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1. Introduction

Estimating and quantifying approximation errors are very important in both theory and practice of the finite element
method. The a posteriori error estimation [1,23] may provide information of the magnitude and the distribution of the error,
which, in turn, may be used for error control and local mesh refinement, respectively. The aim of this paper is to study a
recovery-based a posteriori error estimator for various stabilized P; /Py (continuous linear velocity/constant pressure) finite
element approximations to the Stokes problem.

It is well known that the simplest finite element pair P, /Py does not satisfy the inf-sup condition (see, e.g., [14]). To cir-
cumvent this difficulty, several types of stabilized finite element methods have been developed for the Stokes equation dur-
ing the past several decades. Fundamentally, the quadratic form of the Stokes equation has no control on the pressure (see
[2]). To gain the stability with respect to the pressure variable, one needs to add certain terms to the variational formulation.
This is done through adding (I) a weighted least-squares term of the momentum equation (see, e.g., [3,5,13]); (II) the differ-
ence of the numerical pressure and its projection onto continuous piecewise linear finite element space (see [6,19,22,26]),
the so-called projection stabilized method; and (III) the pressure jumps along interior sides (see [16,18]), the so-called penal-
izing jump stabilized method. The stabilized method in (I) is always consistent. When the pressure is continuous, the stabi-
lized methods in (II) and (III) are also consistent. Moreover, the method in (II) is stabilization parameter free.
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Residual-based a posteriori error estimators for the stabilized P, /P, finite element methods have been studied by Kay and
Silvester [17] and J. Wang, Y. Wang, and Ye [25] for the penalizing jump method and by Zheng, Hou and Shi [27] for the pro-
jection method.

In this paper, we study a recovery-based estimator for both the penalizing jump and the projection P; /Py stabilized finite
element methods. The recovery-based estimator was first introduced by Zienkiewicz and Zhu (see, e.g., [28,29]) and is de-
fined as the [ norm of the difference between the numerical stress (or gradient) and the recovered stress (or gradient). Since
the numerical stress is discontinuous, one recovers a stress in the continuous piecewise linear finite element space by aver-
aging or the L? projection. An alternative recovery strategy, polynomial preserving recovery, was studied by Naga and Zhang
[20]. For the Stokes equation, the recovery-based (ZZ) a posteriori error estimator for the nonconforming finite element
approximation was studied by Carstensen and Funken [10].

The recovery-based (ZZ) error estimator was analyzed for the lowest order finite element approximation to the Poisson
equation by Rodriguez [21] and Carstensen [11]. They provide some useful arguments to establish reliability and efficiency
bounds. Our analysis may be regarded as a nontrivial extension of their arguments to the stabilized P; /P, finite element
approximation to the Stokes equation. For the continuous piecewise linear finite element approximation to the Poisson
equation, the ZZ estimator is equivalent to the edge residual estimator, which is dominant in the residual-based estimator
for the lowest order finite element method. However, such an equivalence is no longer valid for the stabilized P; /Py approx-
imation to the Stokes equation due to the discontinuous pressure. Alternatively, we make use of a property of the stabilized
method to show the dominance of the recovery-based error estimator. This property of the stabilized method is the term
reflecting that the inf-sup ‘deficiency’ of the unstable P; /Py pair can be bounded by the true error. Finally, numerical results
for several test problems are presented to show its practical effectivity.

The error estimator studied here possess the following features, and some of them are common for the recovery-based
estimators. (1) Our numerical results show that the recovery-based estimator is more accurate than the residual estimator
in [17,25]. (2) The estimator is reliable and efficient for both the stabilized methods. (3) Since the estimator uses no infor-
mation of the underlying problem, it is easy to be applied to some other more complex models, such as Navier-Stokes prob-
lem, conduction convection problem, etc. (4) It is simple to be implemented.

The paper is organized as follows. In Section 2, we review the P; /P stabilized finite element methods for the Stokes equa-
tion. In Section 3, we propose the recovery-based error estimator and establish reliability and efficiency bounds. Numerical
results are presented in Section 4, which confirm the theoretical results and provide a comparison of the estimator with the
residual error estimator. A conclusion remark is presented in Section 5.

2. Stabilized P, /P, approximations
We consider the Stokes problem with homogeneous Dirichlet boundary conditions in d-dimensional (d =2,3) bounded
domain Q. The problem reads: for given f € L?(Q)%, find the velocity u and the pressure p such that
dive+f=0 inQ,
c=Vu-pl inQ

divu=0 in Q,
u=0 on 9Q.

