēi = (1/1 − pii)

∑
j �=i pijRji [see (3)]. Now, let tij be

the travel time from PoI i to j and tij,k be the first time the
sensor will pass by PoI k upon traveling from i to j. (Note that k
is not necessarily equal to j due to the underlying geographical
configuration.) For convenience, we set tij,k to be 0 if k is
actually not at all passed by the sensor. Then, we have the
following expression (for k �= l):

Rkl = pkltkl +
∑

m �=l,tkm,l �=0

pkmtkm,l

+
∑

m �=l,tkm,l=0

pkm(tkm + Rml). (12)

In principle, the Rij’s can be solved from the aforementioned
system of linear equations (see [17, p. 78]) for deriving and
solving the traditional first passage times. The approach will
certainly increase the computational load. Based on our simula-
tion results, the results are not changed in any qualitative sense
by using the simplifying assumption (2).

IV. STEEPEST DESCENT OPTIMIZATION

This section describes the use of steepest descent to search
for the minimum of Uε. Let U = U(q1, q2 . . . , ql) be some
function, depending on the variables q1 . . . ql. We would like
to search for the minimum of U by evolving the variable qi’s.
For simplicity, let Q(t) = (q1(t), . . . , ql(t)) denote the values
of the qi’s at time t. Then, we compute

d

dt
U (Q(t)) = ∇U (Q(t))

dQ(t)
dt

.



1816 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 4, MAY 2012

Now, if we choose (dQ(t)/dt) = −∇U(Q(t)), then

d

dt
U (Q(t)) = − |∇U (Q(t))|2 < 0

i.e., U is decreasing. Note that steepest descent, as implemented
above, could only lead to a local minimum or critical point. In
Section V, we will show how stochastic perturbation can solve
this problem.

To apply the aforementioned formalism for the minimization
of the cost function, we write U as

U = U(π,Z, P ) = U (π(P ), Z(P ), P ) = U(P )

where P = (pij) is the transition matrix. Then

d

dt
U (P (t)) =

∑
i

∂U

∂πi

dπi(t)
dt

+
∑
jk

∂U

∂zjk

dzjk(t)
dt

+
∑
jk

∂U

∂pjk

dpjk(t)
dt

.

The expressions for (∂U/∂πi), (∂U/∂zij), and (∂U/∂pij)
can easily be derived by straightforward partial differentiation.
The formulas for (dπi(t)/dt) and (dzjk(t)/dt) can be obtained
by considering the perturbation analysis of Markov chain [18].
Precisely

• Based on [18, eqs. (15), (17), and (23c)]

dπ

dt
= πṖZ, or component-wise,

dπi

dt
=

∑
k,j

πkzjiṖkj .

• Based on [18, eqs. (16), (18), and (23d)]

dZ

dt
=ZṖZ − WṖ (Z2), or component-wise,

dzij

dt
=

∑
kl

[
zikzlj − πk(Z2)lj

]
Ṗkl

where (Z2)lj =
∑

m zlmzmj .
Based on the aforementioned results, if we let [DP U ]kl be

the following expression:[∑
i

πkzli
∂U

∂πi

]
+


∑

ij

∂U

∂zij

[
zikzlj − πk(Z2)lj

] +
∂U

∂pkl

(13)

then we have

dU

dt
=

∑
kl

[DP U ]klṖkl = 〈DP U, Ṗ 〉.

We can simply take Ṗkl = −[DP U ]kl. However, as afore-
mentioned, P (t) must be a transition matrix at all t, i.e.,
it has to satisfy for all j,

∑
k pjk(t) = 1. To accommodate

this condition, we orthogonally project DP U onto this linear
subspace, i.e.,

dU

dt
=

〈
Π[DP U ], Ṗ

〉

and then take

Ṗkl = − (Π[DP U ])kl .

