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Finally, an important application for Cramer’s rule dealing with inverse matrices will

be given in the next section.

GENERAL PROBLEMS

1. General Properties of Determinants. Illustrate each
statement in Theorems 1 and 2 with an example of
your choice.

2. Second-Order Determinant. Expand a general
second-order determinant in four possible ways and
show that the results agree.

3. Third-Order Determinant. Do the task indicated in
Theorem 2. Also evaluate D by reduction to triangular
form.

| _AZExpansion Numerically Impractical. Show that the
computation of an nth-order determinant by expansion
involves n! multiplications, which if a multiplication
takes 107 sec would take these times:

n 10 15 20 25

0.5 - 10°
years

0.004 22 77

Time ;
sec min years

5. Multiplication by Scalar. Show that det (kA) =
k™ det A (not k det A). Give an example.

6. Minors, cofactors. Complete the list in Example 1.

EVALUATION OF DETERMINANTS
Showing the details, evaluate:

cosa Ssina 0.4 49
4 8.
}/ sin cosf3 1.5 —13
cosnf  sinnf cosht sinh¢
9. 10.
—sinnf cos nd sinht cosht
4 -1 8 a b c
1m.lo 2 3 e a b
0 0 5 b c a
0 4 -1 5 4 7 0 0
—4 0 3 =2 2 8 0 0
13. 14.
1 =3 0 1 0 0 1 5
0 0 2

15.

16.

17-19| RANK BY DETERMINANTS

Find the rank by Theorem 3 (which is not very practical)
and check by row reduction. Show details.

17.

19.

20.

12 0 0 i
2 4 2 0 |
o 2 9 2

0 0 2 16

CAS EXPERIMENT. Determinant of Zeros and

Ones. Find the value of the determinant of the n X p
matrix A, with main diagonal entries all 0 and all
others 1. Try to find a formula for this. Try to prove it
by induction. Interpret Az and A4 as incidence matrices
(as in Problem Set 7.1 but without the minuses) of a
triangle and a tetrahedron, respectively; similarly for an
n-simplex, having n vertices and n(n — 1)/2 edges (and
spanning R" "1, n = 5,6,--+).

4 9 0 4 —6
~§. ~6 18.] 4 0 10
16 12 -6 10 0
(1. § 2 2

1 3 2 6
4 0 8 48

TEAM PROJECT. Geometric Applications: Curves

and Surfaces Through Given Points. The idea is to
get an equation from the vanishing of the determinant
of a homogeneous linear system as the condition fora =
nontrivial solution in Cramer’s theorem. We explain
the trick for obtaining such a system for the case of :
a line L through two given points Py: (x, y;) and
Py (xg, y2). The unknown line is ax + by = =6
say. We write it as ax + by + ¢+ 1 = 0. To get a
nontrivial solution a, b, ¢, the determinant of the
“coefficients” x, y, 1 must be zero. The system is =

ax + by +c¢-1=0 (Linel)
(12) axyt+ by +c-1=0 (Ponl)
axg + by +¢c-1=0 (Ponl).
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ges will (a) Line through two points. Derive from D = 0 in 21-25| CRAMER’S RULE
(12) the familiar formula Solve by Cramer’s rule. Check by Gauss elimination and
! X —xq y—n back substitution. Show details.
X1~ Xz y17 e 21 3x— S5y =155 /n' 2% — dy = =24
; (b) Plane. Find the analog of (12) for a plane through _ _
three given points. Apply it when the points are 6x + 16y = 5.0 SExy= 0
E (L,1,1),(3,2,6),(5,0,5). 23, 3y—4z= 16 24. 3x—2y+ z= 13
(¢) Circle. Find a similar formula for a circle in the
plane through three given points. Find and sketch the 2x — Sy+ Tz=—21 —2x+ y+dz= 11
{ circle through (2, 6), (6, 4), (7, 1). . e e
i i (d) Sphere. Find the analog of the formula in (c) for * = ? x + 4y =:5g= =3l
a sphere through four given points. Find the sphere 25, ~4w+ x+ y = —10
through (0, 0, 5), (4,0, 1),(0, 4, 1), (0, 0, —3) by this
i and formula or by inspection. w— 4x + = 1
n X n (e) Genera! conic section. ‘led a formula f'or a w —dy+ z= -7
nd all general conic section (the vanishing of a determinant
u e it | of 6th order). Try it out for a quadratic parabola and x+ y—dz= 10
alrices for a more general conic section of your own choice.
fa
for an 7 4
@ /.8 Inverse of a Matrix.
- | Gauss—)ordan Elimination
: |
In this section we consider square matrices exclusively.
fita) I The inverse of an n X n matrix A = [a;;,] is denoted by A™" and is an n X n matrix
3 such that
) AAT = ATTA =1

i where I is the n X n unit matrix (see Sec. 7.2).
i If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then
‘ A is called a singular matrix.
If A has an inverse, the inverse is unique.
Indeed, if both B and C are inverses of A, then AB = I and CA = 1, so that we obtain
the uniqueness from

B =1IB = (CA)B = C(AB) = CI = C.

i We prove next that A has an inverse (is nonsingular) if and only if it has maximum
' possible rank n. The proof will also show that Ax = b implies x = A™'b provided A™1
exists, and will thus give a motivation for the inverse as well as a relation to linear systems.
(But this will not give a good method of solving Ax = b numerically because the Gauss
elimination in Sec. 7.3 requires fewer computations.)