Here I denotes the d x d-identity matrix.
To establish the weak form of the above system, we introduce the following spaces

Xo := H)(Q)" and M::Lg(Q)z{qeLZ(Q):/qu:O}.
Q

Then the weak form of the Stokes problem (1) reads: find (u,p) € Xo x M such that
L((u.p),(v.q)) =f(v) V (v.q) € Xox M, 2)
where the bilinear and linear forms are defined by
L((u,p),(v,q)) = (Vu,Vv) — (p,div v) + (q.divu) and f(»)=(f,v).
Furthermore, the bilinear form £ satisfies the inf-sup condition: there exists a positive constant g such that
L((u,p), (,9))

inf sup T > R 3
L S N [N [T )
where the energy norm ||| - ||| is defined by |||(»,q)||| = (|2|? + HqHz)%. This ensures the unique solvability of (2); see [14].

Let T, = {T} be a finite element partition of the domain Q with the mesh parameter h = maxre, diam(T), where T can be
triangle in 2-dimensions and tetrahedron in 3-dimensions. Assume that the triangulation t, is regular; i.e., the ratio hr/py is
bounded by

cr :=sup{hr/p;: T € tp,h > 0} < <. 4)
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Here hr denotes the diameter of the element T and p; the diameter of the largest circle that may be inscribed in T. Denote
by S, the set of all sides in 7, lying inside Q. Each e € S, is an edge and a triangle in 2- and 3-dimensions, respectively. For
any piecewise constant g and piecewise constant tensor T, let

ale :==4qlr: —qlr. and [z], == Tl — Tl

denote their jumps on the side e € Sy, where T, and T, are two elements sharing the common side e. Let us denote by h, the
size of a given side e € S,. The norm

[ulls, = <Zheu|§)

ecSy

will prove useful in what follows.
Let us denote by

Ri(Q) = {vh € C°Q) : |y € P1(T) VT € 14},

where P;(T) is the space of linear polynomials on element T. Moreover, we introduce the piecewise constant finite element
space

Ro(Q) = {ay € L*(Q): gyl € Po(T) VT € T},

where Py(T) is a constant polynomial space on element T.
In this paper, our main focus is the lowest-order conforming pair

Xy =XoNRi(Q)? and M =L[3(Q) N Ro(Q).

It is well known that finite element space pair (X;, M;) does not satisfy the discrete inf-sup condition. To use such simple
Py /Py finite element pair for numerically solving the Stokes Eqs. (1), some stabilized finite element methods are necessary. A
kind of regularized stabilized discrete formulation is as follows: find (u,,p;,) € Xy x My satisfy

L((tn, pn), (¥, qn)) +S(Pn: Gn) =F (1) VY (¥h,qy) € Xp x M, ()

where S(p,.q,) : My x My — R is a symmetric stabilization term. Two specific choices of the stabilization term are defined
below.

2.1. Penalizing jump stabilized method

The idea here is to stabilize the approximation by penalizing jumps in pressure across internal interelement sides; see
[16,17]. The stabilization term is defined by

S0 ) = Fo3_he [ ikl ds Py ay € M. ©

ecSy

Here S, is a given stabilization parameter. It must be chosen carefully. For example, the numerical velocity field could no
longer be regarded as be divergence free if B, is too large.
In addition, the stabilization term of consistently stabilized methods in [13,25] reads

(0,2, (90,01) = 7Y T+ Aty Vpy, A2+ V) ¢ o3 e [ DALIGAS V(21,0 € X x M @)
Tety, ecSy €

For P; /P, elements, the consistently stabilized method reduces to the penalizing jump stabilized method. The reason is the
term —tAwy, + Vg, in (7) equals zero.

2.2. Projection stabilized method

The method uses the term that characterizes the inf-sup ‘deficiency’ of the unstable spaces to stabilize the approximation;
see [6].
The stabilization term in (5) is given by
S(Pn:n) = (Pp = Thpy, Gy — ThhGy) Py, Gy € M- (8)

The operator IT; is defined by IT; : L*(Q) — R; (Q).
In contrast to the penalizing jump stabilized methods, the projection method is parameter free, does not require side-
based data structures, and always leads to symmetric linear systems.

Remark. The lowest-order conforming pair (X, M;) satisfies a weak inf-sup condition



4 L. Song et al./Comput. Methods Appl. Mech. Engrg. 272 (2014) 1-16

1

2
> gl - c2 (Zhe[qh}eﬁ) vV qy € M,

ecSy

sup Jo nV - vpdx
vpeXy thHl

where ¢; and ¢, are positive constants independent of the mesh size; see [6].

1
The term (Zeeshheﬂ [qh}eH?)Z quantifies the inf-sup ‘deficiency’ of the unstable pair. In some sense, the stabilized methods

for P; /P, approximation are designed to counterbalance this term. For instances, the stabilized formulation (5) can be rewrit-
ten as

(Vup, Von) = (V-ovp,py) = F. on) Vou € Xp, 9)
(V -ty qy) + 5Py, Gn) =0 Vq, € My,
The stabilization term S(p,, q,) is added to the continuity equation to help offset the ‘deficiency’ term. Therefore, no matter
the choice of stabilized method, the stabilization term is closely associated with (ZeesthH[qh]eHﬁ)%. Such connection will

prove useful in showing that the recovery-based error estimator is reliable and efficient for various stabilized methods.

