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SUMMARY

In Cai and Kim (SIAM J. Numer. Anal. 2001; 39:286), we developed and analysed a new accurate
�nite element method using singular functions for the Poisson equation on a two-dimensional polygonal
domain with re-entrant corners. This method �rst computes the regular part of the solution, then stress
intensity factors, and �nally the solution itself. This note extends this method to the Poisson equation
on a domain with cracks and considers a higher-order method when f∈H 1(�). Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Solutions of elliptic boundary value problems de�ned on domains with corners have singular
behaviour near the corners. This occurs even when data of the underlying problem are very
smooth. Such singular behaviour a�ects the accuracy of the �nite element method throughout
the whole domain. For example, for the Poisson equation with homogeneous Dirichlet bound-
ary conditions de�ned on a polygonal domain with re-entrant corners, it is well known that the
solution has the singular function representation: u=w+

∑J
j=1 �j�jsj, where w∈H 2(�)∩H 1

0 (�)
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is regular part of the solution, �j are smooth cut-o� functions, and sj are known singular
functions that depend only on the corresponding re-entrant angles. Coe�cients �j can be
expressed in terms of u by extraction formulas. Similar singular function representations hold
for the solutions of interface, biharmonic, elasticity, and evolution problems (see References
[1, 2]). In the context of mechanics, the coe�cients �j are known as the stress intensity factors.
Accurate calculation of these quantities is of great importance. For example, in aerodynamics,
they characterize the lift of a �ow around a corner shaped body (see Reference [3]). In
fracture mechanics, most of the crack propagation criteria are expressed in terms of them (see
Reference [4]).
Given a �nite element approximation to the solution u, the stress intensity factors �j can

be approximated using extraction formulas. It is well known (see Reference [5]) that u is in
Hr(�) for r¡1+�=! where ! is the maximum of the re-entrant angles. Such lack of regularity
a�ects the accuracy of the �nite element approximation and, hence, the approximation to �j. In
particular, standard continuous piecewise linear �nite element on a quasi-uniform triangulation
yields O(h(�=!)−�) and O(h(2�=!)−�) accuracy for any �¿0 in the H 1 and L2 norms, respectively.
In turn, this implies that the accuracy of the approximation to �j is O(h(2�=!)−�). There are
several approaches in the literature for overcoming this di�culty (see References [6, 10–14]
and references therein).
In Reference [7], we developed and analysed a new �nite element method for the accurate

computation of the solution and stress intensity factors. The loss of standard �nite element
approximation accuracy for elliptic boundary value problems with corner singularities is due
to the non-smoothness of the solution. Therefore, it is natural to �rst approximate w, and
then compute �j and u. To do so, we decouple the system by using the dual singular func-
tions and extra cut-o� functions with supports bigger than those of �j. Now w is uniquely
determined by a well-posed variational problem and �j can be expressed by an extraction
formula in terms of w. Based on this variational problem, we showed that continuous piece-
wise linear �nite element approximation on a quasi-uniform triangulation yields O(h) optimal
accuracy for w and u in H 1. Also, we established O(h1+�=!) error bound for w and u in
L2 and for �j in the absolute value. Our numerical experiments in Reference [8] seem to
indicate that our approach achieves O(h2) accuracy for u in L2 and for �j in the absolute
value.
The problem for w is no longer a nice Poisson equation. Instead, it is a Poisson equa-

tion perturbed by integral terms which are only non-zero on strips away from the cor-
ners. Because of such perturbation, the problem is non-symmetric and possibly inde�nite.
To solve non-symmetric algebraic equations arising from the discretization, it was shown
in both theory and numerics in Reference [8] that a standard multigrid method is e�-
cient. This is because the non-symmetric perturbation with pseudo-di�erential order of −1
is well-controlled by the Laplace operator whose pseudo-di�erential order is 2. The method
adopted in Reference [8] is a V-cycle multigrid method that uses an exact
coarsest grid solver and smoothing operators that depend only on the discrete Laplace
operator.
The purpose of this note is to extend results in Reference [7] to a polygonal domain with

cracks and consider a higher-order method when f∈H 1(�). The Poisson equation and the
singular function representation are given in Section 2. A new extraction formula for �j and a
variational problem for w are introduced in Section 3. Finite element methods and their error
bounds are carried out in Section 4.
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2. THE PROBLEM AND PRELIMINARIES

