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Ostwald ripening is the coarsening phenomenon caused by the dif-
fusion and solidification process which occurs in the last stage of
a first-order phase transformation. The force that drives the system
towards equilibrium is the gradient of the chemical potential that,
according to the Gibbs–Thomson condition, on the interface, is pro-
portional to its mean curvature. A quantitative description of Ost-
wald ripening has been developed by the Lifschitz–Slyozov–Wagner
(LSW) theory. We extend the work of Niethammer (2000) [15]
which deals with kinetic undercooling in the quasi-static case
to the parabolic setting with temporally inhomogeneous driving
forces on the solid–liquid interfaces. By means of a priori estimates,
local and global existence results for the parabolic Stefan problem,
we derive a first order approximation for the dynamical equations
for the heat distribution and particle radii and then prove the con-
vergence to a limiting description using a mean-field equation.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The physical model

Ostwald ripening or coarsening [16] is a diffusion and solidification process occurring in the last
stage of a first-order phase transformation. Usually, any first-order phase transformation process re-
sults in a two phase mixture with a dispersed (solid) second phase in a background (liquid) phase
[17,18]. Initially the average size of the dispersed particles is very small. Hence, the interfacial energy
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of the system is very large and the mixture is thus not in thermodynamical equilibrium. The force
that drives the system towards equilibrium is the gradient of the chemical potential. According to the
Gibbs–Thomson condition, on the interface between the two phases, the value of this driving force
is proportional to the mean curvature of the interface. As a result, matter diffuses from regions of
high curvature to regions of low curvature. This leads to the growth of large particles at the expense
of small ones which eventually shrink to vanish. The outcome of this process, known as the Ostwald
ripening, is the increase of the average particle size and the reduction of their number so that the
mixture becomes coarser over time. A quantitative description of this process was first developed by
Lifschitz and Slyozov [12] and independently by Wagner [19] under the assumption that the relative
volume fraction of the dispersed phase is very small. The idea of the LSW theory is to make use of
the growth velocity of an isolated particle. The interaction between the particles is captured through
the average value of the background temperature field. This approach is thus called the mean field
approximation.

More specifically, the LSW theory produces an equation for n = n(R, t) the number density of the
particles at time t as a function of radius R . This function is shown to satisfy the following equation:

∂n(R, t)

∂t
+ ∂

∂ R

(
V (R, t)n(R, t)

) = 0, (1)

where V is the growth rate of a particle of radius R:

V (R, t) = 1

R(t)

(
1

R(t)
− 1

R(t)

)
, (2)

and R(t) is the average particle radius:

R(t) =
∫

Rn(R, t)dR∫
n(R, t)dR

. (3)

Note that by definition, n(R, t)dR gives the number of particles at time t with radius in the range
[R, R + dR]. Hence

∫
n(R, t)dR is the total number of particles present at time t . The system (1)–(3)

is analyzed in [12,19]. It is argued that there exist infinitely many self-similar solutions, but only one
is believed to describe the typical behavior of the system for large times. This is given by

ns(R, t) ∼= 1

t
4
3

G

(
R(t)

R(t)

)
where G(·) is some scaling function. (4)

Based on this, the following temporal laws are derived for the average radius and the total number of
particles:

R(t) ∼=
(

R
3
(0) + 4

9
t

) 1
3

and N(t) ∼=
(

R
3
(0) + 4

9
t

)−1

. (5)

There have been many mathematical works concerning the above description. It is a nontrivial step
to connect statements (1) and (5) rigorously to the underlying diffusion and solidification process.
Note that the above is a mean field description – the velocity function V involves the average of all
the radii. Hence the first mathematical task is to understand under what realistic assumption this
mean field model is justified. It turns out that this is true only when the overall capacity of the solid
particles vanishes. This is a much stronger condition than the requirement that the volume fraction of
the solid phase vanishes. The necessity of this will become clear from the estimates we derived in
the later sections.
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Another important ingredient is the boundary conditions at the solid–liquid interphase. The most
common ones are the equilibrium Gibbs–Thomson condition and the more general kinetic undercooling.
The purpose of this work is to understand the effects coming from the presence of spatially inho-
mogeneous driving forces, in particular, at the interfaces. The ultimate goal is to incorporate realistic
stochastic driving forces. Even though we restrict our attention to deterministic driving forces in this
paper, we believe that our result can shed light on the plausible approaches and the desired estimates
to handle the stochastic case.

We now describe in detail the mathematical formulation of the above solidification phenomena.

1.2. Mathematical formulation – free boundary value problem

In this section, we describe the mathematical set-up for the diffusion and solidification process.
In the following, we consider the growth of the solid phase of a substance in an undercooled liquid
phase of the same substance. Assuming isotropic growth, one possible model is the following Stefan
problem for the temperature field θ and the solid–liquid-interface Γ [7,10]:

C∂tθ = K�θ in ΩL,

H V = −K∇θ · n on Γ,

V = −M
(
θMσk + H(θ − θM)

)
on Γ, (6)

where the liquid and solid phases are denoted by ΩL and ΩS = R3\ΩL respectively, while Γ = ∂ΩS is
the solid–liquid interface. Note that these sets are all time dependent. In the above, K is the thermal
diffusivity, C is the heat capacity, θM is the melting temperature at a flat interface, H is the latent
heat, σ is the surface tension, M is a mobility coefficient, k denotes the mean curvature of Γ (which
is positive for a ball), n is the outward normal to the solid phase, and V is the normal velocity of
the interface. The first interfacial condition on Γ , also known as the Stefan condition, ensures local
conservation of heat. The second interfacial condition, known as the kinetic undercooling, couples the
geometry of the interface with the evolution of the temperature in the liquid phase ΩL . The curvature
term forces the system to reduce the surface area of the interface Γ . But in the case of undercooled
liquid, the second term gives a growing tendency for the solid phase. In other words, these two terms
compete against each other. The following equilibrium condition

θMσk + H(θ − θM) = 0, (7)

formally derived by setting V = 0 or M = ∞ is called the Gibbs–Thomson law on the interface. It pre-
dicts that the melting temperature is reduced for small particles. It is this effect which provides the
barrier for nucleation of solid and thus allows for the existence of undercooled liquid phase. Since
during Ostwald ripening, the interfacial velocities are relatively small, the Gibbs–Thomson condition
is often used as an approximation of the general growth law. Nevertheless, even for small interfa-
cial velocities, the kinetic term in the boundary condition has a strong regularizing effect on small
particles.

System (6) is one type of free boundary value problems. There are many mathematical works that
tackle these problems. See for example [11,3] for the existence of weak solution with the Gibbs–
Thomson condition. A local existence result of classical solution with kinetic undercooling is given
by [4]. The key feature of the problem currently undertaken is to describe the system under a large
number of particles. This problem appears to be in the realm of homogenization procedure. However,
standard techniques of homogenization such as asymptotic expansion, two-scale- or G-convergence
do not suffice due to the highly nonlinear interaction between the heat distribution and the solid–
liquid interface. The intricacy is already seen in the more simplified, stationary, elliptic problems in
perforated domains. In this case, in order to derive the average equations that capture the behavior of
the solutions in large spatial scales, it is found out that the capacity of the holes is a crucial quantity.
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Most closely related is the work [5] that considers Dirichlet problems in domains with holes in a
similar setting. It proves that if the capacity does not vanish, the type of the limit equation changes.
In [6], the simpler Stefan problem with zero boundary condition for the heat distribution at the
solid–liquid interface was studied in which the solid phase is not allowed to melt completely. This
last mentioned work handles the case of finite capacity and hence it does not get a mean-field model
in the limit.

The connection between (1)–(2) and (6) has been studied in [14] and [15]. The author is able
to rigorously justify the mean field description under the vanishing capacity assumption. The former
work considers the Gibbs–Thomson condition in both the quasi-static (K�θ = 0) and parabolic (C∂tθ =
K�θ ) case. The latter work considers the kinetic undercooling condition in the quasi-static case. In
both works, the vanishing capacity plays a crucial role.

A comment about the geometric set-up in the above two works. They both consider an isotropic
approximation in which the solid particles are disjoint spherical balls which are stationary in space,
i.e. the center of the particles do not move during the evolution. The works [1,2,8] remove this re-
strictive hypothesis by obtaining precise expressions for the equations of the centers and also radii by
taking into account the geometry of the solid particles. However, the overall mean field description
remains unchanged.

1.3. Motivation for the current work

The motivations of the current work are two folds. First we want to extend the work of [15] to the
parabolic setting. The cited work deals with kinetic undercooling in the quasi-static case. Even though
the strategy of attack follows closely to [14,15], due to the combined presence of the parabolicity and
the kinetic undercooling, some additional terms appear in the derivation of energy estimates and the
construction of sub- and super-solutions. These terms require extra care in the analysis. Thus we feel
that it is worthwhile to investigate more rigorously this case.

Second, we want to consider the effect of inhomogeneous driving forces both in the spatial and
temporal setting. Ideally, we would like to incorporate stochastic perturbations. Possible modification
of (6) is the following

C∂tθ = K�θ + ξ(x, t) in ΩL,

H V = −K∇θ · n on Γ,

V = −M
(
θMσk + H(θ − θM)

) + ζ(x, t) on Γ, (8)

where ξ and ζ are stochastic driving forces. A choice often used is some white noise in time and/or
space (even though this is far from clear from a modeling point of view). However, a general theory of
stochastic perturbation in moving boundary value problems, in particular the incorporation of white
noise into the free boundaries, is not currently available.

In order to understand the estimates involved, in the current paper, we restrict our attention
to deterministic driving forces which perturb in time the dynamics of the solid–liquid interface Γ .
Specifically, we set ξ ≡ 0 and ζ to be some time dependent function which can take on different
values on separate parts of Γ . We believe the results obtained here can lead to useful understanding
to the ultimate, more general stochastic case.

An outline of this paper and the underlying method is in place. As mentioned before, we follow
the overall strategy of [14] and [15] fairly closely. The key technical step is the proof of the regularity
in time of the particle radii near their vanishing moments. This is obtained through the construction of
appropriate sub- and super-solutions by use of a maximum principle (Lemma 6.1). This is where our
paper differs most from the cited works of Niethammer: we need to dynamically adjust the ansatz
in the construction in a careful manner (see Section 6). In addition, due to the combined effects
of parabolicity of the equation and the kinetic undercooling, additional terms involving the particle
radius regularity already appear in the derivation of the global energy estimates (see Section 5). This
is not the case in previous works.
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The contents of this paper are as follows. Section 2 explains heuristically the origin of the mean-
field model. Section 3 sets up the rescaling regime for the spatial domain and particle sizes. After
this, the local in time existence of weak solution and global energy estimate are obtained in Sections 4
and 5. Section 6 provides the crucial construction of sub- and super-solutions for the heat distribution
which are used to prove the W 1,p-regularity in time for the particle radii. This then leads to the global
in time existence of a solution, even after the vanishing of some particles. The next two sections then
provide accurate approximations for the heat distribution (Section 7) and the particle radius dynamics
(Section 8). The final Section 9 proves the limiting mean field description.

2. Mean field approximation

To simplify the analysis, it is convenient to non-dimensionalize system (6). Let

y → H

σ
y, t → θM K H

σ 2
t, v := θM − θ

θM
, λ := CθM

H
, and β := K

M Hσ
.