3. Recovery-based error estimator

To formulate the error estimator, we need some notations. We denote by A" and A/, the vertices in 7, and the vertices in
7, lying inside Q, respectively. For given z € N, we denote by ¢, the nodal basis function associated with z and set
@, := suppg,, the union of all elements that share the same vertex z. |T| denotes the volume of the element T € 7).

Let (u;, p,) be the numerical solution of the stabilized method (5) with stabilization term (6) or (8). We consider the stress
tensor ¢ and its finite element approximation &, := Vu, — p,I. A recovery technique aims to construct G(a}) based on oy,
such that G(o}) approximates ¢ better than ¢, in some norm. In other words, G(a,,) satisfies

o — Gon)|| < [|6 - 6nl|. (10)

The recovery technique is not only a postprocessing tool to improve the approximation, but also a way to construct a pos-
teriori error estimator. Using the triangular inequality gives

1_llo =Gl _llon=Clan)ll ;| llo = Glowl

lo—owll = llo—oul o — anll
Based on (10), |l6 — G(a4)]|/|l6 — a4 is much smaller than 1, therefore,
low — Glanll _ |
o6 — @l

Namely ||6, — G(a6h)|| can be an error estimator to estimate the unknown true error ||6 — a,||. Using the superconvergence
patch recovery technique in [28], we recover the piecewise constant tensor a;, to the continuous field, that is, the recovered
stress tensor G(ey,) € Ry (Q)"“. In the following, we will show the construction of G(a},) in detail.

For any given tensor T € Ry(Q)**?, we use the least square method to construct its continuous approximation. Let 7, be the
constant valued tensor defined on w,, which minimizes the functional

L) = [ (- (1)

Then, these constant valued tensors {t,} are interpolated to obtain the continuous approximation G(z) over the whole
domain,

G(1) =Y T, VT eR(Q
zeN
When choosing 1 = &}, the functional (11) can be simplified as
1
Jo(t2) = 3 Z T|(67 — 7.)°,
Tew,
where a7 is the restriction of &, on element T. It is easy to show that the minimal value point of the functional above is

T, = T
Tz = X rew: 1 O1- Therefore,

G(on) =) T4 (12)

zeN

Noticing the fact that the nodal value of G(a},) at z is area-weighted average of &}, over w,, we actually have

G(ah)(z>:f Gndx i / oadx/ / 1dx.
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Now we are in the position to give the recovery-based error estimator. Let
Nr = llon — G(on)llr

be the local estimator and

Mg = (Zﬂ%f

Tety

be the global one.
To illustrate the property of the recovery-based error estimator, we introduce two inequalities.
One is the trace inequality. There exists ¢ > 0, independent of the mesh size, such that

_1
I@nllor < € hy?llgnlly V@, € P1(T). (13)
Another is inverse inequality proposed in [11] for the efficiency of averaging estimators,
las— { audel?, < Y hellgll? Vg € Ro(e) (14)
Wz ecS;

where z is an arbitrary node, f, q,dx denotes the average of g, over w, and S, denotes the set of all sides sharing vertex z.
For simplicity, symbol ¢ (with or without a subscript) here and in the rest may represent different quantities at different
occurrences, but it is always independent of the mesh size.

The recovery-based error estimator #, has the following property.

Lemma 3.1. Let o, be the finite element approximate stress tensor of problem (5). There exist two positive constants c¢; and ¢,
independent of the mesh size such that

¢ [lonlells, < llon —Glon)ll < c2 [[[onl,lls,-

Proof. For the first inequality, using the fact [G(64)], = 0 and the trace inequality (13) leads to

llonlells, = lllon = G(@n)lells, < ¢ llon — Glon)ll.

For the second inequality, by using the definition of G(e}) in (12), the Cauchy-Schwarz inequality and the inverse
inequality (14), we obtain
2
- [ (@~ Glann
Q lien

<> [ low—Glen)()Pdx =" |an */ andx|z, < c ll[onl.l3,,
;

ieN O ieN

oy — Glaw)||* =

> (61 — G(ow)(i))o;

ieN

2
dx < /Q (Zd’i) <Z|6h - G(Gh)(i)|2¢i> dx

ieN ieN

where | - | stands for the Frobenius norm of tensor, namely, |t|* := Zlezle ‘c,-zj for any tensor 7 = (ty).
Combination of the above two inequalities ends the proof. O

Since the definition of operator IT; in stabilized method (8) in [6] is in the same fashion of the recovery operator G(-), we
also have

C1 [l Gnlells, < 1gn — Thgnll < €2 [l[Gnlells, ¥qn € Ro(€2), (15)

I1gn = gyl < ¢ [|gnll  Vqn € Ro(€). (16)
Thanks to the property of G(-) in (10), we have
ITLipy = pull < € [P = Pall, (17)

where p is the true pressure solution of (1) and p, is the finite element approximation solution of (5).

