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1. Introduction

Estimating and quantifying approximation errors are very important in both theory and practice of the finite element
method. The a posteriori error estimation [1,23] may provide information of the magnitude and the distribution of the error,
which, in turn, may be used for error control and local mesh refinement, respectively. The aim of this paper is to study a
recovery-based a posteriori error estimator for various stabilized P1=P0 (continuous linear velocity/constant pressure) finite
element approximations to the Stokes problem.

It is well known that the simplest finite element pair P1=P0 does not satisfy the inf-sup condition (see, e.g., [14]). To cir-
cumvent this difficulty, several types of stabilized finite element methods have been developed for the Stokes equation dur-
ing the past several decades. Fundamentally, the quadratic form of the Stokes equation has no control on the pressure (see
[2]). To gain the stability with respect to the pressure variable, one needs to add certain terms to the variational formulation.
This is done through adding (I) a weighted least-squares term of the momentum equation (see, e.g., [3,5,13]); (II) the differ-
ence of the numerical pressure and its projection onto continuous piecewise linear finite element space (see [6,19,22,26]),
the so-called projection stabilized method; and (III) the pressure jumps along interior sides (see [16,18]), the so-called penal-
izing jump stabilized method. The stabilized method in (I) is always consistent. When the pressure is continuous, the stabi-
lized methods in (II) and (III) are also consistent. Moreover, the method in (II) is stabilization parameter free.
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Residual-based a posteriori error estimators for the stabilized P1=P0 finite element methods have been studied by Kay and
Silvester [17] and J. Wang, Y. Wang, and Ye [25] for the penalizing jump method and by Zheng, Hou and Shi [27] for the pro-
jection method.

In this paper, we study a recovery-based estimator for both the penalizing jump and the projection P1=P0 stabilized finite
element methods. The recovery-based estimator was first introduced by Zienkiewicz and Zhu (see, e.g., [28,29]) and is de-
fined as the L2 norm of the difference between the numerical stress (or gradient) and the recovered stress (or gradient). Since
the numerical stress is discontinuous, one recovers a stress in the continuous piecewise linear finite element space by aver-
aging or the L2 projection. An alternative recovery strategy, polynomial preserving recovery, was studied by Naga and Zhang
[20]. For the Stokes equation, the recovery-based (ZZ) a posteriori error estimator for the nonconforming finite element
approximation was studied by Carstensen and Funken [10].

The recovery-based (ZZ) error estimator was analyzed for the lowest order finite element approximation to the Poisson
equation by Rodríguez [21] and Carstensen [11]. They provide some useful arguments to establish reliability and efficiency
bounds. Our analysis may be regarded as a nontrivial extension of their arguments to the stabilized P1=P0 finite element
approximation to the Stokes equation. For the continuous piecewise linear finite element approximation to the Poisson
equation, the ZZ estimator is equivalent to the edge residual estimator, which is dominant in the residual-based estimator
for the lowest order finite element method. However, such an equivalence is no longer valid for the stabilized P1=P0 approx-
imation to the Stokes equation due to the discontinuous pressure. Alternatively, we make use of a property of the stabilized
method to show the dominance of the recovery-based error estimator. This property of the stabilized method is the term
reflecting that the inf-sup ‘deficiency’ of the unstable P1=P0 pair can be bounded by the true error. Finally, numerical results
for several test problems are presented to show its practical effectivity.

The error estimator studied here possess the following features, and some of them are common for the recovery-based
estimators. (1) Our numerical results show that the recovery-based estimator is more accurate than the residual estimator
in [17,25]. (2) The estimator is reliable and efficient for both the stabilized methods. (3) Since the estimator uses no infor-
mation of the underlying problem, it is easy to be applied to some other more complex models, such as Navier–Stokes prob-
lem, conduction convection problem, etc. (4) It is simple to be implemented.

The paper is organized as follows. In Section 2, we review the P1=P0 stabilized finite element methods for the Stokes equa-
tion. In Section 3, we propose the recovery-based error estimator and establish reliability and efficiency bounds. Numerical
results are presented in Section 4, which confirm the theoretical results and provide a comparison of the estimator with the
residual error estimator. A conclusion remark is presented in Section 5.