With the addition of some inhomogeneous driving force g(t) acting on the interface Γ , system (6)
can be written as

λ∂t v = �v in ΩL,

V = ∇v · n on Γ,

v + g(t) = k + βV on Γ. (9)

We will construct an approximate solution by making use of the idea that in the vicinity of a
particle the solution should look approximately like the one for a single particle. Hence, we first
consider the single particle problem in which the particle is a ball B R of radius R centered at the
origin:

λ∂t v = �v in R3\B R ,

Ṙ = ∇v · n on ∂ B R ,

β Ṙ = − 1

R
+ v + g(t) on ∂ B R ,

lim
r→∞ v(r, t) = v∞(t). (10)

Note that the far-field value v∞(t) is imposed as a boundary condition at infinity.
In the elliptic (quasi-static) case λ = 0, the solution of problem (10) at any time t > 0 can be

explicitly given by

v(r, t) = v∞(t) + R(t)(1 − R(t)v∞(t) − R(t)g(t))

r(β + R(t))
, (11)

and

Ṙ(t) = −1 − R(t)v∞(t) − R(t)g(t)

R(t)(β + R(t))
. (12)

From the above formula, we see that the positivity of β indeed has a profound effect on the
dynamics of particles, in particular near the time when the radius is about to vanish:
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• when R 	 1, if β > 0, Eq. (12) becomes

Ṙ ≈ − 1

Rβ
and hence R(t) ≈

(
C − 2t

β

) 1
2

, (13)

• while for β = 0, it becomes

Ṙ ≈ − 1

R2
and hence R(t) ≈ (C − 3t)

1
3 . (14)

Even though the solution forms (11) and (12) are for the single particle case in the quasi-static
situation, we expect them to be still a good approximation for multiple particles if λ 	 1 and all the
particles are far away from each other. In this case, the overall solution v of (10) is roughly given by
the linear combination of the individual solutions:

v(y, t) ≈ v∞(t) +
∑

i

Ri(t)(1 − Ri(t)v∞(t) − Ri(t)gi(t))

(β + Ri(t))|y − yi | , (15)

where i is the index of the particle with center at yi and radius Ri .
To complete the picture, we need to specify the quantity v∞(t) and its dynamics. Note that it is

a spatially constant variable describing the heat distribution far away from the solid–liquid interfaces.
This justifies the terminology mean-field description. Due to the assumption of small volume fraction
(to be prescribed later), the overall background domain Ω is very close to the region ΩL occupied by
the liquid phase. Hence, we have

v∞ ≈ 1

|Ω|
∫
ΩL

v.

We now compute

∂t

∫
ΩL

v =
∫
ΩL

∂t v −
∫

∂ΩL

Ṙ v =
∫
ΩL

1

λ
�v −

∫
∂ΩL

Ṙ v = −
∫

∂ΩL

1

λ
∇v · n −

∫
∂ΩL

Ṙ v = −1

λ

∫
∂ΩL

Ṙ −
∫

∂ΩL

Ṙ v,

so that

∂t v∞ ≈ − 1

|Ω|λ
∫

∂ΩL

Ṙ − 1

|Ω|
∫

∂ΩL

Ṙ v.

Since λ is small, the second term is negligible. Note that ∂ΩL = ⋃
i ∂ B(yi, Ri), by (12) we then get

∂t v∞ ≈ 1

|Ω|λ
∑

i

(
1 − Ri v∞ − Ri gi(t)

Ri(β + Ri)

)
4π R2

i . (16)

The purpose of the current work is to derive rigorously the solution formulae (12), (15) and (16)
from the free boundary value problem (9) and give a limiting homogenized description when the number
of particles is large.
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3. Rescaling of the problem

In this section, we introduce a spatial rescaling of the Stefan problem (9) as a preparation for the
derivation of a limiting description for a large number of particles.

Recall that the domain of the liquid phase is denoted by ΩL . We consider the case that the solid
phase ΩS = Ω\ΩL consists of a collection of N disjoint balls, i.e.

ΩS =
N⋃

i=1

B(yi, Ri) and Γ =
N⋃

i=1

∂ B(yi, Ri). (17)

We further assume that the centers of the balls do not move and the spherical shapes are preserved
during the evolution Strictly speaking, there is no solution satisfying the above assumptions. As in
[14,15], we replace the second condition of (9) by the following integral condition:

V i := V |∂ Bi = 1

|∂ Bi|
∫

∂ Bi

∇v(y, t) · n ds

(
where ds is the area element and Bi = B(yi, Ri)

)
. (18)

Since V i = Ṙ i , ki := k|∂ Bi = 1
Ri

, and gi := g|∂ Bi , the third condition of (9) is transformed into

v = β Ṙ i(t) + 1

Ri(t)
− gi(t) on ∂ B

(
yi, Ri(t)

)
. (19)

Note that now v is constant on each of ∂ B(yi, Ri(t)). (See Remark 3.1(5) for a discussion.)
To model the facts that the volume occupied by the solid phase is very small compared to the

vessel’s volume (i.e. Vol(
⋃

i Bi) 	 Vol(Ω)) while the inter-particle distances are very large compared
with the particle size, we apply the same spatial rescaling as in [14,15]. We use δ and δa to denote
the typical length scales for the inter-particle distance and the particle radii and consider the regime
0 < δa 	 δ i.e. a > 1. Now introduce the following change of variables

x = δa y and u(x, t) = v(y, t); (20)

Rδ
i (t) := Ri(t)

δa
and Bδ

i (t) := B
(
xi, δ

a Rδ
i (t)

) = B
(

yi, Ri(t)
)
. (21)

Let further

N (t) := {
i: Rδ

i (t) > 0
}
, N(t) = ∣∣N (t)

∣∣, and tδ
i := sup

{
t: Rδ

i (t) > 0
}
, (22)

be the collection and number of indices of particles at time t and the maximum existence time of Bδ
i .

With the above, we define the following domains

Ωδ := δaΩ; Ωδ
T := Ωδ × (0, T );

Ωδ
S(t) :=

⋃
i∈N (t)

Bδ
i (t); Ωδ

S,T :=
⋃

t∈(0,T )

(
Ωδ

S(t) × {t});
Ωδ

L (t) := Ωδ\Ωδ
S(t); Ωδ

L,T :=
⋃

t∈(0,T )

(
Ωδ

L (t) × {t}), (23)

where T is some finite fixed time instant.
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Now using the variables x and Rδ
i ’s, upon choosing δa = δ4 (see Remark 3.1(6)), the system of

Eqs. (9), adjoined with the Neumann condition on ∂Ωδ leads to the following initial boundary value
problem (IBVP):

λut = δ8�u in Ωδ
L,T ,

u(x, t) + gi(t) = 1

Rδ
i (t)

+ β

4πδ4(Rδ
i (t))

2

∫
∂ Bδ

i (t)

∇u · n ds, x ∈ ∂ Bδ
i (t), t ∈ (

0, tδ
i

)
,

Ṙδ
i (t) = 1

4πδ4(Rδ
i (t))

2

∫
∂ Bδ

i (t)

∇u · n ds, t ∈ (
0, tδ

i

)
,

Rδ
i (t) = 0, t > tδ

i ,

∇u · n = 0 on ∂Ωδ,

u(x,0) = u0(x) in Ωδ
L (0),

Rδ
i (0) = Rδ

i0 for i ∈N (0). (24)

The main purpose of this paper is to give a limiting description of the system as δ converges to
zero. The following are some remarks about the scalings and assumptions used in our problem.

Remark 3.1 (Assumptions).

1. For simplicity, the underlying ambient domain Ωδ is bounded with smooth boundary ∂Ωδ .
2. With the current spatial rescaling, we are working in the regime that the particles are separated

from each other by distances of at least O (δ), i.e. |xi − x j | � Cδ for all i �= j. Hence N(t) = O (δ−3).
A simple such setting is to have the particles located on a regular three-dimensional lattice of
lattice length δ although this is not absolutely necessary.

3. Motivated by the approximate solution (15), the initial data u0 takes the following “well-
prepared” form:

uδ
0 = uδ

0∞ +
∑

i

(1 − Rδ
i0uδ

0∞ − Rδ
i0 gi0)δ

4 Rδ
i0

(Rδ
i0 + β)|x − xi |

η

( |x − xi |
δ

)
. (25)

In the above, uδ
0∞ is some constant, and η is a smooth cut-off function such that η(r) ≡ 1 for

0 � r � 1
8 and η(r) ≡ 0 for r � 1

4 . Furthermore, the initial radii Rδ
i0’s satisfy

sup
i

Rδ
i0 � Rδ

0 < ∞. (26)

4. The inhomogeneous driving forces gi ’s satisfy

sup
i

sup
t�0

{∣∣gi(t)
∣∣, ∣∣Rδ

i (t)ġi(t)
∣∣} � M < ∞. (27)

The above are sufficient to derive some a priori estimates. However, in order to have a limit
equation in a closed form, we do need to make the assumption that each gi is a function of the
radius Rδ

i . This is stated as follows
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there exist a function G ∈ C1(R+ × R+) and a function h ∈ C1(R+) such that

gi(t) = G
(
t, Rδ

i (t)
) + h(t). (28)

(See Remark 9.3 for further discussion.)
5. As the typical size of the solid grains (δa) is assumed small compared with the mean distance

between them (δ), the direct interactions between the particles is negligible and the particles
thus behave as if they were isolated. The only interaction is through the mean field quantity uδ∞ .
Hence it is natural to assume that they remain spherical and their centers do not move in space.
On the other hand, models incorporating non-spherical shapes and the particle motions have
been considered, cf. [1,2,8], in which it is shown that these additional features only constitute to
higher order effects and hence they do not affect the mean field limit.

6. In order to have a well-defined limiting description, we need to work in the setting of small
volume fraction for the particles. A quantitative requirement is that the capacity needs to vanish.
With the current rescaling regime, the order of magnitude of the capacity of a particle in Ω

is given by δa−3. Hence, we take a = 4. In this case the capacity is of order δ and the volume
fraction is of order δ9. (See [5] for a model when the capacity does not vanish.) The choice of the
scaling λ = δ9 is to ensure that the system is close to being quasi-static. This will be clear from
the energy type identities derived in Section 5. (See the discussion in p. 4697 and Corollary 5.5.)

The main theorems proved in this paper are:

• Theorem 6.3: existence of a global solution for (24) and regularity of particle radii near their
vanishing moment.

• Theorem 9.2: mean field description of the system as the number of particles goes to infinity
(δ → 0). This is given by (12), (15) and (16) which govern the dynamics of the particle size, the
mean field variable and the profile of the heat distribution.

The overall strategy is briefly explained here. First we extend the local in time solution to globally
existing solution, i.e. beyond the times when some balls disappear. This is established by the a priori
estimates coming from integral inequalities (Section 5) and maximum principle (Section 6). When
both λ and β are positive, we need to control the appearing terms involving Rδ

i Ṙδ
i uniformly in δ and

globally in time, even after some balls have vanished. This makes it necessary to estimate the growth
and decay in time for the radii Rδ

i (t)’s. First we analyze the single particle case. The important issue
is to investigate the solution as R → 0+ for δ 	 1. The main conclusion is that |R Ṙ| < C < ∞ and
limR→0+ R Ṙ = − 1

β
(these results state the regularizing effect of kinetic undercooling) and thus R ∈

W 1,p([0, T ]) for any 1 � p < 2. This is established by constructing proper sub- and super-solutions.
It is first done for the case R 	 1 and Ṙ < 0. If R > O (1), we show that |Ṙ| is uniformly bounded.
Moreover, we prove that once R(t) reaches below some small value, Ṙ will become negative and
will stay negative until the extinction time of R(t). We then employ the previous analysis to analyze
the multiple particle case. The extension of solution beyond vanishing time follows by the energy
estimates from Proposition 5.3 and standard parabolic theory.

In the second step, we derive the limiting equation for the dynamics of the mean field variable
and radii as δ → 0. We produce a first order approximation for the heat distribution uδ in Section 7.
In particular, we prove that far away from the particle boundaries, the heat distribution uδ(·, t) is
close to the mean field variable uδ∞(t) which satisfies the following form:

∂t uδ∞(t) = 4πδ3
∑

i

(
1 − Rδ

i (t)uδ∞(t) − Rδ
i (t)gi(t)

) Rδ
i (t)

Rδ
i (t) + β

.

We then establish in Section 8 the following result which gives the dynamics of the radii as δ → 0:
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the radii satisfy the following dynamical equation in some weak sense:

Ṙδ
i ≈ −1 − uδ∞Rδ

i − gi Rδ
i

Rδ
i (Rδ

i + β)
.

Finally in Section 9, we provide a limiting description of uδ and Rδ
i ’s as δ → 0. In order to obtain an

equation which is closed in the limit, we do need to invoke the assumption (28) on the form of the
inhomogeneous forces gi ’s.

A note on notation. For the next few sections, we will only work with the rescaled variables x and the
function u. Hence for simplicity, we suppress the super-script δ from all the symbols: Ωδ , Ωδ

L , Bδ
i , Rδ

i ,
uδ

0∞ , uδ∞ and so forth. They will be recovered in Section 9. Recall that the number of particles N(t) is
of order O (δ−3). In the following, n refers to the outward normal to the solid phase ΩS (t) = ⋃

i Bi(t).
We will use M or M(T ,Ω) to denote general constants that might depend on the time interval [0, T ]
and the domain Ω but not on δ.