Based on Lemma 3.1, we will show the reliability and efficiency of the recovery-based error estimator in following
subsections.

Before moving onto next subsection, we illustrate the connection between |/{6}],|, and ||/[6) - n]||,, where n. is the unit
normal vector along e € Sy,. This plays an important role in a posteriori error estimates for such a recovery-based error esti-
mator. In 2-dimensions, we denote by 7. the unit tangential vector along e. Let

(61, := a\ﬁ “Ne — G- - Me

[6-7T] := 6|T§ T — G\T; - Te
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denote the jumps of the normal and tangential component of ¢ on the side e, respectively. Since [Vu, - 7.] = 0, we have
[@h], = ([On - Ne], [Vt - Te] + [-pplTe]) = ([6h - Me], [—pulTe]).

Therefore,

lonlollz = lllon - melll} + [[[pal]12- (18)

For the 3-dimensional case, we can obtain the above relation using the same argument except for introducing an additional
unit tangential vector.
The above relation (18), together with Lemma 3.1, admits

llon - me]ls, < [[@nlells, < € Mg, (19)
1Prlells, < ll@nlells, < € M- (20)

3.1. Reliability

Firstly, we introduce some properties of the weighted Clément-type interpolation operator I;, defined in [12] in the fol-
lowing lemma. Such properties are often used for establishing the reliability bound of a posteriori error estimator; see
[7,124].

Lemma 3.2. There is a constant ¢, which depends only on the shape parameter cr in (4), such that
f,v—Iyv) <c Hf|v||, VoveX,

and

1

2
(Zhsv—lhvhui) <cloll, YveXo.

ecSy

[N

where Hy i= (o, 0] 112, + Sacxs 02l If = ., X2, )"
Proof. Refer to the Lemma 3.1, 6.1 and 6.2 in [12]. O

Remark. The second term in Hy is a higher-order term for f € [(©)* and so is the first term for f € [P(Q)? with p > 2; (see
[12,7]).

Theorem 3.1. (Reliability) Let (u,p) be the solution of problem (2) and (uy, p;,) be finite element approximation solution of prob-
lem (5) with stabilization term (6) or (8). There exists a positive constant c independent of the mesh size such that

Il (1 — wn, p — py)lll < c(ng + Hy).

Proof. Subtracting (5) from (2) gives

L((u—uy,p—pp)s (Un,qy) —SOr:Gn) =0 V(¥h,qy) € Xpp x My.
Taking q, = 0 and v, = I, » yields
L((u—uy,p—pp),Ihv,0)) =0 V veX, (21)
For any (v, q) € X, x M, using integration by parts, the fact V - 64|; =0 and (21) gives
L((u—tp,p—py), (v,q)) = L((—ty,p—pp), (v - hv,q))
=(Vu—uw), V(o —-1hv)) = (p—pp, V- (¥ - 110)) +(q,V - (tt — uy))
=@ V@-1v)+> (V- on,v—I) + > (6n 1], v—1Lv), - (q.V )

Tety ecSy

=fo—ho)+> (on ], v—1ww), - (q.V - u).

ecSy

For the first two terms on the right hand side of the last expression, by using the Cauchy-Schwarz inequality, the prop-
erties of Clément interpolation in Lemma 3.2 and (19), we have
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1
2
mvhm)+2}wwn$vhvk<Hﬂﬂh+HanJm<§:m]vMﬂ?)<f@#+hwnmm)wh

ecSy ecSy
< C(Hf + ”IR) 2.
To estimate the term (g, V - uy,), we will use the second equation of (9),
(V- un,qy) +SPr,qn) =0 Vqy, € Mp.
If the stabilization term is defined by (6), using the Cauchy-Schwarz inequality, the inverse inequality in (13) and (20)
gives
IV - tay|* = =S(py, V - 1) = ﬂoZ;he/ (Phl[V - tn]ods < € [[[Palells, IV - tlells, < 1 IV - tnll.
ecSy e

If the stabilization term is defined by (8), using the Cauchy-Schwarz inequality, the property of IT; in (15) and (16) and
(20) gives

IV - uh|* = =S(py, V - thn) = =Py — Thipy, V -ty — TL (V- 1y)) < [Py — TLpy [V -ty = TL (V- )|
< l[Pnlells, IV - unll < g [V -ty
Therefore, we get
(V -y, q) < IV -unl| lIq]l < ¢ 1z llqll-
The combination of above inequalities yields
L((u—up,p—py), (v,9)) < ¢ (Hp +1g) (12l + llgl)-
By the inf-sup condition (3), we have

_ E((ufuhapfph%(llhq))
u—u,p— <B ' su
i =wnp=pull <p= sup e,

It completes the proof of the reliability. O

< ¢ (Mg + Hy).