2. Stabilized P1=P0 approximations

We consider the Stokes problem with homogeneous Dirichlet boundary conditions in d-dimensional (d ¼2,3) bounded
domain X. The problem reads: for given f 2 L2ðXÞd, find the velocity u and the pressure p such that
div rþ f ¼ 0 in X;

r :¼ ru� p I in X;

div u ¼ 0 in X;

u ¼ 0 on @X:

8>>><
>>>:

ð1Þ
Here I denotes the d� d-identity matrix.
To establish the weak form of the above system, we introduce the following spaces
X0 :¼ H1
0ðXÞ

d and M :¼ L2
0ðXÞ ¼ q 2 L2ðXÞ :

Z
X

qdx ¼ 0
� �

:

Then the weak form of the Stokes problem (1) reads: find ðu; pÞ 2 X0 �M such that
Lððu;pÞ; ðv ; qÞÞ ¼ f ðvÞ 8 ðv; qÞ 2 X0 �M; ð2Þ
where the bilinear and linear forms are defined by
Lððu;pÞ; ðv ; qÞÞ ¼ ðru;rvÞ � ðp;div vÞ þ ðq;div uÞ and f ðvÞ ¼ ðf ;vÞ:
Furthermore, the bilinear form L satisfies the inf-sup condition: there exists a positive constant b such that
inf
ðu;pÞ2X0�M

sup
ðv;qÞ2X0�M

Lððu;pÞ; ðv; qÞÞ
jjjðv ; qÞjjj jjjðu; pÞjjjP b; ð3Þ
where the energy norm jjj � jjj is defined by jjjðv ; qÞjjj ¼ ðkvk2
1 þ kqk

2Þ
1
2. This ensures the unique solvability of (2); see [14].

Let sh ¼ fTg be a finite element partition of the domain X with the mesh parameter h ¼maxT2sh
diamðTÞ, where T can be

triangle in 2-dimensions and tetrahedron in 3-dimensions. Assume that the triangulation sh is regular; i.e., the ratio hT=qT is
bounded by
cT :¼ supfhT=qT : T 2 sh;h > 0g <1: ð4Þ
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Here hT denotes the diameter of the element T and qT the diameter of the largest circle that may be inscribed in T. Denote
by Sh the set of all sides in sh lying inside X. Each e 2 Sh is an edge and a triangle in 2- and 3-dimensions, respectively. For
any piecewise constant q and piecewise constant tensor s, let
½q�e :¼ qjTþe � qjT�e and ½s�e :¼ sjTþe � sjT�e

denote their jumps on the side e 2 Sh, where Tþe and T�e are two elements sharing the common side e. Let us denote by he the
size of a given side e 2 Sh. The norm
kukSh
:¼

X
e2Sh

hekuk2
e

 !1
2

will prove useful in what follows.
Let us denote by
R1ðXÞ ¼ fvh 2 C0ðXÞ : vhjT 2 P1ðTÞ 8T 2 shg;
where P1ðTÞ is the space of linear polynomials on element T. Moreover, we introduce the piecewise constant finite element
space
R0ðXÞ ¼ fqh 2 L2ðXÞ : qhjT 2 P0ðTÞ 8T 2 shg;
where P0ðTÞ is a constant polynomial space on element T.
In this paper, our main focus is the lowest-order conforming pair
Xh ¼ X0 \ R1ðXÞd and Mh ¼ L2
0ðXÞ \ R0ðXÞ:
It is well known that finite element space pair ðXh;MhÞ does not satisfy the discrete inf-sup condition. To use such simple
P1=P0 finite element pair for numerically solving the Stokes Eqs. (1), some stabilized finite element methods are necessary. A
kind of regularized stabilized discrete formulation is as follows: find ðuh; phÞ 2 Xh �Mh satisfy
Lððuh; phÞ; ðvh; qhÞÞ þ Sðph; qhÞ ¼ f ðvhÞ 8 ðvh; qhÞ 2 Xh �Mh; ð5Þ
where Sðph; qhÞ : Mh �Mh !R is a symmetric stabilization term. Two specific choices of the stabilization term are defined
below.