4. Local in time existence and uniqueness

In order to formulate the existence and uniqueness result for the system of Eqs. (24), we first
introduce some function spaces. In the following, T is some fixed positive time (which does not
depend on δ).

• For f : [0, T ] → R, denote ‖ f ‖L2(0,T ) := (
∫ T

0 | f (t)|2 dt)1/2. Consider the following usual L p and
Sobolev spaces on (0, T ):

L2(0, T ) = (
f : ‖ f ‖L2(0,T ) < ∞)

, L∞(0, T ) =
(

f : sup
t∈[0,T ]

| f | < ∞
)
,

H1(0, T ) :=
{

f : ‖ f ‖L2(0,T ) +
∥∥∥∥df

dt

∥∥∥∥
L2(0,T )

< ∞
}

and

‖ f ‖H1(0,T ) =
(

‖ f ‖2
L2(0,T )

+
∥∥∥∥df

dt

∥∥∥∥2

L2(0,T )

) 1
2

.

• Let D(t) be a time dependent domain with smooth boundary. We define DT = ⋃
t∈[0,T ]D(t),

while for (u(·, t) :D(t) → R)0�t�T , we denote: ‖u‖L2(D(t)) := (
∫
D(t) |u(·, t)|2 dx)

1
2 .

H1(D(t)
) = {

u: ‖u‖L2(D(t)) + ‖∇u‖L2(D(t)) < ∞}
,

‖u‖H1(D(t)) := (‖u‖L2(D(t)) + ‖∇u‖L2(D(t))

) 1
2 ;

L∞(
0, T ; L2(D(·))) :=

{
u: sup

t∈[0,T ]
‖u‖L2(D(t)) < ∞

}
,

‖u‖L∞(0,T ,L2(D(t))) := sup
t∈[0,T ]

‖u‖L2(D(t));

L2(
0, T ; H1(D(·))) :=

(
u:

T∫
0

[∥∥u(·, t)
∥∥2

L2(D(t)) + ∥∥∇u(·, t)
∥∥2

L2(D(t))

]
dt < ∞

)
;
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and

‖u‖L2(0,T ,H1(D(·))) :=
( T∫

0

[∥∥u(·, t)
∥∥2

L2(D(t)) + ∥∥∇u(·, t)
∥∥2

L2(D(t))

]
dt

) 1
2

.

The usual inner product on L2(D(t)) is denoted by (·,·)D(t) . For the later usage in this paper, the
domain D(·) in the above definition is usually taken to be ΩL(·) or simply the ambient domain Ω .
For simplicity in notation, we will often omit the subscript in the norms if it does not cause any
confusion.

Definition of weak solution. Now we derive the weak formulation of the solution for our governing
system (24). Let ξ = ξ(·, t) : ΩL → R be such that for all t > 0, ξ equals a constant on all the ∂ Bi ’s.
Multiplying the parabolic equation of (24) by ξ and integrating over ΩL(t), then by means of the
boundary condition on ∂Ω and ∂ Bi ’s, we have

0 = (λut, ξ)ΩL(t) − δ8(�u, ξ)ΩL(t) = (λut, ξ)ΩL(t) + δ8(∇u,∇ξ)ΩL (t) + δ8
N∑

i=1

∫
∂ Bi

ξ∇u · n ds

= (λut, ξ)ΩL(t) + δ8(∇u,∇ξ)ΩL (t) + δ8
N∑

i=1

ξ |∂ Bi

∫
∂ Bi

∇u · n ds. (29)

Next multiply the second equation of (24) by ξ |∂ Bi and integrate on ∂ Bi to get∫
∂ Bi

(
u(x, t) + gi(t) − 1

Ri(t)

)
ξ ds − βδ4

∫
∂ Bi

ξ∇u · n ds = 0. (30)

Replacing the term ξ |∂ Bi

∫
∂ Bi

∇u · n ds in (29) by (30) leads to

λ(ut, ξ)ΩL (t) + δ8(∇u,∇ξ)ΩL (t) + δ4

β

N∑
i=1

∫
∂ Bi

ξ

(
u − 1

Ri(t)

)
ds + δ4

β

N∑
i=1

gi(t)

∫
∂ Bi

ξ ds = 0.

The above leads to the following definition of solution before the first vanishing moment
(t∗) of any ball. Let T > 0 be a positive number. A collection of functions u : ΩL(·) → R and
{Ri : [0, T ] → R+}i∈N is called a weak solution of (24) with initial data u0 and {Ri0}i∈N ’s if (i) u ∈
L2(0, T ; H1(ΩL(·))); (ii) ut ∈ L2(0, T ; H−1(ΩL(·))); (iii) u|∂ Bi is a constant; (iv) Ri ∈ H−1([0, T ]) ∩
L2([0, T ]) and they satisfy the following identity:

T ∧t∗∫
0

[
−λ(u, ξt)ΩL(t) + δ8(∇u,∇ξ)ΩL (t) + δ4

β

N∑
i=1

∫
∂ Bi

uξ ds

]
dt − (

u0, ξ(0)
)
ΩL(0)

=
T ∧t∗∫
0

δ4

β

N∑
i=1

(
1

Ri(t)
− gi(t)

) ∫
∂ Bi

ξ ds dt, (31)

and
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T ∧t∗∫
0

[
−Ri(t)ϕ̇(t) − ϕ(t)

4πδ4(Ri(t))2

∫
∂ Bi(t)

∇u · n ds

]
dt − Ri0ϕ(0) = 0 (32)

for all ξ ∈ C∞
0 ([0, T ∧ t∗), C∞(ΩL(·))) with ξ |∂ Bi equal to a constant for all i ∈ N and ϕ ∈

C∞
0 ([0, T ∧ t∗)).

With the above definition, we now present the following local existence and uniqueness result.

Theorem 4.1. For any u0 ∈ H1(ΩL(0)) and {Ri(0)}i∈N satisfying (26), there exists a T > 0 such that (24)
has a unique weak solution {u, Ri: i ∈N }. Furthermore, u ∈ L∞(0, T ; L2(ΩL(·))) ∩ L2(0, T ; H1(ΩL(·))) and
Ri ∈ H1([0, T ]).

Proof. The proof consists of two steps. The first is to prove the existence of solution for the parabolic
problem with given Ri ’s (without taking into account of the conservation of heat flux at the particle
boundary); the second is to use fixed point theorem to find the correct Ri ’s which do satisfy the
conservation of heat flux. The overall procedure is more or less standard. But we include it here
for self-containedness. The strategy is also used in [13] for a related problem without the kinetic
undercooling.

In the following, we use R to denote the collection {Ri: i ∈N }. The notation ‖R‖X refers to
supi ‖Ri‖X . In addition, any operation on R is performed in a component-wise manner: f (R) =
{ f (Ri): i ∈N }.

Step I. Given R ∈ H1([0, T ])N with ‖R‖L∞([0,T ]) and ‖R−1‖L∞([0,T ]) < ∞. We claim that there exists a unique
weak solution u satisfying:

λut = δ8�u in ΩL,T ,

u(x, t) − β

4πδ4 R2
i (t)

∫
∂ Bi(t)

∇u · n ds = 1

Ri(t)
− gi(t), x ∈ ∂ Bi(t),

∇u · n = 0 on ∂Ω,

u(x,0) = u0(x) in ΩL(0),

Ri(0) = Ri0 for i ∈N (0).

Furthermore, if u0 ∈ H1(ΩL(0)), then

‖u‖L∞(0,T ,H1(ΩL(·))),‖u‖L2(0,T ;H2(ΩL(·))),‖ut‖L2(0,T ;L2(ΩL(·)))
� C

(‖R‖L∞([0,T ]),
∥∥R−1

∥∥
L∞([0,T ]),‖R‖H1([0,T ])

)
. (33)

First we related the domain ΩL(0) to ΩL(t) by means of some diffeomorphism:

φ(·, R) : ΩL(0) → Ω(t).

Define

Φ(y, t) := φ
(

y, R(t)
)

and ṽ(y, t) := u
(
Φ(y, t), t

)
.

Differentiating in space we get
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∇u = DΦ−T ∇ ṽ and
1

|∂ Bi(t)|
∫

∂ Bi(t)

∇u · n = 1

|∂ Bi(0)|
∫

∂ Bi(0)

DΦ−T ∇ ṽ · n,

while taking the derivative in time gives

ṽt = ut + ∇u · ∂tΦ.

In the above we have used the notation:

DΦ−T = (
(DΦ)T )−1

and ∂tΦ = ∂φ

∂ R1
Ṙ1 + · · · + ∂φ

∂ RN
ṘN = (∂Rφ) · (∂t R).

Let M = ‖R‖L∞(0,T ) + ‖R−1‖L∞(0,T ) . Note the following estimates:

∥∥DΦ, D2Φ, DΦ−T , D
(

DΦ−T )∥∥
L∞(0,T ;L∞(ΩL(t)))

� C(M),

and

‖∂tΦ‖L2(0,T ;L∞(ΩL(·))) � C(M)‖R‖H1(0,T ). (34)

Let A = DΦT DΦ . Then the function ṽ solves

λ
√

det A∂t ṽ − δ8 div
(√

det A A−1∇ ṽ
) = λ

√
det ADΦ−T ∇ ṽ · ∂tΦ in ΩL(0) × (0, T ),

ṽ − β

4πδ4 R2
i (0)

∫
∂ Bi(0)

DΦ−T ∇ ṽ · n ds = 1

Ri
− gi, x ∈ ∂ Bi(0),

∇ ṽ · n = 0 on ∂ΩT ,

ṽ(x,0) = u0(x) in ΩL(0). (35)

To handle the inhomogeneous boundary condition on the ∂ Bi(0)’s, we consider the solution w(y, t)
of the problem

div
(√

det A A−1∇w
) = 0 in ΩL(0),

w − β

4πδ4 R2
i (0)

∫
∂ Bi(0)

DΦ−T ∇w · n ds = 1

Ri
− gi, x ∈ ∂ Bi(0),

w · n = 0 on ∂Ω. (36)

Setting v := ṽ − w , then v satisfies

λ∂t v − δ8

√
det A

div
(√

det A A−1∇v
) = λDΦ−T ∇v · ∂tΦ − λ∂t w + λDΦ−1∇w · ∂tΦ,

v − β

4πδ4 R2
i (0)

∫
∂ Bi(0)

DΦ−T ∇v · n ds = 0, x ∈ ∂ Bi(0). (37)
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Applying elliptic regularity to (36), we get

‖w, ∂R w‖L∞(0,T ;H1(ΩL(t))) � C(M). (38)

Note that ∂t w = ∂R w · ∂t R , and we also have

‖∂t w‖L2(0,T ;H1(ΩL(·))) � C(M)‖R‖H1(0,T ). (39)

Combining the above together with estimate (34), Eq. (37) can be written as

λ∂t v − δ8

√
det A

div
(√

det A A−1∇v
) = f1 · ∇v + f2,

for some

f1 ∈ (
L2(

0, T ; L∞(
ΩL(0)

)))3
and f2 ∈ L2(

0, T ; L∞(
ΩL(0)

))
.

If u0 ∈ H1(Ω(0)), then by standard theory for parabolic problems [9], it follows that there exists a
unique solution v of (37) leading to the solution ṽ = v + w of (35) in the class L∞(0, T ; L2(ΩL(0))) ∩
L2(0, T ; H1(ΩL(0))). By (34), it follows that u also belongs to L∞(0, T ;L2(ΩL(·)))∩ L2(0, T ;H1(ΩL(·))).
The improved regularity statement (33) also follows from standard theory.

Step II. This step shows that for T small enough, there exists an R ∈ H1([0, T ]) such that the following condi-
tion is satisfied

Ṙi(t) = 1

4πδ4 R2
i (t)

∫
∂ Bi(t)

∇u · n ds, t ∈ (0, T ) for all i ∈N ,

where u is from Step I.

Using the kinetic under-cooling condition, the above can be written as

Ṙ i(t) = 1

β|∂ Bi(t)|
∫

∂ Bi(t)

(
u − 1

Ri(t)
+ gi(t)

)
= 1

β|∂ Bi(0)|
∫

∂ Bi(0)

(
v + w − 1

Ri(t)
+ gi(t)

)
.