3.2. Efficiency

Using Lemma 3.1 and (18), we have
N < € [[[@nlells, = ¢ (I[on - me]lls, + ll[Pylells,)- (22)
To prove the efficiency of the recovery-based error estimator #,, we firstly estimate
lfon - me]lls, and |[[Palells,,

separately, and have following lemmas.

Lemma 3.3. Let 6 be the stress tensor of problem (2) and &}, be the finite element approximate stress tensor of problem (5) with
stabilization term (6) or (8). There exists a positive constant c independent of the mesh size such that

1 .
hill[on - me]ll < cll6 — 6nll,, + che inf [If —Fill,,.
FrheXn

where w, denotes the union of the two elements sharing the same side e.

Proof. For any interior side e, we introduce the bubble function y, = 4 Il,cy,$,, where N, denotes the vertices of the side e.
For any polynomial tensor @, we have the following estimates (see 2.11 in [4]),

loll. < 71 llvial.. (23)
IV (e0)ll7 < 7,126, (24)
W6y < 7shilall.. (25)

If we denote W, =, [o}, - 1], by using (24) and (25) we obtain
-1
IVWelly < y2he2lllon - me]l, (26)
1
[Welly < yshill[on - me],- (27)
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Then by using (23), (26), (27), integration by parts and the Cauchy-Schwarz inequality, we get

2 2
172M[6n - me) |2 < [ [6h - me]Wedx = Z/ div 6;W, + 6, VW, dx = Z/fwe — (6 —01)VW.dx
i=1 /Ti i T;

2 2
<~ (I s, IWelly, + llo = ol IV Wellr,) < Z(yghzwr 1ahele = ailly, ) 6w - mell

i=1 par
Consider an arbitrary function f;, € X3, since V - 6|; = 0, we obtain
hllon - nelll, < cllo — nll, + Che(If = Fillo, + s +V - 6nll,,)- (28)

Next, we estimate the term ||f, + V - 6], -
For any element T, we use the bubble function y = 27 Il,c,, ¢,.For any polynomial », we have the following estimates
hold (see 2.11 in [4]),

120y < vall¥d ol (29)

IVWr)llr < vshr' 12l (30)
Define Wt = y(f, + V - 6). Using (30) and the property of bubble function yields

IVWrlly < yshy' Ifr + V- 6l (31

Wrlly < [Ify + V- 0l 32)

Using (29), (31), (32), integration by parts and the Cauchy-Schwarz inequality gives
12+ V- oul2 < / Vr(Fu+ V- 04 dx = / (F+ V- 6)Widx + / (Fr — ) Wrdx
T T T
- / (6 — 6y VWydx + / (Fy — F)Wrdx < |6 — Gl [V Wrl + If, — Fll I Wrl;

< (12h7"llo = aully + 1Fw ~Flr ) Uf + V- G-
So, we obtain
Ify + V- 6ully < 39,07 |6 = aully + ViIUF, — Fllr,
which together with (28) gives

Bllion - mel < |6 — @l +c he nf IF = Fallo-

This completes the proof. O

Lemma 3.4. Let (u,p) be the solution of problem (2) and (uy, p,) be the finite element approximation solution of problem (5) with
stabilization term (6) or (8). There exists a positive constant c independent of the mesh size such that

IPalel3, < ¢ > hy 'l —uy) 2.

ecSy

Proof. Using the second equation of (9) and letting g, = p,, give

(V- up, py) + S(pn, pn) = 0.
We use the fact that V-u =0 and Vp,|; = 0, the integration by parts and the Cauchy-Schwarz inequality to get

SPn:Pr) = —(V -y, pp) = (V- (U — ), pp) = Z((" —Uy) M, [Dyle), — Z(u = Up, VPy)r

ecSy Tety
1
2
< (Zhglll(uuh)-neﬁ) [Pnlells, (33)
ecSy

On another hand, we estimate the stabilization term S(p,, p,) in two cases.
If the stabilization term is defined by (6), then

S Pr) = € I[Pl -
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If the stabilization term is defined by (8), then using the property of IT; in (15) gives
S(pn:Pw) = IPn = Thpy|1* > € [PAlel, -

Combining above equations with (33) leads to

1Pnlells, < ¢ (Zhe] (1 —up) - "e|§> :

ecSy

This completes the proof. O

Next we use the trace inequality and the Aubin-Nitsche duality argument to estimate Eeeshhgl | — uy) - n.|)? appearing
in Lemma 3.4.