The formula for the projection Π is given by

Πij = Uij −
∑

k Uik

M
for all i, j (14)

where Uij and Πij are the entries of [DP U ] and Π[DP U ],
respectively. Note that

∑
j Πij = 0, i.e., the sum of each row

of Π is zero. Hence, the property that the quantities represent a
transition probability matrix is preserved at all time.

V. COMPUTATIONAL ALGORITHM

The aforementioned steepest descent algorithm will be im-
plemented as follows.

1) Start with an arbitrary ergodic transition probability P .
2) Compute [DP U ] (13) and its projection Π[DP U ] (14).
3) Set V = −Π[DP U ].
4) Set the new P as P + V ∗ �t, where �t is some small

time step.
5) For the new P , compute π, Z, and R by (7), (9), and (10).
6) Go back to step 2) or stop if the optimal is attained (within

some tolerance level).

Note that the ergodicity of P is ensured by the finiteness
of all the Rij’s, which is, indeed, preserved during the whole
computation.

In the rest of this paper, we will study the following variants
of the steepest descent algorithm.

V1: Basic algorithm. All the pij values are initially set to
(1/M), where M is the number of PoIs. A constant time
step ∆t is used. This provides a basic test for the validity
of our steepest descent algorithm.

V2: Random initial data. In this case, the initial values of the
pij’s are random. They are set to (rand × rem/M), except
for the entries in the last column, which will be set to rem,
where rand is a random number between 0 and 1, rem
is the remaining probability for pij’s within a row (as the
summation of a row should be one), and M is the number
of PoIs. This test will ensure that our algorithm is stable
with respect to the initial condition.

V3: Adaptive time step ∆t. With the gradient information ∇U
in the current transition matrix P , the optimal time step
∆t∗ is chosen as follows:

∆t∗ = min
s>0

U (P − s∇U(P )) .

The boundaries of ∆t are first determined with respect to
the constraint that 0 ≤ pij ≤ 1 after the update. Because
it is unclear how the utility changes within the range of
∆t, a conservative trisection method (wherein only one
subsection is removed as we tighten the bounds) is used
to tighten the range until ∆t∗ is found. The algorithm
terminates when ∆t∗ = 0. We define the terminating point
as a local optimum when, in fact, there exists another
terminating point with a lower cost.
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V4: Stochastic perturbations. This step ensures that our algo-
rithm will not get stuck at a local minimum of the cost
function, which is shown to be essential in Section VII.
The [DP U ] values are perturbed by mean-zero Gaussian
noise with standard deviation δ. ∆t∗ is then computed
using the perturbed [DP U ]. If ∆t∗ = 0, then ∆t = rand,
where rand is a random number between the boundaries
of ∆t, which are determined with respect to the constraint
that 0 ≤ pij ≤ 1 after the update. The updates to pij’s are
accepted if the computed utility is better than the origi-
nal values; otherwise, they are accepted with probability
e(−∆U /k×log(count)), where ∆U is the worsening in cost
U after normalization by the best cost computed so far,
count is the number of iterations already performed by the
algorithm, and k is a constant parameter. The normaliza-
tion is important, because it allows us to determine how
high the algorithm should “jump” (in trying to get out of
a local optimum) without knowing the range of the cost
function Uε (which is frequently unknown beforehand).
Intuitively, the algorithm accepts unattractive changes with
higher probability at the beginning of the search, and
this probability decreases as the algorithm proceeds. This
way of accepting the updates is similar to the cooling
process in simulated annealing. The optimality and con-
vergence of simulated annealing has a strong theoretical
basis and will be discussed in Section VI. However, con-
vergence, in practice, is usually much faster, as we show in
Section VII-B.

