Quiz 6 solution

March 6, 2020

1

Since we only want to compute $(3,2)$ entry of A^{-1}. So if we compute the 2 nd column of A^{-1}, we are done. Since $A A^{-1}=I$, so if we denote 2 nd column of A^{-1} to be x , then

$$
A x=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

And now we only care 3 rd entry of x , which is corresponding to the $(3,2)$ entry of A^{-1}, and we already know $\operatorname{det} A=-10$, so we denote $b=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{\prime}$ and use Cramer's Rule $x_{3}=\frac{\operatorname{det} A_{3} b}{\operatorname{det} A}$
where, by definition, $A_{3} b$ is the matrix by substituting 3 rd column of A by b

$$
A_{3} b=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 5 & 1 \\
3 & 4 & 0
\end{array}\right]
$$

Easy to compute $\operatorname{det} A_{3} b=(-1)^{(2+3)}(2 * 4-3 * 1)=-5$. Hence $x_{3}=\frac{1}{2}$

2

$\operatorname{det}\left(-2 A B^{-1}\right)=\operatorname{det}\left(-2 I A B^{-1}\right)=\operatorname{det}(-2 I) \operatorname{det}(A) \operatorname{det}\left(B^{-1}\right)$
Since $\operatorname{det}(B) \operatorname{det}\left(B^{-1}\right)=\operatorname{det}(I)=1$, we know $\operatorname{det}\left(B^{-1}\right)=\frac{1}{\operatorname{det}(B)}$. Importantly, $\operatorname{det}(-2 I)=(-2)^{3}=-8$, so we only need to calculate $\operatorname{det}(A)$ and $\operatorname{det}(B)$.

And we can calculate $\operatorname{det}(A)=-14$ and $\operatorname{det}(B)=4$. So $\operatorname{det}\left(-2 A B^{-1}\right)=$ $\operatorname{det}(-2 I) \operatorname{det}(A) / \operatorname{det}(B)=-8 *(-14) / 4=28$

Comment:
For $n \times n$ dimensional matrix A ,
$\operatorname{det}(-2 A) \neq-2 \operatorname{det}(A)$
$\operatorname{det}(-2 A)=(-2)^{n} \operatorname{det}(A)$ is the right way to compute