Lemma 3.5. Let (u,p) be the solution of problem (2) and (uy, p,) be the finite element approximate solution of problem (5) with
stabilization term (6) or (8). There exists a positive constant c independent of the mesh size such that

S Th - uy) - mell? < c |- up,p - py)

ecSy

2
I

Proof. Using the trace inequality, we have
-1 2 -1
D b —un) - mel; < c b7 ju— uy || — g (34)
ecSy

To estimate ||u — uy]|, we use the Aubin-Nitsche duality argument.
For (@,¢) € [?(Q)? x (H'(Q)NI3(Q)), consider the dual Stokes problem: seek (®,¥)e (H?(Q)?NH(Q)?)x
(H'(Q) N L3(Q)) such that

L(2,q),(D,%)) = (¢, 9) + (¢,q) V (v,q) € Xo xM. (35)
This problem admits a unique solution (®, V) satisfying

1Dl + ¥l < ¢ (el + lI¢l)- (36)
Moreover, there exist ®, € X, and ¥, € M;, such that

|®— @y <ch[|®, and [[¥ ¥y <ch|¥],. (37)
Taking (»,q) = (u —up,p — p,,) in (35) yields

L((w —un,p —py), (©,'¥)) = (@, 8 —un) + (¢, — Pp)- (38)
In addition, subtracting (5) from (2) gives

L((u—up,p—pp), (Vn,Gn)) — SO, 4n) =0 V(¥n,qy) € X x My
Taking (v, q,) = (Pp, ¥y) admits

L((u—un,p —pp), (Pn, ¥n)) = S(pp, Y1) =0,
which together with (38) leads to

(@ u—up) + (¢, p — pp) = LU —tp,p = Pp), (P — Oy, ¥ = ¥p)) + S(py, V). (39)

Now we estimate the term S(p,,, ¥s) in two cases.

Case 1. If the stabilization term is defined by (6), then using the Cauchy-Schwarz inequality, the property of IT; in (15) and
(16) and the trace inequality (13) gives

S(pn, ) = ﬂozhe/ Prle[Phleds < ¢ [[[Pulells, 1[¥hlells, < ¢ I =TI)Py[HI[¥h = Plells, < ¢ [P = pall[I¥n — ¥

ecSy

Case 2. If the stabilization term is defined by (8), then

S(Pw, ) = (I = T)py, (I = )W) < [(T= TT)pu[HI[¥h = Plells, < [Ip = pull 'Fn =PI
Combining above expressions with (39) and using the continuity of £(-,-), (36) and (37) give
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Il —un), (p = Pw)II(@ = @n), (¥ = F)l[[ + ¢ [P = Pyl IFn — ]
h (= unlly + [lp = PalD Pl + [1¥]1) < ¢ b (|t = unlly + [Ip = PalD (U @llo + [1D]]1)-

(pu—uy)+(d,p—py) <
<C
Therefore

[ —un| + |p = pall 4 < ¢ h (Ju—unly +Ip— pal),
which together with (34) yields
S h - uy) - melff < ¢ (Ju—uylly + 1P — pal)llu —wlly < ¢ [[[(— ), (p - p)lII>-

ecSy

This completes the proof. O

Now we are in the position to present the main results of this subsection.

Theorem 3.2. (Efficiency) Let (u,p) be the solution of problem (2) and (u,,p,) be the finite element approximate solution of
problem (5) with stabilization term (6) or (8). There exists a positive constant c independent of the mesh size such that

e < € 11 = t.p = )|+ €3 e inf I — fil,

ecsy

Proof. Using (22), Lemma 3.3, Lemma 3.4 and Lemma 3.5 gives

M < € (lon-nells, + lPalells,) < € 1o = @l + €3 he inf If =i, + (Zhﬁ(u ~ ) -nei)

ecSy i ecSy

<l =), (= py)ll + € _he nf [ = fil,

(=

This completes the proof of the efficiency. O

4. Numerical results

In this section, we present a selection of numerical results for three purposes: (1) showing that the recovery-based error
estimator works well for general P; /P, stabilized methods, (2) presenting the practical effectivity of the recovery-based error
estimator, and (3) showing the recovery-based estimator #; is more exact than the residual error estimator #; in [12,25],

which is defined by #; := (thngi)fwith

M= IV w5 D By m) 2
ecdTnQ

We consider three 2-dimensional numerical tests. The first one is a flow problem with a smooth solution. The second one
is a flow problem in a singular L-shape domain. The third one models a flow problem in a cracked domain with a singular
solution. The experiments are implemented by the public software Freefem++ [15].

In order to illustrate the recovery-based error estimator #; is independent of the choice of the specific stabilized method,
we use the adaptive strategy based on #; for two stabilized methods for the Stokes problem. One is the penalizing jump sta-
bilized method, namely, the stabilized method (5) with stabilization term (6). We choose the stabilization parameter
Bo = 0.05. Another is the projection stabilized method, namely, the stabilized method (5) with stabilization term (8).

4.1. Mesh refinement strategy
The mesh refinement strategy we used in FreeFem++ [15] is as follows.

Step 1. Given a triangulation . Compute an n-dimensional vector Y. Here n denotes the number of the vertexes of © and
the ith (1 < i < n) component of I is the average length of the sides sharing the ith vertex.