Henceforth in this paper, we will use the steepest descent
algorithm to refer to our general solution approach. In addition,
we will call variant V1 of the algorithm the basic algorithm, the
basic algorithm modified by variants V2 and V3 the adaptive
algorithm, and the basic algorithm modified by all of variants
V2–V4 the stochastically perturbed algorithm or, simply, the
perturbed algorithm. We have verified the performance of the
steepest descent by using the transition matrices computed
by the algorithm at each iteration to drive a corresponding
simulation of the mobile sensor’s coverage. We found that the
algorithm can achieve good tradeoffs between the coverage
time, exposure time, entropy, and energy efficiency metrics,
as the weightings of the four parameters in the cost function
are varied. In addition, the adaptive algorithm can speed up
convergence to the final solution, and the perturbed algorithm
can additionally converge to the globally optimal steady state in
practically all of the scenarios.

VI. CONVERGENCE ISSUES OF THE

PERTURBED ALGORITHM

In this section, we address the question of convergence of our
algorithms. In essence, our goal is to optimize some objective
functionals. The most intricate part is the presence of a large
number of local minimizers. Such a setting can be handled by
the classic method of simulated annealing [19]. Our approach
is in direct analog with this method. The dynamics simulated
by our algorithm can formally be modeled by

dP (t) = −∇U (P (t)) dt +
√

T (t)dW (t) (15)

where the first term on the right corresponds to the steepest
descent, whereas the second term introduces noise to stick the
state out of the local minima. The key is the choice of the
temperature T (t), which should follow some cooling schedule
to produce realistic results. The key is to let T (t) converge to
zero as time goes to infinity—too fast a rate leads to getting
stuck in local minima, whereas too slow a rate implies slow
convergence of the overall algorithm. There has been much
theoretical work that addresses this question [20], [21]. It has
been established that, if T (t) satisfies the condition

T (t) ≥ C

log(1 + t)
(16)

for some large-enough C, then the solution P (t) of (15) will
converge to the global minimum of U . The actual choice of C
depends on the shape of and the depths of the local minima
of U . The condition (16) is, in fact, optimal [21]. However
without knowing a priori the properties of U , it will be difficult
to obtain the optimal choice of C. Hence, to avoid delving into
the theoretical issues, we resort to our simulation algorithms. In
fact, many practical simulations work better than the theoretical
prediction [22, pp. 311–316]. Our results also indicate so.
We will also refer to [23] for some recent surveys about the
convergence and the choice of cooling schedules in simulated-
annealing-type algorithms.

VII. PERFORMANCE MEASUREMENTS

In this section, we study the performance of the steepest
descent algorithm. For simplicity of exposition, we consider the
case that the αi’s and βi’s in (11) are all equal, i.e., α1 = α2 =
· · · = αM = α and β1 = β2 = · · · = βM = β. We now write
the cost function in (6) as

U =
1
2
α∆C +

1
2
βĒ − 1

2
ηH̄ +

1
2
ρD̄ (17)

where we further define the coverage time deviation ∆C as

∆C =
∑
i∈S


∑

j,k

πjpjk(Tjk,i − ΦiTjk)




2

and the average exposure time Ē as

Ē =
∑

i

Ē2
i =

∑
i∈S

[∑
j �=i pijRji

1 − pii

]2

.

In addition, recall the formulas for the average entropy H̄ and
energy cost D̄ in (4) and (5), respectively.

We will study the following performance aspects of the
steepest descent algorithm: 1) the stability and adaptivity of the
steepest descent algorithm (see Sections VII-A–C); 2) the trade-
off between different performance metrics (see Sections VII-D
and E); 3) the performance of actual Markov chain simulations
of the coverage schedules (see Section VI-F).

In our experiments, we use the four topologies shown in
Fig. 1. Each PoI i in the topologies is the center of the cell
labeled with i, and its targeted share of coverage time Φi is
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Fig. 1. Target per-PoI shares of coverage times Φi in four simulation topolo-
gies. (a) Topology 1 (1 × 4). (b) Topology 2 (3 × 3). (c) Topology 3 (3 × 3).
(d) Topology 4 (4 × 4).

given in parentheses. We assume that, in traveling from i to j,
the sensor uses the straight-line path between i and j.