Consider the Poisson equations with homogeneous Dirichlet boundary conditions:

−�u = f in �

u = 0 on @�
(1)

where f is a given function in either L2(�) or H 1(�) and � is an open, bounded polygonal
domain in R2. We use the standard notation and de�nition for the Sobolev spaces Ht(B) for
t¿0; the standard associated inner products are denoted by (·; ·)t; B, and their respective norms
and seminorms are denoted by ‖ · ‖t; B and | · |t; B. The space L2(B) is interpreted as H 0(B), in
which case the inner product and norm will be denoted by (·; ·)B and ‖ · ‖B, respectively. We
omit the subscript B from the inner product and norm designation when B=�.
In the case that f is in L2(�) but not in H 1(�), for simplicity, assume that the domain �

has one re-entrant corner whose internal angle is !=2� (i.e. a crack). Extension to a domain
with a �nite number of cracks or re-entrant corners is straightforward. Let the corresponding
vertex is at the origin. De�ne the singular and the dual singular functions by

s(r; �)=r�=! sin
��
!

and s−(r; �)=r−�=! sin
��
!

(2)

respectively, in the polar co-ordinates (r; �). The co-ordinates are chosen at the origin so that
the internal angle ! is spanned by the two half-lines �=0 and !. Set

B!(r1; r2)={(r; �): r1¡r¡r2 and 0¡�¡!}∩� and B!(r1)=B(0; r1)

De�ne a family of cut-o� functions of r for a �xed !, ��(r;!), as follows:

��(r;!)=




1 in B!( �R2 )
15
16{ 8

15 − ( 4r�R − 3) + 2
3(

4r
�R − 3)3 − 1

5 (
4r
�R − 3)5} in �B!( �R2 ;�R)

0 in �\ �B!(�R)

(3)

where � is a parameter in (0; 2] and R∈R is a �xed number so that �2s vanishes identically
on @�. It is well known (see, e.g. References [5, 9]) that the solution of problem (1) has the
singular function representation

u=w1 + ���s (4)

where w1∈H 2−�(�)∩H 1
0 (�) for any �¿0 is regular part of the solution and �∈R is the

so-called stress intensity factor. Moreover, w1∈H 2−�(�)∩H 1
0 (�) satis�es

−�w1 − ��(��s)=f in � (5)

and the following regularity estimate:

‖w1‖2−�6C�‖f‖ and |�|6C‖f‖ (6)

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:445–455
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The stress intensity factor can be expressed in terms of u by the following extraction formula
(see Reference [5]):

�=
1
�

(∫
�
f��s− dx +

∫
�
u�(��s−) dx

)
(7)

It is well known (cf Reference [5]) that the solution u of problem (1) is in Hr(�) for
r¡1+�=!= 3

2 . Such lack of regularity a�ects the accuracy of the �nite element approximation
and, hence, the approximation to the stress intensity factor.
In the case that f∈H 1(�), we also consider a second-order �nite element method. Let

!1; : : : ; !N be the internal angles of � satisfying �=2¡!j62� and let vj be the corresponding
vertices. Let polar co-ordinates (rj; �j) be chosen at the vertex vj so that the internal angle !j

is spanned by the two half-lines �j=0 and !j. Let

Lj=
{
l∈N :

l�
!j

¡2 and
l�
!j

�=1
}

(8)

Note that Lj={1} if �=2¡!j¡�, Lj={1; 2} if �¡!j63�=2, Lj={1; 2; 3} if 3�=2¡!j¡2�,
and Lj={1; 3} if !j=2�. De�ne the singular and dual singular functions by

sj; l(rj; �j)=rl�=!j
j sin

l�
!j

�j and sj;−l(rj; �j)=r−l�=!j
j sin

l�
!j

�j (9)

for l∈Lj, respectively. Then the solution of problem (1) admits the following singular function
representation (see, e.g. References [5, 9]):

u=w2 +
N∑

j=1

∑
l∈Lj

�j; l��(rj;!j)sj; l(rj; �j) (10)

where w2∈H 3−�(�)∩H 1
0 (�) for any �¿0 satis�es

−�w2 −
N∑

j=1

∑
l∈Lj

�j; l�(��sj; l)=f in � (11)