For this, we define the function space:

MT = {
R ∈ H1([0, T ])N

: R(0) = R0, ‖R‖H1([0,T ]) � D
}
,

where D is some fixed number and the operator F(R) :MT → H1([0, T ])N :

F(R)i(t) = Ri0 +
t∫

0

[
1

β|∂ Bi(0)|
∫

∂ Bi(0)

(
v + w − 1

Ri(τ )
+ gi(τ )

)]
dτ , i ∈N .

The goal is to prove that F has a fixed point in MT if T = T (D) is small enough.
For this, let R, S ∈MT with R(0) = S(0) and let w1, w2, v1, v2 be the solutions of (36) and (37)

with the radius function given by R and S . Then,
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F(R)i(t) −F(S)i(t) =
t∫

0

[
1

β|∂ Bi(0)|
∫

∂ Bi(0)

(
(v1 − v2) + (w1 − w2) −

(
1

Ri(τ )
− 1

Si(τ )

)

+ (
gi(τ , Ri) − gi(τ , Si)

))]
dτ .

Consider the equation satisfied by v1 − v2:

λ∂t(v1 − v2) − δ8

√
det A1

div
(√

det A1 A−1
1

(∇(v1 − v2)
))

= δ8

√
det A1

div
(√

det A1 A−1
1 ∇v2

) − δ8

√
det A2

div
(√

det A2 A−1
2 ∇v2

)
− λ(∂t w1 − ∂t w2) + λDΦ−1

1 (∇w1 − ∇w2) · ∂tΦ1 + λDΦ−1
1 ∇w2 · ∂tΦ1

− λDΦ−1
2 ∇w2 · ∂tΦ2, (40)

and

(v1 − v2) − β

4πδ4 R2
i (0)

∫
∂ Bi(0)

DΦ−T
1 ∇(v1 − v2) · n ds

= − β

4πδ4 R2
i (0)

∫
∂ Bi(0)

(
DΦ−T

1 − DΦ−T
2

)∇v2 · n ds for i ∈N , (41)

and that for w1 − w2:

div
(√

det A1 A−1
1 ∇(w1 − w2)

) = −div
((√

det A1 A−1
1 −

√
det A2 A−1

2

)∇w2
)
, (42)

and

(w1 − w2) − β

4πδ4 R2
i (0)

∫
∂ Bi(0)

DΦ−T
1 ∇(w1 − w2) · n ds

= − β

4πδ4 R2
i (0)

∫
∂ Bi(0)

(
DΦ−T

1 − DΦ−T
2

)∇w2 · n ds

+
(

1

Ri
− 1

Si

)
− (

gi
(
t, Ri(t)

) − gi
(
t, Si(t)

))
for i ∈N , (43)

where A1, Φ1 and A2, Φ2 are the A and Φ for the radius functions R and S respectively. The esti-
mates (34), (38), (39) lead to

‖A1 − A2‖L∞(0,T ;L∞(ΩL(0))),‖w1 − w2‖L∞(0,T ;H1(ΩL(0))) � C(M)‖R − S‖L∞(0,T ),

and

‖∂tΦ1 − ∂Φ2‖L2(0,T ;L∞(ΩL(0))),‖∂t w1 − ∂t w2‖L2(0,T ;H1(ΩL(0))) � C(M)‖R − S‖H1(0,T ). (44)
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Using the above together with the fact ‖v2‖L∞(0,T ;H1(ΩL (0))) < ∞, we see that the right-hand side
f for Eq. (40) satisfies

‖ f ‖L2(0,T ;L2(ΩL(0))) � M1‖R − S‖L∞(0,T ) + M2‖Ṙ − Ṡ‖L2(0,T ).

We are then led to the following estimate:

‖v1 − v2‖L2(0,T ,H1(ΩL(0))) � C(D)‖R − S‖H1(0,T ).

As ‖v1 − v2‖L2(∂ΩL (0)) � ‖v1 − v2‖H1(ΩL (0)) , we have that

T∫
0

∣∣F(R)i(t) −F(S)i
∣∣2

dt � C(D)T ‖R − S‖2
H1(0,T )

.

In the above, we have also used the assumption (27) about the gi ’s. Finally if T is chosen small
enough, Banach Fixed Point theorem can be employed, leading to the existence of a fixed point for F
in MT and hence a solution of (24). �

In order to extend the local in time solution to globally existing solution, in particular beyond
the times when some balls disappear, we would need a priori estimates. They will be established by
means of integral inequalities and maximum principle. The overall strategy is as follows. First the
weak solution obtained above exists up to the first time ti some ball vanishes (Ri = 0). From the
global energy estimates derived in Section 5 together with the temporal particle radius regularity
proved in Section 6, the limit u(·, ti) = limt→t−i

u(·, t) exists. We can then use u(·, ti) as the new initial

data for (24). In this manner, a solution is constructed between any two times some radii vanish and
hence the existence of a solution up to any finite time (independent of δ) is established.

5. Integral identities

In this section, we will present some integral identities in line of energy type estimates. As the
domain ΩL is time dependent, we find it convenient to extend u to the whole domain Ω ⊃ ΩL by
means of

u|Bi = u|∂ Bi for all i.

The extended function is still denoted by u. Furthermore, we introduce the notation f i(t) = Ri(t)Ṙ i(t).

Proposition 5.1. Let u be the solution of (24). Then we have

λ

∫
Ω

u(t) + λ2πδ12

3

N∑
i=1

R2
i (t) + 4πδ12

3

N∑
i=1

R3
i (t) + λ4πδ12β

N∑
i=1

t∫
0

f 2
i (r)dr

= λ

∫
Ω

u(0) + λ2πδ12

3

N∑
i=1

R2
i (0) + 4πδ12

3

N∑
i=1

R3
i (0)

+ λ4πδ12β

3

(
N∑

i=1

R2
i (t) f i(t) −

N∑
i=1

R2
i (0) f i(0)

)
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− λ4πδ12

3

N∑
i=1

R3
i (t)gi(t) + λ4πδ12

3

N∑
i=1

R3
i (0)gi(0)

+ λ4πδ12

t∫
0

N∑
i=1

Ri(r) f i(r)gi(r)dr. � (45)

Proof. We integrate (24) on Ω to get

λ

∫
Ω

ut − λ

∫
Ω\ΩL

ut = δ8
∫

∂ΩL

∂u

∂n
.

Note that the part of ∂Ωδ on solid–liquid interfaces, we use the outward normal to the Bi ’s. Hence

λ
d

dt

∫
Ω

u − λ
∑

i

4π

3

(
δ4 Ri

)3
(

1

Ri
− gi + β Ṙ i

)
t
= −

∑
i

4πδ12 R2
i Ṙ i,

λ
d

dt

∫
Ω

u − λ4πδ12

3

∑
i

R3
i

(
− Ṙ i

R2
i

− ġi + β R̈ i

)
+ 4πδ12

∑
i

R2
i Ṙ i = 0,

λ
d

dt

∫
Ω

u + λ4πδ12

3

∑
i

(
Ri Ṙi + R3

i ġi − βR3
i R̈ i

) + 4πδ12

3

∑
i

d

dt
R3

i = 0,

λ
d

dt

∫
Ω

u + λ4πδ12

3

∑
i

(
1

2

d

dt
R2

i + R3
i ġi − βR3

i R̈ i

)
+ 4πδ12

3

∑
i

d

dt
R3

i = 0.

Upon integrating in time from 0 to t and employing integration by parts, we obtain (45). �
Remark 5.2. For conceptual understanding and in order to compare with known results, we simplify
the above identity for the case gi(t) ≡ 0.

1. For the quasi-static problem λ = 0 with β � 0 the following volume conservation condition is
obtained

δ3
N∑

i=1

R3
i (t) = δ3

N∑
i=1

R3
i (0),

as in [14,15].
2. For the parabolic case λ > 0 and β = 0: setting λ := δ9 as in (45), we obtain the result of [14]:

∫
Ω

u(t) + 4

3
π

N∑
i=1

δ3 R3
i (t) + 2

3
π

N∑
i=1

δ12 R2
i (t) =

∫
Ω

u(0) + 4

3
π

N∑
i=1

δ3 R3
i (0) + 2

3
π

N∑
i=1

δ12 R2
i (0).

Our result extends the above to the case when λ and β are both positive.
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Next we derive the identity for ‖u‖L2(Ω) .

Proposition 5.3. Let u be the solution of (24). Then we have

λ

2

∫
Ω

u2(t) + δ8

t∫
0

∫
Ω

|∇u|2(s)ds + 2πδ12
∑

i

R2
i (t) + λ

4πδ12

3

∑
i

Ri(t)

+ 4πδ12β

t∫
0

∑
i

f 2
i (s)ds + λ4πδ12β

t∫
0

∑
i

f 2
i (s)

Ri(s)
ds

= λ

2

∫
Ω

u2(0) + 4πδ12

2

∑
i

R2
i (0) + λ

4πδ12

3

∑
i

Ri(0) + λ
4πδ12

3
β

∑
i

Ri(t) f i(t)

− λ
4πδ12

3
β

∑
i

Ri(0) f i(0) + λ
2πδ12

3
β2

∑
i

Ri f 2
i (t) − λ

2πδ12

3
β2

∑
i

Ri f 2
i (0)

− λ2πδ12β2

t∫
0

∑
i

f 3
i (s)

Ri(s)
ds + 4πδ12

t∫
0

∑
i

Ri f i gi(s)ds − λ
4πδ12

3

∑
i

R2
i (t)gi(t)

+ λ
4πδ12

3

∑
i

R2
i (0)gi(0) + λ4πδ12

∑
i

t∫
0

f i(s)gi(s)ds − λ
4πδ12

3
β

∑
i

R2
i (t) f i(t)gi(t)

+ λ
4πδ12

3
β

∑
i

R2
i (0) f i(0)gi(0) + λ4πδ12β

∑
i

t∫
0

f 2
i gi ds + λ

2πδ12

3

∑
i

Ri(t)
3 g2

i (t)

− λ
2πδ12

3

∑
i

Ri(0)3 g2
i (0) − λ2πδ12

t∫
0

∑
i

Ri f i g2
i (s)ds. (46)

Proof. Multiplying (24) by u and integrating on ΩL , we get

λ

∫
ΩL

ut u = δ8
∫
ΩL

�uu,

λ

∫
Ω

ut u − λ

∫
Ω\ΩL

ut u = −δ8
∫

∂ΩL

∂u

∂n
u − δ8

∫
ΩL

|∇u|2.

Using the boundary conditions in (24), it follows that

λ

2

d

dt

∫
Ω

u2 + δ8
∫
Ω

|∇u|2 − λ
4πδ12

3

∑
i

R3
i

(
1

Ri
− gi + β Ṙ i

)
t

(
1

Ri
− gi + β Ṙ i

)

+ 4πδ12
∑

i

R2
i Ṙ i

(
1

Ri
− gi + β Ṙ i

)
= 0,
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λ

2

d

dt

∫
Ω

u2 + δ8
∫
Ω

|∇u|2 − λ
4πδ12

3

∑
i

R3
i

(
− Ṙ i

R2
i

− ġi + β R̈ i

)(
1

Ri
− gi + β Ṙ i

)

+ 4πδ12
∑

i

(
Ri Ṙi − R2

i Ṙ i gi + βR2
i Ṙ2

i

) = 0,

λ

2

d

dt

∫
Ω

u2 + δ8
∫
Ω

|∇u|2 + 4πδ12
∑

i

(
d

dt

R2
i

2
+ βR2

i Ṙ2
i − R2

i Ṙ i gi

)

+ λ
4πδ12

3

∑
i

(
Ri Ṙi + R3

i ġi − βR3
i R̈ i

)(
1

Ri
− gi + β Ṙ i

)
= 0.

Expanding the above, and integrating in time from 0 to t together with integration by parts gives the
stated identity. �
Remark 5.4. Again, we give the simplified form of the above in the case gi(t) ≡ 0 and compare with
known results.