A. Existence of Numerous Local Optima

We characterize the search space by comparing the adaptive
algorithm (i.e., the basic algorithm modified by variants V2
and V3 in Section V) and the perturbed algorithm (i.e., the
basic algorithm modified by variants V2–V4 in Section V)
under Topology 4 in Fig. 1. In computing the cost function,
we illustrate the cases of considering the following three con-
ditions: 1) Ē only (α = 0, β = 1, η = 0, ρ = 0); 2) both ∆C
and Ē (α = 1, β = 0.0001, η = 0, ρ = 0); and 3) ∆C only
(α = 1, β = 0, η = 0, ρ = 0) while having ε = 0.0001 and k =
10000. The cumulative distribution functions (cdf’s) of the
achieved costs Uε by the adaptive and perturbed algorithms are
shown in Fig. 2.

Based on the figures, observe that the adaptive algorithm
hits a large number of local optima in its search, from which
it cannot discover a better cost U in the computed descent
direction. The presence of numerous local optima makes it
essential to adopt noise in the search process, as detailed by the
design of the perturbed algorithm in Section V. In Fig. 2, notice
that the perturbed algorithm achieves much better performance
than the adaptive algorithm, as evidenced by the extremely
sharp rise of the cdf at the global optimum solution. Indeed, the
perturbed algorithm computes a solution that is extremely close
to, if not exactly the same as, the global optimum in all the runs
of the experiment, irrespective of the initial search parameters.

B. Adaptivity and Stability of the Algorithm

In this set of experiments, we trace the evolution of the cost
function U as the transition matrix changes in each iteration of
the steepest descent algorithm. We verify that steepest descent

can progressively improve the transition matrix by reducing U
over the iterations. To demonstrate that the algorithm does not
get stuck at a local minimum, we show convergence to the same
transition matrix and U value from different initial pij’s using
the perturbed algorithm in Section V. To simplify the study, we
have η = ρ = 0.

We study the stability and adaptivity of the algorithm under
two settings, with ε = 0.0001 and ∆t = 0.000001 (for further
results, see our technical report [24]).

∆C Only (α = 1, β = 0): We evaluate the case when the
cost function considers only the coverage time deviation metric.
The results of the basic algorithm using Topology 3 are depicted
in Fig. 3(a). In addition, we evaluate the perturbed algorithm
with different initial values of pij’s (i.e., the initial pij’s are
generated using different random seeds), and the results are
shown in Fig. 3(b).

Both ∆C and Ē: We further consider the case where the
coverage time deviation metric and the exposure time metric
have nonzero weights. The results for different α and β values
for the basic algorithm using Topology 1 are shown in Fig. 4.

Observations: Based on the simulation results, we deduce
the following.

1) During the optimization, the cost function generally de-
creases until it reaches a stable value, as depicted in
Figs. 3 and 4. However, the marginal reduction in the
cost becomes smaller as the number of iterations becomes
larger.

2) Using different random seeds to generate the initial pij’s
does not affect the performance of the perturbed algo-
rithm [see Fig. 3(b)], because it will converge to the
same stable values of the cost function. However, the
convergence and its time will be affected. Moreover,
the perturbed algorithm can converge extremely close to
the same optimal costs in all these situations, i.e., the
algorithm is not trapped at a local minimum. This result
also holds for more complex topologies.

C. Effect of δ in the Perturbed Steepest Descent Algorithm

Recall that δ is the standard deviation of the zero-mean
Gaussian noise used to perturb the [DP U ] values during the
steepest descent algorithm. In this set of experiments, we study
the effect of δ on the performance of the transition matrix
obtained at the end of the simulations.

While keeping ε = 0.0001 and ∆t = 0.000001, Fig. 5 shows
the results when we consider only the coverage and exposure
metrics, i.e., α = 1, β = 0.0001, η = 0, and ρ = 0. Fig. 6
shows the results when we consider the coverage, exposure, and
entropy metrics, i.e., α = 1, β = 0.0001, η = 0.001, and ρ = 0.
Fig. 7 shows the results when we consider the coverage, ex-
posure, and energy efficiency metrics, i.e., α = 1, β = 0.0001,
η = 0, and ρ = 0.001.