Moreover, the following regularity estimate holds:

‖w2‖3−�6C�‖f‖1 and
N∑

j=1

∑
l∈Lj

|�j; l|6C‖f‖1 (12)

The coe�cients �j; l can be expressed in terms of u by the following extraction formulas:

�j; l=
1
l�

(∫
�
f��sj;−l dx +

∫
�
u�(��sj;−l) dx

)
(13)

In subsequent sections, we assume that R in the de�nition of the cut-o� functions is small
enough so that the intersection of B!i(�R) and B!j(2R) for i �=j is empty.

Remark 2:1:
The stress intensity factors � in (7) and �j; l in (13) are independent of the choice of cut-o�
functions ��.

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:445–455
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3. WELL-POSED VARIATIONAL PROBLEM FOR w

This section derives well-posed variational problems for wm (m=1; 2) (the regular part of the
solution). The key step is to establish new extraction formulas for the stress intensity factors
in terms of wm so that Equations (5) and (11) involve only wm (see (1) and (2) below).
To do so, we use extra cut-o� functions with a support bigger than that of ��. Assume that
0¡�61 in both (4) and (10), then denote cut-o� functions with bigger supports by

�∗(r;!)=�2(r;!) or �∗(rj;!j)=�2(rj;!j)

Lemma 3.1

(1) The stress intensity factor � in (4) can be expressed in terms of w1 by the following
extraction formulas:

�=
1
�
(w1;�(�∗s−))B!(R; 2R) +

1
�
(f; �∗s−)B!(2R) (14)

(2) The coe�cients �j; l in (13) can be expressed in terms of w2 by the following extraction
formulas:

�j; l=
1
l�
(w2;�(�∗sj;−l))B!j (R; 2R) +

1
l�
(f; �∗sj;−l)B!j (2R) (15)

Proof
Since the proof for both (14) and (15) are same, we show only the validity of (15).
Note that the proof presented here is much simpler than that in Reference [7]. Choosing
��(rj;!j)=�∗(rj;!j) in (13) (see Remark 2.1) gives

�j; l=
1
l�
(u;�(�∗sj;−l)) +

1
l�
(f; �∗sj;−l)

Substituting (23), u=w2 +
∑N

i=1

∑
k∈Li

�i; k��(ri;!i)si; k(ri; �i), into the above equation yields

�j; l=
1
l�
(w2;�(�∗sj;−l)) +

1
l�
(f; �∗sj;−l) +

1
l�

N∑
i=1

∑
k∈Li

�i; k(��si; k ;�(�∗sj;−l)) (16)

It now su�ces to show that the third term in (16) is equal to zero. When i=j, the support
of ��(rj;!j) for 0¡�61 is B!j(�R) on which �∗sj;−l is harmonic. Hence, for all k; l∈Lj,

(��sj; k ;�(�∗sj;−l))=0

When i �=j, by the assumption that B!i(�R)∩B!j(2R)=∅ we have that
(��si; k ;�(�∗sj;−l))=0 ∀k; l∈Lj

These imply the third term in (16) equals to zero and, hence, (15).

To derive a well-posed variational problem for wm (m=1; 2), we �rst substitute extraction
formula (14) into Equation (18) to obtain an integro-di�erential equation on w1:

−�w1 − 1
�
(w1;�(�∗s−))B!(R; 2R)�(��s)=f +

1
�
(f; �∗s−)B!(2R)�(��s) in �

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:445–455
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Similarly, we have

−�w2 −
N∑

j=1

∑
l∈Lj

1
l�
(w2;�(�∗sj;−l))B!j (R; 2R)�(��sj; l)

=f +
N∑

j=1

∑
l∈Lj

1
l�
(f; �∗sj;−l)B!j (2R)�(��sj; l) in �

Multiplying the above equations by a test function v ∈ H 1
0 (�), integrating over �, and applying