Step 2. For every element T € 7/, compute a local error estimator 1} (i.e., either #; or #.r) and denote 7 := S red B/ Srew 1
the mean value of 7. over .

Step 3. Give the new size W' by the following formulae

hi+1 _ L
flm)

where f is a user function defined by
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f = min(max(if;/c 7/,1.0),3.0),

and c is a user defined coefficient generally close to 1.
Step 4. Get the new mesh 7/+! by using a variable metric/ Delaunay automatic meshing algorithm in Freefem++ with the
mesh size field K.
For simplicity, in all experiments, we choose ¢ = 0.8. One possible adaptive strategy is as follows. Given a user-specified
tolerance #* and an initial mesh 7°. Refine the mesh by using the above mesh refinement strategy until the global error
estimator 7 (i.e., either #, or ;) satisfies n < n".

For the sake of convenience, we introduce the following notions.

e DOF:= number of elements for the triangulation ©;

e €:=||(u—1,,p —p))|l|/|l|(m,p)||| denotes relative error in the energy norm.

e g =Ng/|||(1,p)||| denotes the relative value of global recovery-based estimator.
e 1 :=1;/|l|(u,p)||| denotes the relative value of global residual estimator.

. 2log(e]™" /e])
. Order._log(DorJ T5oRT) denotes the convergence rate of the error.

e Er:=1);,/€- denotes effectivity index for the global recovery-based estimator #j.
e Ex:=n; . /e, denotes effectivity index for the global residual estimator #;.

4.2. A smooth problem

The first example is a flow problem with a smooth solution, given by

u; = 27 sin® (7x) sin(my) cos(my),
U, = —27sin(mx) cos(mx) sin’(1ry),
p = cos(mx) cos(my),

where domain Q = (0,1) x (0, 1).

Firstly, we consider the penalizing jump stabilized method and report numerical results for adaptive refinements via this
stabilized method with estimator #, in Table 1. We can see the refinements get good approximate solution as h — 0 and
nearly optimal convergence order (about 1.0). In addition, the effectivity index Ez approaches to 1.0, which illustrates esti-
mator #, performs well for the penalizing jump stabilized method.

Secondly, we use the adaptive strategy for the projection stabilized method. The numerical results are presented in Table
2. They show the convergence rate of the error in energy norm keeps order 1.0, and the estimator #; is almost exact. They are
consistent with the results in Table 1.

From all the results in Table 1 and 2, we can see the recovery-based error estimator 77, works well for general P; /P, sta-
bilized methods.

Table 1

Results for adaptive refinements via penalizing jump stabilized method with .
Level DOF el Order Ry Er
0 208 0.3026 - 0.2989 0.9881
1 314 0.2332 1.2644 0.2323 0.9961
2 513 0.1732 1.2107 0.1759 1.0151
3 927 0.1304 0.9607 0.1301 0.9983
4 1597 0.0971 1.0858 0.0971 1.0011

Table 2

Results for adaptive refinements via projection stabilized method with #j.
Level DOF e Order Ny Er
0 208 0.3498 - 0.3362 0.9611
1 321 0.2526 1.4992 0.2513 0.9947
2 533 0.1885 1.1549 0.1882 0.9986
3 978 0.1363 1.0671 0.1353 0.9925
4 1708 0.1025 1.0221 0.1018 0.9926
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4.3. L-shape domain problem

The second example is a flow problem in the L-shape domain Q = (—1,1)? — [0, 1)>. The right hand side f of the Stokes
problem (1) is determined by exact velocity u = (uy,u,) and pressure p:

U (x,y) -0l
1A, = )
Vx=01) 4+ (y-0.1)?
Wx.y) x-0.1
24, = )
Vx=0.1)° +(y—0.1)
_ 1 log(2.05)+10g(1.05)—2log(0.05)

We note that both the velocity u and the pressure p are smooth in the domain. However, it is clear that u and p are singular at
the point (0.1,0.1) and along the line y = —1.05, respectively.

Firstly, we consider the projection stabilized method. In order to show the practical effectivity of the recovery-based esti-
mator #,, we compare the results of adaptive refinements with those of uniform refinements, also compare the effectivity
index of 77, with that of the residual estimator #.

Table 3-5 show the numerical results for uniform/adaptive refinements with recovery-based estimator #;, and residual
estimator #;. Fig. 1 shows the adaptive meshes based on the both error estimators. The observations and conclusions of this
experiment are presented as follows.

o The stabilized method based on adaptive refinements obtains much better approximate solution than that based on uni-
form refinements. To get the similar accuracy, i.e. the relative error e, = 0.13, it uses 4258 elements in the uniform case
(see Level 4 in Table 3), while it only uses 820 elements in the adaptive case with #; (see Level 2 in Table 4 and 1130
elements with #; (see Level 3 in Table 5). Moreover, the numerical results show that the convergence rate for adaptive
refinements is a little bit higher than that for the uniform case (see Order in Table 3-5).

e Mesh refinements based on both estimator #; and #; are efficient. From Fig. 1, we can see the refined meshes appear
around the origin and along the line y = —1, which are near the locations of singularity.