Observations: As shown in the figures, the value of δ affects
the performance of the transition matrix obtained at the end of
the simulations. On the other hand, a larger δ does not neces-
sarily improve the performance. For example, Fig. 5 shows that
0.01 is the best δ among all the simulated values, whereas in
Fig. 6, δ = 100 gives the best results.
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Fig. 2. CDFs of the achieved cost Uε in a large number of runs by the adaptive and the perturbed algorithms. Topology 4. (a) Ē only (α = 0, β = 1). (b) ∆C
and Ē (α = 1, β = 0.0001). (c) ∆C only (α = 1, β = 0).

Fig. 3. Performance of the (a) basic and (b) perturbed algorithms with differ-
ent initial pij ’s: Cost function value U as a function of the iteration number.
(α = 1, β = 0, Topology 3.) (a) Basic algorithm. (b) Perturbed algorithm with
different initial pij ’s.

D. Tradeoff Between the δC and Ē Metrics

We study the characteristics of the transition matrix {pij}
and the steady-state distribution πi of the Markov chain when
we vary α and β in (17) using Topology 1 in Fig. 1. To simplify
the comparison, we have η = ρ = 0. We use ε = 0.0001 and
∆t = 0.000001 and vary β from 1 to 0.0000001 while keeping
α = 1. We also study the following two extreme cases: 1) α = 1
and β = 0 (we are concerned with only the ∆C metric) and
2) α = 0 and β = 1 (we are concerned with only the Ē metric).
The results for C̄i and Ēi [as defined in (2) and (3)] are shown
in Tables I and II, respectively.

Observations: Based on the simulation results, we deduce
that, when we reduce β, C̄i (the fraction of time PoI i is
covered) will more closely approximate the target share of
coverage time, whereas Ēi (the average exposure time of i)
grows, as shown in Tables I and II. This is because, upon
reducing β, we are less concerned with the exposure time of
the PoI and are more focused on the target coverage time. We
can also observe that C̄i and Ēi are not significantly changed
when β is large. It is because, for Topology 1, the magnitude of

Ē is significantly larger than ∆C. Hence, even if β (weight of
Ē) is reduced from 1 to 0.01, the exposure time component still
dominates the cost function, and the resulting pij and πi do not
significantly change. We notice that, as the size of the topology
grows, Ē grows and we will need to further reduce β before the
coverage time component in U will have an observable effect
on pij and πi.

E. Interactions Between Performance Metrics

In general, the four performance metrics that we consider are
interdependent. In this set of experiments, we illustrate their
interactions by varying the weight on one performance metric
while keeping the weights of the other metrics constant. The
averaged results of 20 simulation runs are shown in Fig. 8.
Notice that, because the figure plots the values of different
metrics, the y-axis for unfairness is shown on the right vertical
axis instead of the left vertical axis.

Fig. 8(a) shows that, as we increase the weight on matching,
its cost drops in general. The effect is more obvious when the
weight is high. However, when the weight of entropy is really
small, its cost may rise as its weight initially increases. It is
because, when the weight is small, it has little influence on the
overall cost function. As we put more weight on matching, the
performance of both unfairness and entropy gets worse because
to improve matching, the mobile node picks its next destination
with transition probabilities that match the target allocation in
steady state, and the probabilities are unlikely to be uniform,
which benefits the unfairness and entropy metrics.

Fig. 8(b) shows that, as we increase the weight on unfairness,
its cost drops in general, whereas those of matching and energy
increase. It is because to reduce unfairness, the mobile node
has to more frequently visit all of the PoIs. Fig. 8(c) shows that,
as we increase the weight on entropy, generally, its cost drops,
as well as that of unfairness, whereas those of matching and
energy increase. It is because, to improve entropy, the sensor
picks its next destination with a closer to uniform distribution
over all the possible PoIs. Fig. 8(d) shows that, as we increase
the weight on energy, its cost drops in general, whereas those
of unfairness and entropy increase because, to improve energy
use, the sensor has to move less and visit closer PoIs with higher
probability.

