Quiz 4 solution

February 14, 2020

1 B

we have $(3, \alpha, \beta) \in \operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right)$, so there exists some number x_{1} and x_{2} make

$$
x_{1} \overrightarrow{v_{1}}+x_{2} \overrightarrow{v_{2}}=(3, \alpha, \beta)
$$

. Which gives

$$
\begin{aligned}
5 x_{1}+x_{2} & =3 \\
2 x_{1} & =\alpha \\
x_{1} & =\beta
\end{aligned}
$$

Immediately, we have $\beta=2 \alpha$

2 c

Basically this question is asking about the linear dependence of the given three vectors. Which is asking do we have non-travail solution to the system

$$
x_{1} u+x_{2} v+x_{3} w=0
$$

Which is asking about the solution of

$$
\left[\begin{array}{lll}
u & v & w
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

refering back to the values of u, v, w in the problem, we are indeed solving this problem

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
1 & 3 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

If we do the row-reduction to the matrix, we will found it goes to this form

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Which has all the pivot places in each column, and each row, given the right hand side vector is $(0,0,0)$, we know this system have one unique solution, which is $x_{i}=0$, for $\mathrm{i}=1,2,3$. So this system has only travail solution.

So u, v and w are linear independent. In this way, any vector could not be written as a linear combination of the other two (if so, say $w=c^{*} u+d^{*}{ }_{v}$ for example, then we have $\mathrm{c}^{*} \mathrm{u}+\mathrm{d}^{*} \mathrm{v}-\mathrm{w}=0$, which says we have non-travail solution to $x_{1} u+x_{2} v+x_{3} w=0$, and the sol is ($\mathrm{c}, \mathrm{d},-1$), this contradicts what we have derived above.)