THEOREM 1 Existence of the Inverse

The inverse A1 of an n X n matrix A exists if and only if rank A = n, thus (by
Theorem 3, Sec. 7.7) if and only if det A # 0. Hence A is nonsingular ifrank A = n,
and is singular if rank A < n.
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PROOF If A or B is singular, so are AB and BA by Theorem 3(c), and (10) reduces to 0 = 0 by
Theorem 3 in Sec. 7.7.
Now let A and B be nonsingular. Then we can reduce A to a diagonal matrix A = [ajr]
by Gauss—Jordan steps. Under these operations, det A retains its value, by Theorem 1 in
Sec. 7.7, (a) and (b) [not (c)] except perhaps for a sign reversal in row interchanging when
pivoting. But the same operations reduce AB to AB with the same effect on det (AB).
Hence it remains to prove (10) for AB; written out,

ayg 00 o 0 bin big o by
0 dgg -+ 0 boy bag o boy

o

0 0 e ann_ b1 bnz e bnn_J

d1b1n dnbie 0 diibin

dooboy  dagbos - dasbay

__dnnbnl a‘nnbnz et a'rm.'bn‘n._

We now take the determinant det (f\B). On the right we can take out a factor d;; from

the first row, dgg from the second, - -, dy,y, from the nth. But this product dy1dss - - dpp
equals det A because A is diagonal. The remaining determinant is det B. This proves (10)
for det (AB), and the proof for det (BA) follows by the same idea. |

This completes our discussion of linear systems (Secs. 7.3-7.8). Section 7.9 on vector
spaces and linear transformations is optional. Numeric methods are discussed in Secs.
20.1-20.4, which are independent of other sections on numerics.

s PROBLEM SE

INVERSE [0 1 0] [1 2

Find the inverse by Gauss—Jordan (or by (4%) if n = 2). !
Check by using (1). Ll 00 8.14 5 ©
1.80 -2.32 cos20  sin20 (0 0 1] |7 8 9
- [—0.25 0.60 ' [sin 20 cos ze] 0 8 0] EREEE
[03 —01 05 [0 0.1 9.0 0 4 10.-2 2 }
3|2 6 4 4|0 4 0 2 0 0] | 4 & -3

11-18| SOME GENERAL FORMULAS

11. Inverse of the square. Verify (AH™1 = (A_l)?‘ for A
13 in Prob. 1.

)

0

0

—0.

5 0 9 2.5 0
0

8

3

12. Prove the formula in Prob. 11.
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0=0by 13. Inverse of the transpose. Verify (AN = (A™YHT for 18. Row interchange. Same task as in Prob. 16 for the
A in Prob. 1. matrix in Prob. 7.
\ = [ajk] 14. Prove the formula in Prob. 13.
rem Lm 15. Inverse of the inverse. Prove that (A™1)™? = A. 19-20 | FORMULA (4)
;ng WAI:H 16. Rotation. Give an application of the matrix in Prob. 2 Formula (4) is occasionally needed in theory. To understand
et (AB). that makes the form of the inverse obvious. it, apply it and check the result by Gauss-Jordan:

17. Triangular matrix. Is the inverse of a triangular 19. In Prob. 3
matrix always triangular (as in Prob. 5)? Give reason. /Zﬂ./ln Prob. 6

7.9 Vector Spaces, Inner Product Spaces,
Linear Transformations Optional

We have captured the essence of vector spaces in Sec. 7.4. There we dealt with special
vector spaces that arose quite naturally in the context of matrices and linear systems. The
elements of these vector spaces, called vectors, satisfied rules (3) and (4) of Sec. 7.1
(which were similar to those for numbers). These special vector spaces were generated
by spans, that is, linear combination of finitely many vectors. Furthermore, each such
vector had » real numbers as components. Review this material before going on.

e

i1 from We can generalize this idea by taking all vectors with n real numbers as components

PRRRY; W and obtain the very important real n-dimensional vector space R™. The vectors are known
wes (10) as “real vectors.” Thus, each vector in R™ is an ordered n-tuple of real numbers.