1. λ = 0, β � 0:

δ3
∑

i

R2
i (t) + 1

2πδ

t∫
0

∫
Ω

|∇u|2 ds + 2β

t∫
0

∑
i

δ3 f 2
i ds = δ3

∑
i

R2
i (0),

as in [15].
2. λ > 0, β = 0:

1

2

∫
Ω

u2(t) + 1

δ

t∫
0

∫
Ω

|∇u|2 ds + 2πδ3
∑

i

R2
i (t) + 2

3
πδ12

∑
i

Ri(t)

= 1

2

∫
Ω

u2(0) + 2πδ3
∑

i

R2
i (0) + 2

3
πδ12

∑
i

Ri(0),

where we have set λ := δ9 (in accordance to [14]).

Note that when both λ and β are positive, as in the current case with kinetic undercooling, extra
terms involving f i appear on the right-hand side of (46). This causes the need to estimate |Ri Ṙi |. This
is the main goal of Section 6.

Here we explain in more detail the usage of the above result and the choice of λ = δ9. Since we
are aiming at a limiting mean field description – the particles interact mainly through the quantity
u∞(t), we expect that the heat distribution u(·, t) will become roughly spatially constant (but still
time dependent), i.e. ∇u ≈ 0 as δ → 0.

In view of the estimates of Remark 5.4, if either one of λ or β equals zero (as in [15] and [14]),
the term

∫ t
0

∫
Ω

|∇u|2(s)ds is estimated easily by the initial data. This is not the case for the parabolic
setting with kinetic undercooling and inhomogeneous driving forces presented in this paper (where
both λ and β are non-zero). In the current case, upon solving for

∫ t
0

∫
Ω

|∇u|2(s)ds in the identity of
Proposition 5.3, we observe that if gi , Ri , and f i = Ri Ṙi are uniformly bounded in time for any i, then
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t∫
0

∫
Ω

|∇u|2(s)ds � −λ4πδ12−8β

t∫
0

∑
i

f 2
i (s)

Ri(s)
ds − λ2πδ12−8β2

t∫
0

∑
i

f 3
i (s)

Ri(s)
ds

+ C
λ

δ8
+ Cδ4

∑
i∈N

O (1).

Hence as long as Ri � O (1) > 0 for any i, we will have

t∫
0

∫
Ω

|∇u|2(s)ds � Cλδ4
∑
i∈N

O (1) + C
λ

δ8
+ Cδ4

∑
i∈N

O (1) � Cλδ + C
λ

δ8
+ Cδ.

The problem arises if time is approaching some extinction time ti (Ṙ < 0 and Ri → 0), so that the

term
f 3
i

Ri
(which appears in the estimate only when λ and β are non-zero) will have a large negative

value. In fact it will blow up to −∞. However, we will prove that f i = Ri Ṙi → − 1
β

as t → t−
i . With

this observation, near ti , this term can be controlled in the following way:

−λ4πδ12−8β

t∫
0

∑
i

f 2
i (s)

Ri(s)
ds − λ2πδ12−8β2

t∫
0

∑
i

f 3
i (s)

Ri(s)
ds

= −4λδ4πβ

t∫
0

∑
i

f 2
i (s)

Ri(s)

[
1 + β

2
f i

]
ds � 0,

and thus it follows that

t∫
0

∫
Ω

|∇u|2(s)ds � C
λ

δ8
+ Cδ4

∑
i∈N

O (1) � C
λ

δ8
+ Cδ.

(Alternatively, upon solving Ṙ i Ri ≈ − 1
β

, we have Ri ≈ C(ti − t)
1
2 so that

∫ ti
0

1
Ri(t)

dt < ∞. Hence the

term
∫ ti

0
f 3
i

Ri
dt will also be bounded.) The above leads us to set λ = δ9 as mentioned in Remark 3.1.

With this we have that

t∫
0

∫
Ω

|∇u|2(s)ds � Cδ,

so that in the limit δ → 0, u will indeed converge to a spatial constant (in some weak sense).
We summarize the above observation in the following statement.

Corollary 5.5. Let λ = δ9 . Let further t∗ = ti be the first extinction time. Suppose there is an M > 0 (indepen-
dent of δ) such that supi supt�t∗ {|Ri(t)Ṙ i(t)|, Ri(t)} < M, and if limt→t−∗ Ri Ṙi = − 1

β
, then we have

sup
t<t∗

‖u‖2
L2(Ω)

+ 1

δ
‖∇u‖2

L2(Ωt∗ )
� M.
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(In the above we have also used the assumption (27) for the gi ’s.)
The next section is to prove the validity of the assumptions used in the above corollary. This

will be shown using maximum principle by means of sub- and super-solutions. Then the result of
Corollary 5.5 will be used to extend the solution u of (24) to even after the moment some balls have
vanished.

6. Regularity of the radii Ri ’s

6.1. Preliminaries

We first record the following lemma on a maximum principle suitable for our problem. It is the
parabolic version of Lemma 4.2 in [15].

Lemma 6.1. Let {Ω(t)}t�0 be a time dependent Lipschitz domain and
⋃

i{Bi(t)}t�0 be a finite collection of
disjoint balls such that

⋃
i Bi(t) ⊂ Ω(t) for all t � 0.

Let u be a function which is constant on each ∂ Bi and satisfy for all t � 0 the following statements

ut − �u � (�) 0 in Ω(t)\
⋃

i

Bi(t),

u − ci

∫
∂ Bi(t)

∇u · n � (�) 0 on ∂ Bi(t), for all i,

∇u · n � (�) 0 on ∂Ω(t),

where ci � 0 for all i. If u(x,0) � (�)0, then u � (�)0 in Ω(t)\⋃
i Bi(t) for t > 0.

The rigorous proof of the above can be produced following the steps in [15]. Hence it is omitted.
It can be intuitively understood as follows. If u � 0 at t = 0, then by strong maximum principle,
it cannot reach zero inside the domain Ω(t)\⋃

i Bi(t). By means of the Hopf lemma, the boundary
conditions also prevent the occurrence of zero on ∂Ω(t) and ∂ Bi(t). Hence u will be strictly positive
for all t > 0.

Equipped with the above result, we are ready to construct sub- and super-solutions which will be
used to control the growth and decay of the radii Ri(t)’s. First we present an a priori bound using the
above maximum principle.

Lemma 6.2. There exist two constants M1(T ,Ω) and M2(T ,Ω) such that for any solution u of (24) with
initial data (25), we have

M1(T ,Ω) � u(x, t) � M2(T ,Ω) + u∞0 +
∑
i∈N

δ4

|x − xi | . (47)

(In general, M1 might be negative.) The above leads to that for some constant M > 0,

1. at any particle boundary: for x such that |x − xi | = δ4 Ri ,

u|∂ Bi � M + 1

Ri
; (48)

2. away from any of particle boundary: for x such that |x − xi | � δ
4 for all i,

|u| � M. (49)
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Proof. The fact that statements (48) and (49) follow from (47) is due to the assumptions on the
bound on the number of particles and their spatial separation by at least of distance O (δ) (see Re-
mark 3.1(2)).

The proof of the lower bound in (47) is simply due to the fact that a negative constant with large
magnitude (−M) satisfies

(−M) � −gi(t) + 1

Ri
+ β

4πδ4 R2
i

∫
∂ Bi

∇(−M) · n,

and hence is a sub-solution.
The proof of the upper bound in (47) is similar to [14, Lemma 17]. It turns out that the function

V denoting the right-hand side of (47) is automatically a super-solution for large enough M2(T ,Ω).
The reasoning is as follows.

1. For any i ∈N (t),

V |∂ Bi = M2 + u∞0 + 1

Ri
+

∑
j �=i

δ4

|x j − xi | � M2 + u∞0 + 1

Ri
+ O (1)

∑
j �=i

δ4

δ

� M2 + uδ∞0 + 1

Ri
+ O (1)

∑
j �=i

δ3 � M2 + O (1) + 1

Ri
.

In the above, we have used the fact that N(t) = O (δ−3) and |xi − x j | � cδ for any i �= j.
2. Next we compute the gradient term: again for any i ∈N (t),

β

4πδ4 R2
i

∫
∂ Bi

∇V · n = β

4πδ4 R2
i

∫
∂ Bi

∇
[ ∑

j∈Nδ(t)

δ4

|x − x j|
]

· n

= β

4πδ4 R2
i

∫
∂ Bi

∇
[

δ4

|x − xi|
]

· n + β

4πδ4 R2
i

∫
∂ Bi

∇
[∑

j �=i

δ4

|x − x j|
]

· n

� β

4πδ4 R2
i

[
− δ4

δ8 R2
i

]
4πδ8 R2

i + O (1)

δ3

β

4πδ4 R2
i

[
δ4

δ2

]
4πδ8 R2

i

= − β

R2
i

+ O
(
δ3)

.

Hence with M2 chosen big enough and δ being small, we always have

V � −gi + 1

Ri
+ β

4πδ4 R2
i

∫
∂ Bi

∇V · n.

3. In order for V to satisfy the Neumann boundary condition on ∂Ω , we consider a modification
function w similar to [14, Lemma 17]. Let h = ∑

i∈Nδ
δ4

|x−xi | and w be the solution of the following
equation:
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δwt = �w in ΩT ,

∇w · n = −∇h · n on ∂ΩT ,

w(0, ·) = w0 in Ω ,

where w0 solves

−�w0 =
∫

∂Ω

∇h · n,

∇w0 · n = −∇h · n,∫
Ω

w0 = 0.

By [14, Lemmas 17, 20], w0 and w satisfy the following estimates

‖w0‖∞ � M
√

δ, ‖w‖∞ � M, and ‖∇w‖∞ � Mδγ for any γ < 1
2 .

With the above, ∇(V + w) · n = 0 on ∂Ω and upon choosing M2 large enough, we have

(V + w)|∂ Bi � gi − 1

Ri
+ β

4πδ4 R2
i

∫
∂ Bi

∇(V + w) · n,

so that the desired result is still true with V replaced by V + w . �
Now we proceed to construct sub- and super-solutions so as to control the growth and decay rates

of the particle radii.

6.2. Single particle case

We first consider the case of a single particle which forms the building block for the general
multiple particle scenario. In the following, we will use the notation Bδ4 R to emphasize the radius of
the rescaled ball. In this case, problem (24) is formulated in the following form:

δut = �u on
{|x| � δ4 R(t)

}
,

u = 1

R
− g(t) + β

4πδ4 R2(t)

∫
∂ B

δ4 R

∇u · n on
{|x| = δ4 R(t)

}
,

Ṙ = 1

4πδ4 R2

∫
∂ B

δ4 R

∇u · n. (50)

The key is to investigate the solution as R → 0+ in the regime δ 	 1. The main conclusion is that
|R Ṙ| < C < ∞ and hence R ∈ W 1,p([0, T ]) for any 1 � p < 2. As a by-product, we get limR→0+ R Ṙ =
− 1

β
. This will be established by constructing sub- and super-solutions. It is first done for the case

R 	 1 and Ṙ < 0. If R > O (1), we will show that |Ṙ| is uniformly bounded. However, once R(t)
reaches below some small value, Ṙ will become negative and will stay negative until the extinction
time of R(t).
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Construction of sub-solution under the assumption: Ṙ ��� 0, R � 1. Let R(t) be given. Then U (x, t) is
a sub-solution of (50) if

δUt � �U , on
{|x| � δ4 R(t)

}
,

and

U � 1

R(t)
− g(t) + β

4πδ4 R2(t)

∫
∂ B

δ4 R

∇U · n on
{|x| = δ4 R(t)

}
.

For any constant C , consider the function

UC,R(x) = C +
(

1 − RC − Rg

R + β

)
δ4 R

|x| . (51)

By simple computations, UC,R satisfies the following properties:

UC,R(x) > 0 for |x| � δ4 R,

UC,R(x) � C for |x| � δ4 R and R(C + g) � 1,

UC,R
(
δ4 R

) = 1 + βC − Rg

R + β
,

UC,R
(
δ4 R

) = 1

R
− g + β

4πδ4 R2

∫
∂ B

δ4 R

∇UC,R · n,

lim
R→0+ UC,R

(
δ4 R

) = C + 1

β
,

lim|x|→∞ UC,R(x) = C .

Note that |UC,R | is uniformly bounded by some constant M(C, G) < ∞. Furthermore,

∂UC,R

∂C
= 1 − δ4 R2

(R + β)|x| � 1 − R

R + β
= β

R + β
> 0 if |x| � δ4 R, (52)

so that we can use the constant C to adjust the far-field value in order to ensure that at t = 0, UC,R is
smaller than the initial data.