2.1. Penalizing jump stabilized method

The idea here is to stabilize the approximation by penalizing jumps in pressure across internal interelement sides; see
[16,17]. The stabilization term is defined by
Sðph; qhÞ ¼ b0

X
e2Sh

he

Z
e
½ph�e½qh�e ds 8ph; qh 2 Mh: ð6Þ
Here b0 is a given stabilization parameter. It must be chosen carefully. For example, the numerical velocity field could no
longer be regarded as be divergence free if b0 is too large.

In addition, the stabilization term of consistently stabilized methods in [13,25] reads
Sððuh; phÞ; ðvh; qhÞÞ ¼ c
X
T2sh

h2
Tðf þ Duh �rph;�sDvh þrqhÞ þ b0

X
e2Sh

he

Z
e
½ph�e½qh�eds 8ðvh; qhÞ 2 Xh �Mh: ð7Þ
For P1=P0 elements, the consistently stabilized method reduces to the penalizing jump stabilized method. The reason is the
term �sDvh þrqh in (7) equals zero.

2.2. Projection stabilized method

The method uses the term that characterizes the inf-sup ‘deficiency’ of the unstable spaces to stabilize the approximation;
see [6].

The stabilization term in (5) is given by
Sðph; qhÞ ¼ ðph �P1ph; qh �P1qhÞ 8ph; qh 2 Mh: ð8Þ
The operator P1 is defined by P1 : L2ðXÞ# R1ðXÞ.
In contrast to the penalizing jump stabilized methods, the projection method is parameter free, does not require side-

based data structures, and always leads to symmetric linear systems.

Remark. The lowest-order conforming pair ðXh;MhÞ satisfies a weak inf-sup condition
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sup
vh2Xh

R
X qhr � vhdx
kvhk1

P c1kqhk � c2

X
e2Sh

hek½qh�ek
2
e

 !1
2

8 qh 2 Mh;
where c1 and c2 are positive constants independent of the mesh size; see [6].

The term
P

e2Sh
hek½qh�ek

2
e

� �1
2

quantifies the inf-sup ‘deficiency’ of the unstable pair. In some sense, the stabilized methods
for P1=P0 approximation are designed to counterbalance this term. For instances, the stabilized formulation (5) can be rewrit-
ten as
ðruh;rvhÞ � ðr � vh;phÞ ¼ ðf ;vhÞ 8vh 2 Xh;

ðr � uh; qhÞ þ Sðph; qhÞ ¼ 0 8qh 2 Mh:
ð9Þ
The stabilization term Sðph; qhÞ is added to the continuity equation to help offset the ‘deficiency’ term. Therefore, no matter

the choice of stabilized method, the stabilization term is closely associated with
P

e2Sh
hek½qh�ek

2
e

� �1
2
. Such connection will

prove useful in showing that the recovery-based error estimator is reliable and efficient for various stabilized methods.

3. Recovery-based error estimator

To formulate the error estimator, we need some notations. We denote by N and N h the vertices in sh and the vertices in
sh lying inside X, respectively. For given z 2 N , we denote by /z the nodal basis function associated with z and set
xz :¼ supp/z, the union of all elements that share the same vertex z. jTj denotes the volume of the element T 2 sh.

Let ðuh; phÞ be the numerical solution of the stabilized method (5) with stabilization term (6) or (8). We consider the stress
tensor r and its finite element approximation rh :¼ ruh � phI. A recovery technique aims to construct GðrhÞ based on rh

such that GðrhÞ approximates r better than rh in some norm. In other words, GðrhÞ satisfies
kr� GðrhÞk � kr� rhk: ð10Þ
The recovery technique is not only a postprocessing tool to improve the approximation, but also a way to construct a pos-
teriori error estimator. Using the triangular inequality gives
1� kr� GðrhÞk
kr� rhk

6
krh � GðrhÞk
kr� rhk

6 1þ kr� GðrhÞk
kr� rhk

:

Based on (10), kr� GðrhÞk=kr� rhk is much smaller than 1, therefore,
krh � GðrhÞk
kr� rhk

� 1:
Namely krh � GðrhÞk can be an error estimator to estimate the unknown true error kr� rhk. Using the superconvergence
patch recovery technique in [28], we recover the piecewise constant tensor rh to the continuous field, that is, the recovered
stress tensor GðrhÞ 2 R1ðXÞd�d. In the following, we will show the construction of GðrhÞ in detail.