F. Performance of Actual Markov Chain Simulations

We evaluate the performance of actual sensor schedules,
because they are controlled by the Markov chain with the
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Fig. 4. Cost function value U in terms of the iteration number. (ε = 0.0001, ∆t = 0.000001, Topology 1.) (a) β = 1. (b) α = 1. (c) α = 1.

Fig. 5. CDFs of the achieved cost Uε in 100 simulation runs by the perturbed
algorithm with different δ values. (α = 1, β = 0.0001, η = 0, ρ = 0, Topol-
ogy 3.)

Fig. 6. CDFs of the achieved cost U in 100 simulation runs by the perturbed
algorithm under different δ values. (α = 1, β = 0.0001, η = 0.001, ρ = 0,
Topology 3.)

Fig. 7. CDFs of the achieved cost U in 100 simulation runs by the perturbed
algorithm under different δ values. (α = 1, β = 0.0001, η = 0, ρ = 0.001,
Topology 3.)

transition matrices found by the steepest descent algorithm.
We verify that the cost function that was predicted by steepest
descent, indeed, reflects the realized ∆C and Ē metrics when
the computed transition probabilities are applied in practice.

We vary the weights α and β in (17) and use steepest descent
to compute the optimal transition matrix. A matrix that was
generated by each iteration of the steepest descent algorithm

TABLE I
C̄i FOR ε = 0.0001, ∆t = 0.000001, TOPOLOGY 1

TABLE II
Ēi FOR ε = 0.0001, ∆t = 0.000001, TOPOLOGY 1

is used to drive a corresponding Markov chain simulation of
the mobile sensor schedule, and the ∆C and Ē values are
measured. Each simulation is repeated ten times to obtain
the reported average. The 25th and 75th percentiles of the
measured values are reported as error bars where they are
significant. We study the case in which both ∆C and Ē are
considered (α = 1, β = 0.001). The results are shown in Fig. 9
for Topology 2. The figure shows that the measured U in the
simulations gives a very close match with the computed U by
the steepest descent, although the match is not exact because of
the simplifying assumption in computing Ē (see Section III-A).
See our technical report [24] for further results.

VIII. CONCLUSION

As discussed, the main contribution of this paper is the com-
putational framework for the search of the optimal transition
probabilities of a Markov chain to minimize some cost function
(or, equivalently, the optimization of some utility function) with
application to the scheduling of mobile sensor coverage. The
key feature of the cost function is that it contains conflicting
or antagonistic criteria such as the coverage and exposure time
metrics. The novelty of our method of solution, through steepest
descent, is its simplicity and the comprehensiveness of the
search space—we look for optimal transition rates in the space
of all transition probability matrices. Underlying this approach
is the explicit expression of the cost (or utility) function in
terms of the transition probabilities. The further advantage of



MA et al.: STEEPEST DESCENT OPTIMIZATION OF MULTIPLE-OBJECTIVE MOBILE SENSOR COVERAGE 1821

Fig. 8. Changes of different metrics in the cost function as we vary the weight of one metric while keeping the other three metrics constant. (α = 1, β = 0.0001,
ρ = 0.1, η = 0.1, δ = 10, and k = 10 000, unless stated otherwise in each subfigure, Topology 1.) (a) Varying α. (b) Varying β. (c) Varying η. (d) Varying ρ.

Fig. 9. Performance of the algorithm. (a) ∆C. (b) Ē. (c) Overall cost function U as a function of the iteration number. (α = 1, β = 0.001, Topology 2.)

our approach is the ease for individual users to adjust the
relative importance of the various criteria suitable for different
applications. One challenge of the comprehensive optimization,
however, is the complexity of the solution space empirically
evidenced by a large number of local optima. We successfully
overcome the challenge by incorporating an adaptive time step
and noise in the optimization.
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