Quiz 2 solution

February 11, 2020

1 D

First we check whether this differential equation is exact.

$$
(y+\sin x) d x+\left(x+2 y-3 y^{2}\right) d y=M d x+N d y=0
$$

And this gives us

$$
\begin{gathered}
M=y+\sin x \\
N=x+2 y+3 y^{2}
\end{gathered}
$$

And we compute

$$
\frac{\partial M}{\partial y}=1=\frac{\partial N}{\partial x}
$$

so this problem is exact. And according to the theorem, we are going to find the function F, where

$$
\begin{gathered}
F(x, y)=\int M d x+g(y)=x y-\cos x+g(y) \\
F(x, y)=\int N d y+h(x)=x y+y^{2}-y^{3}+h(x)
\end{gathered}
$$

After comparing with this two equation, we got

$$
F(x, y)=x y-\cos x+y^{2}-y^{3}
$$

2 A

Since this is Bernoulli equation, we are going to divide y^{3} on both side of the equation. And we will got

$$
\frac{1}{y^{3}} \frac{d y}{d x}-\frac{2}{3 x} y^{-2}=2 \ln x
$$

And if we use substitution $v=y^{-2}$, we will have $d v=-2 y^{-3} d y$, hence $\frac{1}{y^{3}} d y=$ $-\frac{1}{2} d v$ And we got the equation

$$
-\frac{1}{2} \frac{d v}{d x}-\frac{2}{3 x} v=2 \ln x
$$

Which is equivalent to

$$
\frac{d v}{d x}+\frac{4}{3 x} v=-4 \ln x
$$

Corresponding to Choice A