] Now we can consider special values for n. For n = 2, we obtain R?, the vector space

of all ordered pairs, which correspond to the vectors in the plane. For n = 3, we obtain

n vector R3, the vector space of all ordered triples, which are the vectors in 3-space. These vectors

in Secs. have wide applications in mechanics, geometry, and calculus and are basic to the engineer

and physicist.

Similarly, if we take all ordered n-tuples of complex numbers as vectors and complex
numbers as scalars, we obtain the complex vector space C”, which we shall consider in
Sec. 8.5.

- Furthermore, there are other sets of practical interest consisting of matrices, functions,
transformations, or others for which addition and scalar multiplication can be defined in
an almost natural way so that they too form vector spaces.

It is perhaps not too great an intellectual jump to create, from the concrete model R",
the abstract concept of a real vector space V by taking the basic properties (3) and (4)
in Sec. 7.1 as axioms, In this way, the definition of a real vector space arises.

(i

DEFINITION Real Vector Space

A nonempty set V of elements a, b, - - - is called a real vector space (or real linear
space), and these elements are called vectors (regardless of their nature, which will
come out from the context or will be left arbitrary) if, in V, there are defined two
algebraic operations (called vector addition and scalar multiplication) as follows.

I. Vector addition associates with every pair of vectors a and b of V a unique
for A vector of V, called the sum of a and b and denoted by a + b, such that the following
axioms are satisfied.

WIkY ol oS

})2
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1. Basis. Find three bases of R,

2. Uniqueness. Show that the representation v = c¢ja(q,
+ -+ + cuag, of any given vector in an n-dimensional
vector space V in terms of a given basis acy, '+, 8¢y
for V is unique. Hint. Take two representations and
consider the difference.

VECTOR SPACE

(More problems in Problem Set 9.4.) Is the given set, taken
with the usual addition and scalar multiplication, a vector
space? Give reason. If your answer is yes, find the dimen-
sion and a basis.
/3./All vectors in R satisfying —v, + 2v9 + 3v3 = 0,
_41?1 + Vg + Vg3 = 0.
/4./ All skew-symmetric 3 X 3 matrices.
5. All polynomials in x of degree 4 or less with
nonnegative coefficients.
/Al] functions y(x) = a cos 2x + b sin 2x with arbitrary
constants a and b.
7. All functions y (x) = (ax + b)e™™ with any constant a
and b.
8. All n X n matrices A with fixed n and det A = 0.
).fA]! 2 X 2 matrices [aj,] with ay; + ags = 0.
10. All3 X 2 matrices [aj;] with first column any multiple
of(3 0 -5".

11-14 | LINEAR TRANSFORMATIONS
Find the inverse transformation. Show the details.

11. y; = 0.5x; — 0.5x5 . y1 = 3x3 + 2x9

yo = 1.5x1 — 2.5x, Yo = 4x1 + xo

1. What properties of matrix multiplication differ from
those of the multiplication of numbers?

2. Let Abea 100 X 100 matrix and B a 100 X 50 matrix.
Are the following expressions defined or not? A + B,
A%, B% AB, BA, AA", BTA, BB, BB", BTAB. Give
reasons.

3. Are there any linear systems without solutions? With

one solution? With more than one solution? Give

simple examples.

Let C be 10 X 10 matrix and a a column vector with

10 components. Are the following expressions defined

or not? Ca, C'a, Ca', aC, a"C, (CaT)T.

-

“CHAPTER 7 REVIEW QUESTIONS AND PROBLEMS

13. y1 = 5x1 + 3x3 — 3x3
yo = 3x; + 2xg — 2x3
y3 = 2x1 — xg + 2x3
14. y; = 0.2x7 — O.1xg
yg = — 0.2x9 + 0.1x3

vz = 0.1x; + 0.1x3

EUCLIDEAN NORM

Find the Euclidean norm of the vectors:

5.3 1 -4 163 4 -3 -4
17. [1 0 0 1 -1 0 -1
18. [—4 9.3 3%
2.3 —3 -3 3

21-25( INNER PRODUCT. ORTHOGONALITY

21. Orthogonality. For what value(s) of k are the vectors
[2 3 -4 0)"and[5 k 0 2" orthogonal?

)2./ Orthogonality. Find all vectors in R® orthogonal to

[2 0 1]. Do they form a vector space?

23. Triangle inequality. Verify (4) for the vectors in
Probs. 15 and 18.

24. Cauchy-Schwarz inequality. Verify (3) for the
vectors in Probs. 16 and 19.

25. Parallelogram equality. Verify (5) for the first two
column vectors of the coefficient matrix in Prob. 13.

5. Motivate the definition of matrix multiplication.
6. Explain the use of matrices in linear transformations.

7. How can you give the rank of a matrix in terms of row
vectors? Of column vectors? Of determinants?

8. What is the role of rank in connection with solving
linear systems?

9. What is the idea of Gauss elimination and back
substitution?

What is the inverse of a matrix? When does it exist?
How would you determine it?

10