For any given tensor s 2 R0ðXÞd�d, we use the least square method to construct its continuous approximation. Let sz be the
constant valued tensor defined on xz, which minimizes the functional
JzðszÞ ¼
1
2

Z
xz

ðs� szÞ2dx: ð11Þ
Then, these constant valued tensors fszg are interpolated to obtain the continuous approximation GðsÞ over the whole
domain,
GðsÞ ¼
X
z2N

sz/z 8s 2 R0ðXÞd�d
:

When choosing s ¼ rh, the functional (11) can be simplified as
JzðszÞ ¼
1
2

X
T2xz

jTjðrT � szÞ2;
where rT is the restriction of rh on element T. It is easy to show that the minimal value point of the functional above is
~sz ¼

P
T2xz

jTj
jxz jrT . Therefore,
GðrhÞ ¼
X
z2N

~sz/z: ð12Þ
Noticing the fact that the nodal value of GðrhÞ at z is area-weighted average of rh over xz, we actually have
GðrhÞðzÞ ¼
Z
--

xz

rhdx :¼
Z

xz

rhdx=
Z

xz

1dx:
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Now we are in the position to give the recovery-based error estimator. Let
gT :¼ krh � GðrhÞkT
be the local estimator and
gR :¼
X
T2sh

g2
T

 !1
2

be the global one.
To illustrate the property of the recovery-based error estimator, we introduce two inequalities.
One is the trace inequality. There exists c > 0, independent of the mesh size, such that
kqhk@T 6 c h
�1

2
T kqhkT 8qh 2 P1ðTÞ: ð13Þ
Another is inverse inequality proposed in [11] for the efficiency of averaging estimators,
kqh �
Z
--

xz

qhdxk2
xz
6 c
X
e2Sz

hek½qh�ek
2
e 8qh 2 R0ðXÞ; ð14Þ
where z is an arbitrary node,
R
--xz

qhdx denotes the average of qh over xz and Sz denotes the set of all sides sharing vertex z.
For simplicity, symbol c (with or without a subscript) here and in the rest may represent different quantities at different
occurrences, but it is always independent of the mesh size.

The recovery-based error estimator gR has the following property.

Lemma 3.1. Let rh be the finite element approximate stress tensor of problem (5). There exist two positive constants c1 and c2

independent of the mesh size such that
c1 k½rh�ekSh
6 krh � GðrhÞk 6 c2 k½rh�ekSh

:

Proof. For the first inequality, using the fact ½GðrhÞ�e ¼ 0 and the trace inequality (13) leads to
k½rh�ekSh
¼ k½rh � GðrhÞ�ekSh

6 c krh � GðrhÞk:
For the second inequality, by using the definition of GðrhÞ in (12), the Cauchy–Schwarz inequality and the inverse
inequality (14), we obtain
krh � GðrhÞk2 ¼
X
i2N
ðrh � GðrhÞðiÞÞ/i

�����
�����

2

¼
Z

X

X
i2N
ðrh � GðrhÞðiÞÞ/i

�����
�����
2

dx 6
Z

X

X
i2N

/i

 ! X
i2N

rh � GðrhÞðiÞj j2/i

 !
dx

6

X
i2N

Z
xi

jrh � GðrhÞðiÞj2dx ¼
X
i2N
krh �

Z
--

xi

rhdxk2
xi
6 c k½rh�ek

2
Sh
;

where j � j stands for the Frobenius norm of tensor, namely, jsj2 :¼
P2

i¼1

P2
j¼1s2

ij for any tensor s ¼ ðsijÞ.
Combination of the above two inequalities ends the proof. h

Since the definition of operator P1 in stabilized method (8) in [6] is in the same fashion of the recovery operator Gð�Þ, we
also have
c1 k½qh�ekSh
6 kqh �P1qhk 6 c2 k½qh�ekSh

8qh 2 R0ðXÞ; ð15Þ

kqh �P1qhk 6 c kqhk 8qh 2 R0ðXÞ: ð16Þ
Thanks to the property of Gð�Þ in (10), we have
kP1ph � phk 6 c kp� phk; ð17Þ
where p is the true pressure solution of (1) and ph is the finite element approximation solution of (5).
Based on Lemma 3.1, we will show the reliability and efficiency of the recovery-based error estimator in following

subsections.
Before moving onto next subsection, we illustrate the connection between k½rh�eke and k½rh � ne�ke, where ne is the unit

normal vector along e 2 Sh. This plays an important role in a posteriori error estimates for such a recovery-based error esti-
mator. In 2-dimensions, we denote by se the unit tangential vector along e. Let
½r � ne� :¼ rjTþe � ne � rjT�e � ne