Green’s formula lead to the following variational problem: �nding wm∈H 1
0 (�) (m=1; 2) such

that

am(wm; v)=gm(v) ∀v∈H 1
0 (�) (17)

where the bilinear and linear forms are, respectively, given by

a1(w1; v)= (∇w1;∇v) +
1
�
(w1;�(�∗s−))B!(R; 2R)(∇(��s);∇v)B!(�R)

a2(w2; v)= (∇w2;∇v) +
N∑

j=1

∑
l∈Lj

1
l�
(w2;�(�∗sj;−l))B!j (R; 2R)(∇(��sj; l);∇v)B!j (�R)

(18)

and

g1(v) = (f; v)− 1
�
(f; �∗s−)B!(2R)(∇(��s);∇v)B!(�R) (19)

g2(v) = (f; v)−
N∑

j=1

∑
l∈Lj

1
l�
(f; �∗sj;−l)B!j (2R)(∇(��sj; l);∇v)B!j (�R) (20)

Note that the second terms in the respective bilinear and linear forms provide a singular
correction so that w1∈H 2−�(�) or w2∈H 3−�(�) for f∈H 1(�). Note also that the bilinear
forms am(·; ·) are not symmetric. In a similar fashion as Reference [7], we can prove the
coercivity and continuity of the bilinear forms am(·; ·) and the well posedness of problem
(17). We omit proofs of Lemma 3.2 and Theorem 3.1 below because they are similar to
those of Lemma 3.3 and Theorem 3.4 in Reference [7], respectively.

Lemma 3.2
For 0¡�61 and m=1; 2, the bilinear forms am(·; ·) are continuous and coercive in H 1

0 (�);
i.e. there exist positive constants �, K , and M such that

�‖�‖216am(�;�) + K‖�‖2 (21)

for all �∈H 1
0 (�) and that

am(�;  )6M‖�‖1 ‖ ‖1 (22)

for all � and  in H 1
0 (�).

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:445–455
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Theorem 3.1
For 0¡�61 and any �¿0, we have that

(1) if f∈L2(�), then problem (4) with m=1 has a unique solution w1 in H 1
0 (�)∩H 2−�(�);

(2) if f∈H 1(�), then problem (4) with m=2 has a unique solution w2 in H 1
0 (�)∩H 3−�(�);

(3) there exists a positive constant 	 such that

	‖�‖16 sup
 ∈H 1

0 (�)

am(�;  )
‖ ‖1 (23)

for any �∈H 1
0 (�).

4. FINITE ELEMENT APPROXIMATION

This section presents standard �nite element approximation on a quasi-uniform grid for wm

based on the variational problem in (27). Approximations to the stress intensity factors and
the solution of problem (24) can then be computed according to either (24) and (27) or (25)
and (33) if f∈H 1(�), respectively. Error estimates are established in Theorems 4.1 and 4.2.
To this end, let Th be a partition of the domain � into quasi-uniform triangular �nite

elements; i.e. �=
⋃

K∈Th
K with h= max{diamK : K ∈Th}. Assume that the triangulation Th

is regular. Let Pk(K) for k=1; 2 be the set of all polynomials of the degree not greater than
k. Denote continuous piecewise linear and quadratic �nite element spaces by

V k
h ={�h∈C0(�): �h|K ∈Pk(K); ∀K∈Th; �h=0 on @�} ⊂ H 1

0 (�)

for k=1; 2, respectively. It is well known that

inf
�h∈V k

h

(‖�− �h‖+ h|�− �h|1)6CAh1+t‖�‖1+t;� (24)

for any �∈H 1
0 (�)∩H 1+t(�) and 06t¡k.

The �nite element approximation to problem (27) with m=1 is to �nd w1h∈V 1
h such that

a1(w1h; v)=g1(v) ∀v∈V 1
h (25)

Approximations to the stress intensity factor in (24) and the solution u in (24) can then be
computed by

�h=
1
�
(w1h;�(�

∗s−))B!(R; 2R) +
1
�
(f; �∗s−)B!(2R) (26)

and

u1h=w1h + �h��s (27)

respectively. By the same proof as that in Reference [7], we have the following error bounds.
Note that we lose O(h�) order of accuracy in the crack case. This is because the regular part
of the solution is no longer in H 2(�).