Now let R = R(t) be given from the solution of (50) and C = C(t) be some time dependent function
(to be specified). Then �UC,R = 0 and

∂UC(t),R(t)(x)

∂t
= δ4 Ṙ

(R + β)2|x|
[
(R + β)(1 − 2RC − 2Rg) − R + R2C + R2 g

]
+

[
1 − δ4 R2

(R + β)|x|
]

Ċ − δ4 R2

(R + β)|x| ġ

= δ4 Ṙ

(R + β)2|x|
[
β − R2C − 2RβC − R2 g − 2Rgβ

]
+

[
1 − δ4 R2

(R + β)|x|
]

Ċ − δ4 R2

(R + β)|x| ġ.
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Using the standing assumptions that Ṙ � 0 and R 	 1 and also (27) on g , the above can be made
negative by choosing C(t) such that Ċ(t) is much bigger that |R ġ|. Thus UC,R is a sub-solution. So
if C(0) is chosen small enough (possibly with negative value), we have u0 � UC(0),R(0) and hence
u � UC,R for t > 0. This leads to

Ṙ = 1

4πδ4 R2

∫
∂ B

δ4 R

∇u · n = 1

β

[
u − 1

R
+ g

]
� 1

β

[
UC,R(R) − 1

R
+ g

]

= 1

β

[
1 + Cβ − Rg

R + β
+ g − 1

R

]
� − 1

βR
. (53)

Construction of super-solution under the assumption: Ṙ < 0, R � 1. Again let R(t) be taken from
the solution of (50), then V (x, t) is a super-solution if

δVt � �V on
{|x| � δ4 R(t)

}
, (54)

and

V � 1

R(t)
− g + β

4πδ4 R2(t)

∫
∂ B

δ4 R

∇V · n on
{|x| = δ4 R(t)

}
. (55)

Consider the function

V C(t),R(t)(x) = δ4a(t)

|x| + C(t) + (1 − RC(t) − Rg)δ4 R

(R + β)|x| , (56)

where a(t) and C(t) are to be determined. Note that �V C(t),R(t) = 0 and

∂V C(t),R(t)

∂t
= δ4ȧ

|x| + δ4 Ṙ

(R + β)2|x|
[
β − R2C − 2RβC − 2R2 g − 2Rgβ

]
+

[
1 − δ4 R2

(R + β)|x|
]

Ċ − δ4 R2

(R + β)|x| ġ

≈ δ4ȧ

|x| + δ4 Ṙ

β|x| +
[

1 − δ4 R2

(R + β)|x|
]

Ċ − δ4 R2

(R + β)|x| ġ.

To make (54) hold, we choose a(t) and C(t) such that

ȧ + Ṙ

β
� 0 or a(t) = a0 − R(t)

β
> 0, and Ċ is much bigger than |R ġ| (

recall again (27)
)
.

As Ṙ < 0, a convenient choice is

a(t) = R(0)

β
− R(t)

β
.

Condition (55) is then equivalent to
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a(t)

R(t)
> βδ4δ4a(t)(−1)

1

δ8 R2(t)

which is always true as long as a(t) > 0. Thus V is a super-solution. So if C(0) is chosen big enough,
we have u0 � V C(0),R(0) and hence u � V C(t),R(t) for t > 0.

Now considering the dynamics of R(t), we have

Ṙ = 1

4πδ4 R2

∫
∂ B

δ4 R

∇u · n = 1

β

[
u − 1

R
+ g

]
� 1

β

[
V − 1

R
+ g

]

= 1

β

[
a

R
+ 1 + Cβ

R + β
− 1

R
+ g

]
= 1

βR

[
a(t) − 1 + R(1 + Cβ) + g R(R + β)

(R + β)

]
= 1

βR

[
a0 − R(t)

β
− 1 + R(1 + Cβ) + g R(R + β)

(R + β)

]
= 1

βR

[
−1 + R(0)

β
− R(t)

β
+ R(1 + Cβ) + g R(R + β)

(R + β)

]
� − 1

βR
. (57)

Combining (53) and (57), we finally have,

− 1

βR
� Ṙ � −1 − O (1)

βR
. (58)

Construction for balls with big radius. This section considers the case when R is not small. The idea
is to modify the previous construction of sub- and super-solutions by a term with small L∞-norm but
large Laplacian value (see [14, Lemma 18]).

Let (R, u) be the solution of (24). In addition, we assume for some fixed constants δ0, A1, A2 and
B such that

δ � δ0;
A1 < R(t) < A2;

Ṙ is uniformly bounded by
B

δ
. (59)

To produce a super-solution, we consider the following function:

Ṽ C,R(x, t) = C + (1 − RC − Rg)δ4 R

(R + β)|x| − 1

2
|x − xi |2 + ε, (60)

where ε � δ. It holds that

δ
∂ Ṽ C(t),R(t)

∂t
− �Ṽ C(t),R(t) = δ

{
δ4 Ṙ

(R + β)2|x|
[
β − R2C − 2RβC − 2R2 g − 2Rgβ

]
+

[
1 − δ4 R2

(R + β)|x|
]

Ċ − δ4 R2

(R + β)|x| ġ

}
+ 3, (61)



Author's personal copy

D.C. Antonopoulou et al. / J. Differential Equations 252 (2012) 4679–4718 4705

and

Ṽ C,R � −g + 1

R
+ β

4πδ4 R2

∫
∂ B

δ4 R

∇ Ṽ · n. (62)

Under the assumption (59), the right-hand side of (61) is positive. Hence V is a super-solution. As
before we obtain that

Ṙ � 1

βR

[
−1 − R

β
+ R(1 + Cβ) + g R(R + β)

R + β

]
< M, (63)

for some constant M independent of δ.
For sub-solution, we similarly consider

ŨC,R(x, t) = C + (1 − RC − Rg)δ4 R

(R + β)|x| + 1

2
|x − xi|2 − ε. (64)

Again by (59), ŨC,R will be a sub-solution. So we have

Ṙ � 1

βR

[
−1 − R

β
+ R(1 + Cβ) + g R(R + β)

R + β

]
> −M. (65)

Hence we obtain

|Ṙ| < M. (66)

6.3. Multi-particle case: existence beyond vanishing of some balls

Now we employ the above single particle analysis to prove a priori bounds for the multiple particle
case. Consider the initial data u0 given by (25). By Theorem 4.1, the solution exists locally in time.
The key is to extend the solution globally in time, beyond the vanishing times of some balls.

Let T be some fixed constant. By the uniform estimate (49), on the set K ={x: |x − xi | � δ
4 for all i}

(i.e. away from each ∂ Bi ), |u|0�t�T is bounded uniformly by some fixed constant. Hence if C̃−
i (0) and

C̃+
i (0) are chosen sufficiently small and large respectively, using (60) and (64), we have Ũ C̃−

i (0),Ri(0) �
u0 � Ṽ C̃+

i (0),Ri(0) and hence

Ũ C̃−
i (t),Ri(t)

� u � Ṽ C̃+
i (t),Ri(t)

,

for as long as A1 � Ri � A2 and |Ṙ i | � B
δ

. On the other hand, by (66), it follows that |Ṙ i | � M . Now
given any finite time interval [0, T ], choose A2 = R0 + 2MT . Then the upper bounds Ri � A2 are
always true for time interval [0, T ] (independent of δ).

If some Ri(t) ever reaches some small value A1, by (63), Ṙ i will be negative. Similarly choose C−
i

and C+
i to be sufficiently small and large such that UC−

i (t),Ri(t)
and V C+

i (t),Ri(t)
from (51) and (56)

satisfy

UC−
i (t),Ri(t)

� Ũ C̃−
i (t),Ri(t)

(� u) and (u �)Ṽ C̃+
i (t),Ri(t)

� V C+
i (t),Ri(t)

.

Now by (57), Ṙ will stay negative and hence UC−
i (t),Ri(t)

and V C+
i (t),Ri(t)

remain to be sub- and super-

solutions up to the vanishing moment ti of Ri . Finally estimates (58) hold.
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Now let t∗ be the first vanishing time of some ball (ti). We then have

sup
i

sup
t<t∗

|Ri Ṙi| � M < ∞, and sup
i

sup
t<t∗

Ri(t) � M < ∞. (67)

Upon integrating the ODE |Ṙ R| � M , we conclude that if Ri vanishes at t∗ , then

∣∣Ri(t)
∣∣ � C(t − t∗)

1
2 and

t∗∫
0

1

Ri(t)
dt � C . (68)

In particular, we have that Ri ∈ W 1,p([0, t∗]) for all 1 � p < 2.
With the above, the extension of solution beyond t∗ follows as in [14, pp. 158–159, 165]. We

briefly outline the procedure here for completeness. By Corollary 5.5, we have that supt<t∗‖u‖L2(Ω)

and ‖∇u‖L2(Ωt∗ ) are bounded independently of δ. Hence standard parabolic theory leads to the ex-

istence in L2 of u(·, t∗) = limt→t−∗ u(·, t). Next we evolve Eq. (24) from t = t∗ using u(·, t∗) as initial

data. However, in general u(·, t∗) does not belong to H1(Ω) so that we cannot directly invoke the
local in time existence result Theorem 4.1. On the other hand, the H1-condition is only needed near
the boundary of each existing particles. Near the location where a ball has just vanished, only a regu-
lar heat equation is involved which is well-posed with L2-initial data. A localization procedure is then
used to construct the solution starting from u(·, t∗). By the uniform estimate from Corollary 5.5, this
process can be continued after each vanishing moment of some balls. Hence, the solution exists up to
any finite time T .

6.4. Iteration step

The purpose of this step is to improve the constant 1 − O (1) in the right-hand side of (58). This
is not absolutely necessary for the later parts from the point of view of estimates and convergence
results – all is needed is that R ∈ W 1,p([0, T ]) and R−1 ∈ L1([0, T ]), but we feel it is of independent
interest as it gives the limiting asymptotics of R(t) near its extinction time in the strong form.

From the form of the super-solution, we need to progressively reduce a0 in (56). The expression
for the super-solution is simplified as

V 0(x, t) = δ4

β|x|
(

R(0) − R(t)
) + A + Bt,

for some A and B large enough (but independent of time and δ).
Let t1 be such that R(t1) = R(0)

2 . Then

V 0(x, t1) = δ4 R(0)

2β|x| + A + Bt1 � u(x, t1) (where u is the true solution).

Note that

1

β
+ A + Bt1 + δ4

β|x|
(

R(t1) − R(t)
)
� δ4 R(0)

2β|x| + A + Bt1 for all t � t1 and |x| � δ4 R(t).

Hence by the similar argument as before, the function
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V 1(x, t) = 1

β
+ A + Bt1 + δ4

β|x|
(

R(t1) − R(t)
) + A + B(t − t1)

= 1

β
+ 2A + Bt + δ4

β|x|
(

R(t1) − R(t)
)
,

is again a super-solution for t � t1. Now we have for t � t1 that

Ṙ � 1

β

[
V 1 − 1

R
+ g

]
= 1

β

[
1

β
+ 2A + Bt + δ4(R(t1) − R(t))

βδ4 R(t)
− 1

R
+ g

]
= 1

βR(t)

[
−1 + R(t1)

β
+ R(t)(2A + Bt + g)

]
.

To continue, let t2 be the time such that R(t2) = R(0)
4 . Set

V 2(x, t) = 1

β
+ 1

β
+ 2A + Bt2 + δ4

β|x|
(

R(t2) − R(t)
) + A + B(t − t2)

= 2

β
+ 3A + Bt + δ4

β|x|
(

R(t2) − R(t)
)
.

It is again a super-solution for t > t2. By induction, let

Vn(x, t) = n

β
+ (n + 1)A + Bt + δ4

β|x|
(

R(tn) − R(t)
)

where R(tn) = R(0)

2n
.

Finally, let

V ∗(x, t) = inf
n

Vn(x, t), (69)

which stands as a super-solution for all t > 0. Therefore we obtain

Ṙ � 1

βR

[
−1 + R(tn)

β
+ R(t)

(
n

β
+ (n + 1)A + Bt + g(t)

)]
for tn � t � tn+1.

The above shows that

R Ṙ � − 1

β
as R → 0+.