½r � se� :¼ rjTþe � se � rjT�e � se
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denote the jumps of the normal and tangential component of r on the side e, respectively. Since ½ruh � se� ¼ 0, we have
½rh�e ¼ ð½rh � ne�; ½ruh � se� þ ½�phIse�Þ ¼ ð½rh � ne�; ½�phIse�Þ:
Therefore,
k½rh�ek
2
e ¼ k½rh � ne�k2

e þ k½ph�ek
2
e : ð18Þ
For the 3-dimensional case, we can obtain the above relation using the same argument except for introducing an additional
unit tangential vector.

The above relation (18), together with Lemma 3.1, admits
k½rh � ne�kSh
6 k½rh�ekSh

6 c gR; ð19Þ
k½ph�ekSh

6 k½rh�ekSh
6 c gR: ð20Þ
3.1. Reliability

Firstly, we introduce some properties of the weighted Clément-type interpolation operator Ih defined in [12] in the fol-
lowing lemma. Such properties are often used for establishing the reliability bound of a posteriori error estimator; see
[7,12,4].

Lemma 3.2. There is a constant c, which depends only on the shape parameter cT in (4), such that
ðf ;v � IhvÞ 6 c Hf kvk1 8v 2 X0;
and
X
e2Sh

h�1
e kv � Ihvhk2

e

 !1
2

6 c kvk1 8v 2 X0;
where Hf :¼
P

z2NnN h
jxzj kf k2

xz
þ
P

z2N h
jxzj kf �

R
--xz

f dxk2
xz

� �1
2
.

Proof. Refer to the Lemma 3.1, 6.1 and 6.2 in [12]. h
Remark. The second term in Hf is a higher-order term for f 2 L2ðXÞd and so is the first term for f 2 LpðXÞd with p > 2; (see
[12,7]).
Theorem 3.1. (Reliability) Let ðu; pÞ be the solution of problem (2) and ðuh; phÞ be finite element approximation solution of prob-
lem (5) with stabilization term (6) or (8). There exists a positive constant c independent of the mesh size such that
jkðu� uh; p� phÞjk 6 c gR þ Hf
� 	

:

Proof. Subtracting (5) from (2) gives
Lððu� uh;p� phÞ; ðvh; qhÞÞ � Sðph; qhÞ ¼ 0 8ðvh; qhÞ 2 Xh �Mh:
Taking qh ¼ 0 and vh ¼ Ihv yields
Lððu� uh;p� phÞ; ðIhv ;0ÞÞ ¼ 0 8 v 2 X0: ð21Þ
For any ðv ; qÞ 2 X0 �M, using integration by parts, the fact r � rhjT ¼ 0 and (21) gives
Lððu� uh;p� phÞ; ðv ; qÞÞ ¼ Lððu� uh;p� phÞ; ðv � Ihv ; qÞÞ
¼ ðr ðu� uhÞ;rðv � IhvÞÞ � ðp� ph;r � ðv � IhvÞÞ þ ðq;r � ðu� uhÞÞ

¼ ðr;rðv � IhvÞÞ þ
X
T2sh

ðr � rh;v � IhvÞT þ
X
e2Sh

ð½rh � ne�;v � IhvÞe � ðq;r � uhÞ

¼ ðf ;v � IhvÞ þ
X
e2Sh

ð½rh � ne�;v � IhvÞe � ðq;r � uhÞ:
For the first two terms on the right hand side of the last expression, by using the Cauchy–Schwarz inequality, the prop-
erties of Clément interpolation in Lemma 3.2 and (19), we have
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ðf ;v � IhvÞ þ
X
e2Sh

