Quiz 5 solution

March 6, 2020

1

Easy to check that

$$
A x=T(x)=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{c}
2 \\
-4 \\
0 \\
1
\end{array}\right] x_{2}=\left[\begin{array}{cc}
-3 & 2 \\
1 & -4 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

So

$$
A=\left[\begin{array}{cc}
-3 & 2 \\
1 & -4 \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

2 e
By using the algorighm of inverting the matrix we could find

$$
A^{-1}=\left[\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right]
$$

So

$$
A^{-1} B=\left(A^{-1}\left[\begin{array}{l}
3 \\
1
\end{array}\right] \quad A^{-1}\left[\begin{array}{l}
0 \\
2
\end{array}\right] \quad A^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

So the second column of $A^{-1} B$ should be

$$
A^{-1}\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

And we can compute this by simple matrix multiplication and we got

$$
\left[\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