We summarize the conclusion of Sections 6.3 and 6.4, in the following existence and regularity
theorem for the system (24).

Theorem 6.3. Let the initial data u0 , Ri0 and the inhomogeneous driving forces gi satisfy the conditions (25),
(26) and (27). Then for any time T < ∞ and δ small enough,

1. there is a solution u of (24) in L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) satisfying

sup
t∈[0,T ]

∥∥u(t)
∥∥2

L2(Ω)
+ 1

δ

T∫
0

∥∥∇u(t)
∥∥2

L2(Ω)
dt � M < ∞; (70)
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2. the radii Ri ’s satisfy supi supt�0 Ri(t) < ∞ and supi ‖Ri‖W 1,p([0,min(ti ,T )]) � M < ∞ for any 1 � p < 2.
Furthermore, we have that

|Ri Ṙi| � M < ∞ and lim
t→t−i

Ri Ṙ i = − 1

β
, (71)

so that for t < ti ,

C1(ti − t)
1
2 � Ri(t) � C2(ti − t)

1
2 and

ti∫
0

1

R p
i (t)

dt � C for any p < 2. (72)

With the above existence result for our system and the regularity of the evolving radii, our ap-
proach now follows quite closely to that of [14]. The steps include: (i) construction of a first order
approximation for the heat distribution (Section 7); (ii) construction of a first order approximation
for the radii (Section 8); and (iii) derivation of the limit equations as δ → 0 (Section 9). We will still
outline the main steps to keep the paper self-contained and to emphasize the essential features, in
particular the derivation of the limit equations. On the other hand, there are some differences in the
procedure which we will point out in appropriate places.

7. First order approximation for heat distribution

The goal here is to produce a good approximation for the heat distribution which is then used to
derive the limiting equation for the dynamics of the mean field variable u∞ and radii Ri ’s as δ → 0.
This is facilitated by the following expression:

ζ(x, t) = u∞(t) +
∑

i

(
1 − Ri(t)u∞(t) − Ri(t)gi(t)

Ri(t) + β

)
δ4 Ri(t)

|x − xi | . (73)

Using the above, we will construct sub- and super-solutions to control the difference between the
actual solution u and Ri ’s (from (24)) and the approximation ζ .

For this, we define

u± = ζ + w + z ± Mδγ , (74)

where the correction functions w and z satisfy

δwt = �w − δ∂t u∞(t) in ΩT ,

∇w · n = −∇ζ · n on ∂Ω,

w(0, ·) = w0(·), (75)

and

δzt = �z − δ
∑

i

(
(1 − Ri(t)u∞(t) − Ri gi(t))Ri(t)

Ri(t) + β

)
t

δ4

|x − xi| in ΩL,T ,

z = β

4πδ4 R2
i (t)

∫
∂ Bi

∇z · n on ∂ Bi,
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∇z · n = 0 on ∂Ω,

z(0, ·) = z0(·), (76)

which are used to handle the inhomogeneous boundary conditions on ∂Ω and the ∂ Bi ’s. Their initial
data are chosen as z0 ≡ 0 and w0 = u0 − ζ0 so that all the boundary conditions are satisfied at t = 0.
The M is chosen to be large enough so that u− � u0 � u+ at t = 0.

The estimates for w are summarized by the following lemma.

Lemma 7.1. If we choose the mean-field variable u∞(t) according to

∂t u∞(t) = 4πδ3
∑

i

(
1 − Ri(t)u∞(t) − Ri(t)gi(t)

) Ri(t)

Ri(t) + β
, u∞(0) = u∞0, (77)

then for any 0 < γ < 1
2 , there exists an Mγ such that

‖w‖L∞(ΩT ) and ‖∇w‖L∞(ΩT ) � Mγ δγ . (78)

The proof is omitted as it is exactly the same as [14, Lemma 20] using careful energy type esti-
mates from parabolic regularity theory. But for completeness we will indicate the origin of (77). This
equation is to ensure that

∫
Ω

w = 0 so that the behavior of u far away from the interfaces is indeed
captured by the mean-field variable u∞ . In addition, technically speaking, the estimate for ∇w is
proved first which together with the zero mean condition then gives the estimate for w . With this in
mind, we integrate (75) and obtain

0 = δ
d

dt

∫
Ω

w =
∫

∂Ω

�w − δ∂t u∞ =
∫

∂Ω

∇w · n − δ∂t u∞.

Hence, it follows that

δ∂t u∞ =
∫

∂Ω

∂ w

∂n
= −

∫
∂Ω

∂ζ

∂n
= −

∫
∂Ω

∑
i

(
1 − Ri(t)u∞(t) − Ri(t)gi(t)

Ri(t) + β

)
δ4 Ri(t)∇ 1

|x − xi | · n.

As
∫
∂Ω

∇ 1
|x| · n = −4π , the above gives (77).

The estimates for z are stated in the next lemma.

Lemma 7.2. In the following, M denotes some generic finite constant independent of δ.

1. Let ti be the vanishing time of Bi , then

∣∣z(t)
∣∣
∂ Bi

� MT
∣∣log(ti − t)

∣∣ for t < ti . (79)

2. Let A = Ω\⋃
i B(xi,

δ
4 ), then

sup
t∈[0,T ]

1

δ2

∫
Ω

(
z(t)

)2 + 1

δ3

T∫
0

∫
Ω

|∇z|2 + 1

δ

T∫
0

∫
A

∣∣D2z
∣∣2 � M. (80)
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By Sobolev embedding theorem, the above gives

‖z‖L2(0,T ,L∞(A)) � M
√

δ. (81)

Proof. The proof is similar to [14, Lemma 21] using energy type estimates for parabolic equation, but
in the current case with the effect of kinetic undercooling in the parabolic setting, some additional
terms appear in the derivation of some energy identities. This leads to the need of estimates of the
type (79).

We write (76) in the following form:

δzt = �z − δh, where h =
∑

i

(
(1 − Ri(t)u∞(t) − Ri gi(t))Ri(t)

Ri(t) + β

)
t

δ4

|x − xi | .

Multiplying the above equation by z and extending z from ΩL to Ω by z|Bi = z|∂ Bi lead to

δ

∫
ΩL(t)

zt z =
∫

ΩL(t)

�zz − δ

∫
ΩL(t)

hz,

δ

∫
Ω

zt z − δ

∫
Ω\ΩL(t)

zt z =
∫

∂ΩS (t)

z
∂z

∂n
−

∫
Ω

|∇z|2 − δ

∫
Ω

hz,

δ

∫
Ω

zt z − δ
∑

i

(
4πδ12 R3

i

3

)
żi zi = −

∑
i

4πδ8 R2
i zi(zn)i −

∫
Ω

|∇z|2 − δ

∫
Ω

hz,

where zi = z|∂ Bi and (zn)i = ∂z
∂n |∂ Bi . As zi = βδ4(zn)i , the above becomes

δ

∫
Ω

zt z +
∑

i

4πδ8 R2
i z2

i

βδ4
+

∫
Ω

|∇z|2 = δ
∑

i

(
4πδ12 R3

i

3

)
żi zi − δ

∫
Ω

hz, (82)

or

δ
d

dt

∫
Ω

1

2
z2 + 4πδ4

β

∑
i

R2
i (t)z2

i (t) +
∫
Ω

|∇z|2 = 4πδ13

3

∑
i

R3
i (t)

(
z2

i

2

)
t
− δ

∫
Ω

hz. (83)

Integrating in time then gives

δ

∫
Ω

1

2
z2(t) + 4πδ4

β

t∫
0

∑
i

R2
i (s)z2

i (s)ds +
t∫

0

∫
Ω

|∇z|2 + δ

t∫
0

∫
Ω

hz

= 4πδ13

3

∑
i

R3
i (t)

(
z2

i

2

)
(t) − 4πδ13

3

t∫
0

∑
i

3R2
i (s)Ṙ i(s)

(
z2

i

2

)
(s)ds

+ δ

∫
Ω

1

2
z2(0) − 4πδ13

3

∑
i

R3
i (0)

(
z2

i

2

)
(0). (84)
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From the above, we see that the zi(t)’s appear in the right-hand side which forces us to consider their
estimate.

As supt∈[0,T ]{supi Ri(t), |Ri(t)gi(t)|} < ∞, we simplify Eq. (76) as

δzt = �z − δ
∑

i

δ4(Ai(t) + Bi(t)Ṙ i(t))

|x − xi | , (85)

where Ai and Bi are some uniformly bounded smooth functions. We construct sub- and super-
solutions for z by

zsuper(t) = M1 +
∑

i

δ4ai(t)

|x − xi | and zsub(t) = −M1 −
∑

i

δ4ai(t)

|x − xi | ,

where ȧi(t) = M2 + M3|Ṙ i |. M1, M2 and M3 are large enough constants. (This is similar to the con-
struction of the super-solution V in (56).) Then (79) follows from

∣∣zi(t)
∣∣ � M1T +

t∫
0

ȧ(s)

Ri(s)
ds � M1T +

t∫
0

M2 + M3|Ṙ(s)|
Ri(s)

ds

= M1T +
t∫

0

M2 Ri + M3|Ri(s)Ṙ i(s)|
R2

i (s)
ds

� M1T + M

t∫
0

1

R2
i (s)

ds � M1T + M

t∫
0

1

(tδ
i − s)

ds � M1T + M
∣∣log(ti − t)

∣∣.
By Theorem 6.3(2), we see that the right-hand side of (84) is bounded by a finite constant. Then

the same computations of [14, Lemma 21, pp. 172–173] can be applied. They first give

∫
Ω

z2 + 1

δ

t∫
0

∫
Ω

|∇z|2 � Mδ2,

and then the higher order regularity result follows

sup
t∈[0,T ]

1

δ2

∫
Ω

(
z(t)

)2 + 1

δ3

T∫
0

∫
Ω

|∇z|2 + 1

δ

T∫
0

∫
A

∣∣D2z
∣∣2 � M.

These conclude the proof of (81).
(Note here that we do not need to any give special consideration for new initial data right after

some balls have vanished such as in [14, p. 167]. This is because the summands in ζ (73) correspond-
ing to the vanishing Ri ’s automatically become zero.) �

Estimates (78) and (81) together with (73) and (74) give the following corollary which says that
far away from the particles, the heat distribution u is close to the mean field variable u∞ .
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Corollary 7.3. For any 0 < γ < 1
2 , there is a constant Mγ such that∥∥u − u∞(t)

∥∥
L2([0,T ],L∞(A))

� Mγ δγ . (86)

8. Approximation of the dynamics of the radii

The following is the main theorem of this paper which gives the dynamics of the radii as δ → 0.

Theorem 8.1. Let u∞ be given as in (77). Then for any i ∈N (t) and ϕ ∈ W 1,1([0, T ]), it holds that

∣∣∣∣∣
T ∧ti∫
0

ϕ
[

Ri(Ri + β)Ṙ i − (u∞Ri + gi Ri − 1)
]

dt

∣∣∣∣∣ � Cγ δγ ‖ϕ‖W 1,1 . (87)

The above means that in the weak sense, the radii satisfy the following dynamical equation:

Ṙ i = −1 − u∞Ri − gi Ri

Ri(Ri + β)
. (88)

The proof is the same as [14, Theorem 2.b]. As this is the key result, we present the steps here to
illustrate the main idea and estimates.

Proof of Theorem 8.1. Define

ψi(x, t) = δ4 Ri(t)

|x − xi |η
( |x − xi |

δ

)
,

where η is a smooth function such that η(s) ≡ 1 for 0 � s � 1
8 and η(s) ≡ 0 for s � 1

4 . This function
satisfies

ψi|∂ Bi = 1,
1

4πδ4

∫
∂ Bi

∇ψi · n = −Ri,

and the identity, ∫
ΩL

ψi�u = −
∫

∂ Bi

ψi
∂u

∂n
+

∫
∂ Bi

u
∂ψi

∂n
+

∫
ΩL

u�ψi .