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:445–455
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Theorem 4.1
(1) For 0¡�61, there exists a positive constant h0 such that for all h6h0 (25) has a

unique solution w1h in V 1
h . Moreover, let w1∈H 2−�(�) be the solution of (27) with m=1,

then we have the following error estimates:

‖w1 − w1h‖16C�h1−�‖f‖ and ‖w1 − w1h‖6C� h3=2−�‖f‖ (28)

(2) Let � and �h be de�ned in (24) and (26), respectively, then

|�− �h|6C�h3=2−�‖f‖ (29)

(3) Let u be the solution of (24) and u1h be its approximation de�ned in (27), then

‖u− u1h‖16C�h1−�‖f‖ and ‖u− u1h‖6C� h3=2−�‖f‖ (30)

In the case that f∈H 1(�), we have the regular part of the solution belonging to H 3−�(�).
Hence, we consider a quadratic �nite element approximation: �nd w2h∈V 2

h such that

a2(w2h; v)=g2(v) ∀v∈V 2
h (31)

Approximations to the coe�cients �j; l and the solution u are approximated by

�h
j;l=

1
l�
(w2h;�(�

∗sj;−l))B!j (R; 2R) +
1
l�
(f; �∗sj;−l)B!j (2R) (32)

and

u2h=w2h +
N∑

j=1

∑
l∈Lj

�h
j; l��(rj;!j)sj; l(rj; �j) (33)

respectively. In order to establish the error bound in L2, we consider the following adjoint
problem of (27) with a simpli�ed linear form: �nd z∈H 1

0 (�) such that

a2(v; z)=(w2 − w2h; v) ∀v∈H 1
0 (�) (34)

Next lemma establishes the well posedness of problem (34) and provides the regularity esti-
mate for z.

Lemma 4.1
For 0¡�61, problem (34) has a unique solution z in H 1

0 (�). Moreover, there is a singular
function representation

z=wz +
N∑

j=1

∑
l∈Lj

�z
j; l��(rj;!j)sj; l(rj; �j) (35)

where wz∈H 3−�(�)∩H 1
0 (�) for any �¿0 and �z

j; l∈R satisfy the regularity estimate:

‖wz‖3−�6C�‖w2 − w2h‖1 and
N∑

j=1

∑
l∈Lj

|�z
j; l|6C‖w2 − w2h‖1 (36)

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:445–455
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Proof
Similar to Theorem 3.1, the adjoint problem in (34) has a unique solution in H 1

0 (�) and there
exists a positive constant 	′ such that

	′‖ ‖16 sup
�∈H 1

0 (�)

a2(�;  )
‖�‖1 ∀ ∈H 1

0 (�)

Let z be the solution of (34), by the Cauchy–Schwarz inequality we then have that

‖z‖16 1
	′

sup
�∈H 1

0 (�)

a2(�; z)
‖�‖1 =

1
	′

sup
�∈H 1

0 (�)

(w2 − w2h; �)
‖�‖1 6

1
	′
‖w2 − w2h‖ (37)

It is easy to check that the solution, z∈H 1
0 (�), of problem (34) satis�es

�z=
N∑

j=1

∑
l∈Lj

1
l�
(∇(��sj; l);∇z)�(�∗sj;−l)− (w2 − w2h) in � (38)

Since the right-hand side of the above equation is at least in H 1(�), so is �z. Therefore, z
has the singular function representation

z=wz +
N∑

j=1

∑
l∈Lj

�z
j; l��(rj;!j)sj; l(rj; �j);

where wz∈H 3−�(�)∩H 1
0 (�) and

‖wz‖3−�6C�‖�z‖1 and
N∑

j=1

∑
l∈Lj

|�z
j; l|6C‖�z‖1

The triangle and Cauchy–Schwarz inequalities and (37) give that

‖�z‖16
N∑

j=1

∑
l∈Lj

1
l�

‖∇(��sj; l)‖‖∇z‖‖�(�∗sj;−l)‖1 + ‖w2 − w2h‖16C‖w2 − w2h‖1

Combining the above inequalities implies the regularity bound in (36).