0.5 0.5
> 0 > 0
-0.5 05
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 05 1
X X

Fig. 1. Refinements via projection stabilized method with #,(left) and #,(right).

Table 3

Results for uniform refinements via projection stabilized method.
Level DOF e Order Hrr Er Ner Ep
0 166 0.4871 - 0.2972 0.6102 1.0193 1.4901
1 652 0.3108 0.6570 0.2158 0.6946 0.8059 1.8461
2 1526 0.2281 0.7272 0.1661 0.7284 0.6091 1.9001
3 2688 0.1719 0.9982 0.1321 0.7684 0.4912 2.0301
4 4258 0.1359 1.0217 0.1097 0.8069 0.4193 2.1907
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Table 4
Results for adaptive refinements via projection stabilized method with #.
Level DOF e Order Ner Eg
0 176 0.4479 - 0.2955 0.6598
1 427 0.2315 1.4891 0.1763 0.7614
2 820 0.1365 1.6176 0.1248 0.9140
3 1322 0.1072 1.0112 0.1006 0.9384
4 2172 0.0804 1.1580 0.0781 0.9712
Table 5
Results for adaptive refinements via projection stabilized method with #.
Level DOF e Order Ner Eg
0 166 0.4871 - 0.7259 1.4901
1 317 0.3158 1.3394 0.5163 1.6346
2 592 0.1942 1.5563 0.3734 1.9222
3 974 0.1343 1.4812 0.3043 2.2651
4 1532 0.1080 0.9634 0.2482 2.2981

e The recovery-based error estimator #, is more exact than the residual error estimator #;. From Table 4, the effectivity
index of 1, approaches 1.0 as the number of elements for triangulations increases. However, the effectivity index of 7,

in Table 5 does not approach 1.0. Hence, #; is asymptotically exact for the problem, while #; is not.

Secondly, we use the adaptive strategy for the penalizing jump stabilized method. The left part of Fig. 2 shows the final
adaptive mesh based on the estimator #;. The refinements occur around the origin and along the line y = —1. Meanwhile, the
right part of Fig. 2 compares the value of estimator 1, with the true error. It shows the estimated error based on 7y is close to
the true error. This illustrates #, also works well for the penalizing jump stabilized method.

4.4. A singular problem

In the third example, we consider Q be a disk of radius 1 with a crack joining the center to the boundary as presented in
[24] and the exact solution u = (uy,u,) and p are given as follows:

u; = 1.5r2(cos(0.50) — cos(1.50)),
uy = 1.5r'2(35in(0.50) — sin(1.50)),
p = —6r"12¢0s(0.50),
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where (r, 0) is a polar representation of a point in the disk. Obviously, the pressure is singular at the end of the crack; i.e., at
the center of the disk (0,0). f is determined by (1) and u is enforced with appropriate inhomogeneous boundary conditions.

Fig. 3 and Fig. 4 show the results for adaptive refinements with #; based on projection stabilized and penalizing jump
stabilized method, respectively. From the left parts of both figures, we note that the local refinements appear near the crack
due to the singularity of this problem. The right parts of both figures show the comparison of the value of estimator 7, and
the true error. We can see that 7 is still asymptotically exact for the singular problem, independent of the choice of stabil-
ization term.

To compare the effectivity index of #, with that of the residual estimator #,, we present the numerical results of the pro-
jection stabilized method with the #, based adaptive strategy in Fig. 5. Comparing the right part of Fig. 5 with that of Fig. 3,
we found that the recovery-based error estimator #, is more exact than the residual error estimator #;.

5. Conclusions

In this paper, we propose a recovery-based error estimator for the stabilized P, /P, finite element approximations to the
Stokes equation. It establishes the reliability and effectivity bounds of the estimator for both the penalizing jump and the
projection stabilized methods. Moreover, it shows numerically that the recovery-based estimator 7, is more accurate than
the residual estimator #;. One advantage of the recovery-based error estimator is that no information of the underlying prob-
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lem is needed. Therefore, it is easy to apply to other complex models such as Navier-Stokes problem, conduction convection

problem.
When the underlying problem, e.g., the Stokes interface problem, is not smooth, the recovery-based estimator studied in

this paper is no longer efficient. This is because the estimator will lead to over-refinements at where there are no errors. (For
detailed discussion on the elliptic interface problem, see [7-9].) Therefore, for the Stokes interface problem, we need to re-
cover a stress tensor, G(a},), in the conforming finite element spaces of H(div; Q)d, instead of C°(Q)™*, and to use the proper
norm. This modified recovery-based estimator will be studied in a forthcoming article.
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