Using the dynamics of Ri(t), we have d
dt (

1
3 R3

i (t)) = 1
4πδ4

∫
∂ Bi

∇u · n from which we compute

d

dt

(
1

3
R3

i

)
= 1

4πδ4

∫
∂ Bi

ψi∇u · n = 1

4πδ4

∫
∂ Bi

u
∂ψi

∂n
− 1

4πδ4

∫
ΩL

ψi�u + 1

4πδ4

∫
ΩL

u�ψi

= ui

4πδ4

∫
∂ Bi

∂ψi

∂n
+ 1

4πδ4

∫
ΩL

(
u − u∞(t)

)�ψi

− δ

4πδ4

∫
ΩL

ψiut + u∞(t)

4πδ4

∫
ΩL

�ψi (as δut = �u)
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= −Riui − u∞(t)

4πδ4

∫
∂ Bi

∂ψi

∂n
+ 1

4πδ4

∫
ΩL

(
u − u∞(t)

)�ψi − δ

4πδ4

∫
ΩL

ψiut

= −Ri

(
1

Ri
− gi + β Ṙ i

)
+ u∞(t)Ri(t) + 1

4πδ4

∫
ΩL

(
u − u∞(t)

)�ψi

− δ

4πδ4

∫
ΩL

ψiut

(
as ui = 1

Ri
− gi + β Ṙ i

)
.

Hence, we obtain

Ri(Ri + β)Ṙ i − (u∞Ri + gi Ri − 1)

= 1

4πδ4

∫
ΩL

(
u − u∞(t)

)�ψi − δ

4πδ4

∫
ΩL

ψiut . (89)

Now let ϕ be a test function on [0, T ]. Then we have

T∫
0

ϕ
[

Ri(Ri + β)Ṙ i − (u∞Ri + gi Ri − 1)
]

dt

=
T∫

0

ϕ

[ ∫
ΩL

(u − u∞(t))�ψi

4πδ4

]
dt − δ

T∫
0

ϕ

[ ∫
ΩL

ψiut

4πδ4

]
dt. (90)

The first term of the right-hand side of (90) is estimated as

T∫
0

ϕ

[ ∫
ΩL

(u − u∞(t))�ψi

4πδ4

]
dt � ‖ϕ‖L∞([0,T ])

∥∥u − u∞(t)
∥∥

L∞(supp(�ψi))
× 1

4πδ4

∫
supp(�ψi)

|�ψi|

� Cγ δγ ‖ϕ‖L∞([0,T ]).

For the second term, we compute,

T∫
0

ϕ

∫
ΩL

ψiut

4πδ4
dt =

T∫
0

ϕ

4πδ4

[ ∫
ΩL

(
(uψi)t − uψi t

)]
dt

=
T∫

0

ϕ

4πδ4

[ ∫
ΩL

(uψi)t −
∫
ΩL

u
δ4 Ṙ i

|x − xi |η
( |x − xi |

δ

)]
dt.

Note that
∫
ΩL

(uψi)t = (
∫
ΩL

uψi)t + (uψi)|∂ Bi (δ
4 Ṙ i)(4πδ8 R2

i ). Hence, we arrive at
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T∫
0

ϕ

∫
ΩL

ψiut

4πδ4
dt = −

T∫
0

ϕt

∫
ΩL

uψi

4πδ4
dt − ϕ(0)

∫
ΩL

u(·,0)ψi

4πδ4
+

T∫
0

ϕδ8

4π

(
1

Ri
− gi + β Ṙ i

)
Ṙ i R2

i dt

−
T∫

0

ϕ Ṙ

4π

∫
ΩL

uη

|x − xi | dt

= −
T∫

0

ϕt

∫
ΩL

uψi

4πδ4
dt − ϕ(0)

∫
ΩL

u(·,0)ψi

4πδ4
+

T∫
0

ϕδ8

4π

(
Ri Ṙi − gi R2

i Ṙ i + β Ṙ2
i R2

i

)
dt

−
T∫

0

ϕ Ṙ

4π

∫
ΩL

uη

|x − xi | dt.

Using the facts that

‖u‖L∞(0,T ,L2(Ω)),

∥∥∥∥ 1

|x|
∥∥∥∥

L2(Ω)

,

∥∥∥∥ ψi

4πδ4

∥∥∥∥
L∞(0,T ,L2(Ω))

,‖Ri Ṙi‖L∞(0,T ),‖Ṙ i‖L1(0,T ) � M,

we finally have the conclusion:

∣∣∣∣∣
T∫

0

ϕ
[

Ri(Ri + β)Ṙ i − (u∞Ri + gi Ri − 1)
]

dt

∣∣∣∣∣ � Mγ δγ ‖ϕ‖W 1,1(0,T ). � (91)

9. Limit problem as δ → 0

This section presents and proves the main result of this paper: the limit description of u and
Ri ’s as δ → 0. Here for clarity, we recover the super-script δ in uδ , uδ∞ and Rδ

i to emphasize their
dependence on δ.

With the estimates derived so far, all the results of [14,15] in principle carry over. However, in
order to obtain an equation which is closed in the limit, we do need to invoke the assumption (28) on
the form of the inhomogeneous forces gi ’s. This will also motivate the incorporation of white noise
in the future work so that the machinery of stochastic analysis is applicable.

Since the estimates are the same as those in [14,15], we will omit the proof of the exis-
tence of a limit which is a consequence of general compactness results. Instead, we will con-
centrate on the derivation of the limit equations. For this, we introduce the empirical measure
νδ ∈ L1(0, T ; C0(0, KT ]))∗ of the radii:

〈
νδ,ϕ

〉 = T∫
0

1

N(t)

∑
i∈N (t)

ϕ
(
t, Rδ

i (t)
)

dt for ϕ ∈ L1
([0, T ]; C0[0, KT ]), (92)

where KT = supi,δ ‖Rδ
i ‖L∞(0,T ) . Then we have the following convergence result:

Lemma 9.1. Given any T < ∞, there exist a ν∗ ∈ L1(0, T ; C0[0, KT ])∗ and u∗∞ ∈ W 1,p(0, T ) (1 � p < ∞)

such that for a subsequence of δ → 0, the following hold:
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νδ ⇀ ν∗ in the weak∗ topology of L1(
0, T ; C0[0, KT ])∗

, (93)

uδ∞ → u∗∞ uniformly in (0, T ), (94)

uδ → u∗∞ in L2(
0, T ; H1(Ω)

)
. (95)

Furthermore, there exists a family of probability measures {ν∗
t }t�0 ⊂ C0[0, KT ]∗ and a non-negative function

α ∈ L∞(0, T ) such that

〈
ν∗,ϕ

〉 = T∫
0

∫
ϕ(t, R)dν∗

t (R)α(t)dt for ϕ ∈ L1(
0, T ; C0[0, KT ])∗

. (96)

In the above, α(t) = limδ→0
N(t)
N(0)

represents the percentage of active particles in the system.

The proof of the above is some application of convergence of measures and L p spaces. The specific
concept used is that of Young measures. For details, see [14, Lemmas 7, 8] and [15, Lemma 5.1].

In order to have a closed equation in the limit, we state here again the assumption about the
functional form for the gi(t)’s:

there exist a function G ∈ C1(R+ × R+) and a function h ∈ C1(R+) such that

gi(t) = G
(
t, Ri(t)

) + h(t). (28)

We will make some remarks about this assumption after presenting the main theorem which is stated
as follows:

Theorem 9.2. The mean field variable u∗∞ and the distribution ν∗ satisfy

∂t u∗∞(t) = 4π

∞∫
O

(
1 − Ru∗∞(t) − RG(t, R) − Rh(t)

) R

R + β
dν∗

t (R)α(t)dt, (97)

and

T∫
0

∫ {
∂tϕ(t, R) + V (t, R)∂Rϕ(t, R)

}
dν∗

t (R)α(t)dt +
∫

ϕ(0, R)dν∗
0 (R) = 0 (98)

for all ϕ ∈ C∞
0 ([0, T ] × R+), where

V (t, R) = −1 − Ru∗∞(t) − RG(t, R) − Rh(t)

R(R + β)
, (99)

and ν∗
0 is the limit of the empirical measure of the initial radii Rδ

i0 .

Proof. For (97), let η ∈ C1
0(0, T ). Then we get

T∫
0

η(t)
(
uδ∞

)
t dt =

T∫
0

η(t)

[
4πδ3

∑
i

(
1 − Rδ

i uδ∞ − Rδ
i gi

) Rδ
i

Rδ
i + β

]
dt.
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For the left-hand side of the above, we have

T∫
0

η(t)
(
uδ∞

)
t dt = −

T∫
0

ηt(t)uδ∞ dt → −
T∫

0

ηt(t)u∗∞ dt =
T∫

0

η(t)
(
u∗∞

)
t dt.

Considering the right-hand side, we express it in terms of the empirical measure νδ :

T∫
0

η(t)

[
4πδ3

∑
i

(
1 − Rδ

i uδ∞ − Rδ
i gi

) Rδ
i

Rδ
i + β

]
dt = 〈

νδ,Φδ
〉
,

where Φδ(t, R) = 4πη(t)[1 − Ruδ∞(t) − R(G(t, R) + h(t))] R
R+β

. By the strong convergence of uδ∞ to
u∗∞ and the form of gi ’s, we have that

〈
νδ,Φδ

〉 → T∫
0

η(t)

∫
4π

(
1 − Ru∗∞ − RG(t, R) − Rh(t)

) R

R + β
dν∗

t (R)α(t)dt,

which gives (97).
For (98), consider for any φ ∈ C∞

0 ([0, T ], R+):

T∫
0

η(t)

[
1

N

∑
i∈N

d

dt
φ

(
t, Rδ

i (t)
)]

dt + 1

N

∑
i∈N

φ
(
0, Rδ

i0

)
dt = 0.

The convergence of the second term is trivial. For the first term, we compute

T∫
0

η(t)

[
1

N

∑
i∈N

d

dt
φ

(
t, Rδ

i (t)
)]

dt =
T∫

0

η(t)

[
1

N

∑
i∈N

φt
(
t, Rδ

i (t)
)]

dt

+
T∫

0

η(t)

[
1

N

∑
i∈N

φR
(
t, Rδ

i (t)
)

Ṙδ
i

]
dt.

The first term on the right becomes

T∫
0

η(t)

[
1

N

∑
i∈N

φt
(
t, Rδ

i (t)
)]

dt = 〈
νδ,η∂tφ

〉 → 〈
ν∗, η∂tφ

〉
.

For the second term, we compute

T∫
0

η(t)

[
1

N

∑
i∈N

φR
(
t, Rδ

i (t)
)

Ṙδ
i

]
dt =

T∫
0

η(t)

[
1

N

∑
i∈N

φR
(
t, Rδ

i (t)
)(

Ṙδ
i − V

(
t, Rδ

i

))]
dt

+
T∫

0

η(t)

[
1

N

∑
i∈N

φR
(
t, Rδ

i (t)
)

V
(
t, Rδ

i

)]
dt.
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As φ has compact support, only the values of the radii which are bounded away from zero matter in
the computation. Hence a trivial modification of the proof of Theorem 8.1, in particular the steps (89)
and (90) give

T∫
0

η(t)

[
1

N

∑
i∈N

φR
(
t, Rδ

i (t)
)(

Ṙδ
i − V

(
t, Rδ

i

))]
dt → 0.

Finally we have the convergence result:

T∫
0

η(t)

[
1

N

∑
i∈N

φR
(
t, Rδ

i (t)
)

V
(
t, Rδ

i

)]
dt → 〈

ν∗, ηφR
〉
,

which all together gives (98), completing the proof of the theorem. �
Remark 9.3. Here we explain the need to impose the functional form (28) for the inhomogeneous
forces. From the derivation of the limit equations, we are forced to deal with summations in the form
of

T∫
0

ϕ(t)
∑

i

F
(
t, Ri(t),

{
R j(s)

}
j,0�s�t, gi(t)

)
dt for some nonlinear function F .

The dependence on {R j(s)} j, 0�s�t is through the mean-field variable uδ∞(t). In principle the above
can all be expressed in terms of some Young measures. But it is not clear if there is any meaningful
equation we can obtain to describe these Young measures. The limit equations will thus not be closed
– the usual problem when dealing with weak convergence in nonlinear equations. Imposing some
probabilistic independence among the gi does not help immediately due to the non-local dependence
in time. A reasonable alternative is to consider white noise for the gi ’s so that techniques from Itô’s
calculus can be used to take advantage of the stochastic cancellation in time. Such an approach is
used in many works deriving continuum equations from particle systems with mean-field or long
range interactions. This will be investigated in some future works.
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