Now we are ready to establish error bounds for the �nite element approximation.

Theorem 4.2
(1) For 0¡�61, there exists a positive constant h0 such that for all h6h0 (31) has a

unique solution w2h in V 2
h . Moreover, let w2∈H 3−�(�) be the solution of (27) with m=2,

then we have the following error estimates:

‖w2 − w2h‖16C�h2−�‖f‖1 and ‖w2 − w2h‖6C� h
5
2−�‖f‖1 (39)

(2) Let �j; l and �h
j; l be de�ned in (25) and (32), respectively, then

|�j; l − �h
j; l|6C� h5=2−�‖f‖1 (40)

(3) Let u be the solution of (24) and u2h be its approximation de�ned in (33), then

‖u− u2h‖16C�h2−�‖f‖1 and ‖u− u2h‖6C� h5=2−�‖f‖1 (41)

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:445–455
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Proof
We �rst establish error bounds in (39) for any solution to problem (31) that may exist. Then,
for f ≡ 0, the uniqueness of the solution to problem (27) and the error bound in (39) imply
that w2h ≡ 0. Hence, (31) has a unique solution w2h in V 2

h since it is a �nite dimensional
problem with the same number of unknowns and equations.
To establish error bounds, note �rst the orthogonality property

a2(w2 − w2h; v)=0 ∀v∈V 2
h (42)

By choosing v=w2 − w2h in equation (34) and using the orthogonality property in (42) and
the continuity bound in (32), we have that

‖w2 − w2h‖2=a2(w2 − w2h; z)=a2(w2 − w2h; z − Ihz)6M‖w2 − w2h‖1‖z − Ihz‖1 (43)

where Ihz∈V 2
h is the nodal interpolant of z. From the triangle inequality, approximation prop-

erty (24), the fact that ‖��sj; l − Ih(��sj; l)‖16C h1=2, and Lemma 4.1, one has

‖z − Ihz‖16 ‖wz − Ihwz‖1 +
N∑

j=1

∑
l∈Lj

|�z
j; l|‖��sj; l − Ih(��sj; l)‖1

6Ch‖wz‖2 + Ch1=2
N∑

j=1

∑
l∈Lj

|�z
j; l|6Ch1=2‖w2 − w2h‖

Substituting this into (43) and dividing ‖w2 − w2h‖ on both sides give
‖w2 − w2h‖6C h1=2‖w2 − w2h‖1 (44)

Now, it follows from Lemma 3.2, orthogonality property (42), and inequality (44) that for
any v∈V 2

h

�‖w2 − w2h‖216 a2(w2 − w2h; w
2 − w2h) + K‖w2 − w2h‖2

= a2(w2 − w2h; w
2 − v) + K‖w2 − w2h‖2

6M‖w2 − w2h‖1‖w2 − v‖1 + CKh‖w2 − w2h‖21
which implies that for su�ciently small h¡h0,

‖w2 − w2h‖16C‖w2 − v‖1 ∀v∈V 2
h

Using approximation property (24) and regularity estimate (35) lead to the �rst error bound
in (39) which, together with (44), implies the second error bound in (39).
It follows from (25) and (32) that

�j; l − �h
j; l=

1
l�
(w2 − w2h;�(�

∗sj;−l))B!j (R; 2R)

Equation (40) is then a direct consequence of the Cauchy–Schwarz inequality and (39). The
di�erence of (33) and (33) gives that

u− u2h=(w
2 − w2h) +

N∑
j=1

∑
l∈Lj

(�j; l − �h
j; l)��sj; l
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Now, (41) follows from the triangle inequality, (39), and (40). This completes the proof of
the theorem.

The L2 norm error bound for w2 obtained in (39) is not optimal, and so are the error
bounds for �j; l in the absolute value and for u in the L2 norm (see (40) and (41)). This is
probably because a simpli�ed adjoint problem in (34) is used in our error analysis.
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