ð½rh � ne�;v � IhvÞe 6 Hf kvk1 þ k½rh � ne�kSh

X
e2Sh

h�1
e kv � Ihvk2

e

 !1
2

6 c Hf þ k½rh � ne�kSh

� �
kvk1

6 c Hf þ gR

� 	
kvk1:
To estimate the term ðq;r � uhÞ, we will use the second equation of (9),
ðr � uh; qhÞ þ Sðph; qhÞ ¼ 0 8qh 2 Mh:
If the stabilization term is defined by (6), using the Cauchy–Schwarz inequality, the inverse inequality in (13) and (20)
gives
kr � uhk2 ¼ �Sðph;r � uhÞ ¼ b0

X
e2Sh

he

Z
e
½ph�e½r � uh�eds 6 c k½ph�ekSh

k½r � uh�ekSh
6 c gR kr � uhk:
If the stabilization term is defined by (8), using the Cauchy–Schwarz inequality, the property of P1 in (15) and (16) and
(20) gives
kr � uhk2 ¼ �Sðph;r � uhÞ ¼ �ðph �P1ph;r � uh �P1ðr � uhÞÞ 6 kph �P1phkkr � uh �P1ðr � uhÞk
6 c k½ph�ekSh

kr � uhk 6 c gR kr � uhk:
Therefore, we get
ðr � uh; qÞ 6 kr � uhk kqk 6 c gR kqk:
The combination of above inequalities yields
Lððu� uh;p� phÞ; ðv ; qÞÞ 6 c ðHf þ gRÞ ðkvk1 þ kqkÞ:
By the inf-sup condition (3), we have
jjjðu� uh;p� phÞjjj 6 b�1 sup
ðv;qÞ2X0�M

Lððu� uh;p� phÞ; ðv ; qÞÞ
jjjðv ; qÞjjj 6 c ðgR þ Hf Þ:
It completes the proof of the reliability. h
3.2. Efficiency

Using Lemma 3.1 and (18), we have
gR 6 c k½rh�ekSh
¼ c ðk½rh � ne�kSh

þ k½ph�ekSh
Þ: ð22Þ
To prove the efficiency of the recovery-based error estimator gR, we firstly estimate
k½rh � ne�kSh
and k½ph�ekSh

;

separately, and have following lemmas.

Lemma 3.3. Let r be the stress tensor of problem (2) and rh be the finite element approximate stress tensor of problem (5) with
stabilization term (6) or (8). There exists a positive constant c independent of the mesh size such that
h
1
2
ek½rh � ne�ke 6 ckr� rhkxe

þ che inf
f h2Xh

kf � f hkxe
;

where xe denotes the union of the two elements sharing the same side e.
Proof. For any interior side e, we introduce the bubble function we ¼ 4 Pz2N e /z, where N e denotes the vertices of the side e.
For any polynomial tensor r, we have the following estimates (see 2.11 in [4]),
krke 6 c1kw
1
2
erke; ð23Þ

krðwerÞkT 6 c2h�
1
2

e krke; ð24Þ

kwerkT 6 c3h
1
2
ekrke: ð25Þ
If we denote We ¼ we½rh � ne�, by using (24) and (25) we obtain
krWekT 6 c2h�
1
2

e k½rh � ne�ke; ð26Þ

kWekT 6 c3h
1
2
ek½rh � ne�ke: ð27Þ
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Then by using (23), (26), (27), integration by parts and the Cauchy–Schwarz inequality, we get
c�2
1 k½rh � ne�k2

e 6

Z
e
½rh � ne�Wedx ¼

X2

i¼1

Z
Ti

div rhWe þ rhrWedx ¼
X2

i¼1

Z
Ti

f We � ðr� rhÞrWedx

6

X2

i¼1

kf kTi
kWekTi

þ jjr� rhjjTi
krWekTi

� �
6

X2

i¼1

c3h
1
2
ekf kTi

þ c2h�
1
2

e jjr� rhjjTi

� �
k½rh � ne�ke:
Consider an arbitrary function f h 2 Xh, since r � rhjT ¼ 0, we obtain
h
1
2
ek½rh � ne�ke 6 cjjr� rhjjxe

þ cheðkf � f hkxe
þ kf h þr � rhkxe

Þ: ð28Þ
Next, we estimate the term kf h þr � rhkxe
.

For any element T, we use the bubble function wT ¼ 27 Pz2N T
/z.For any polynomial v, we have the following estimates

hold (see 2.11 in [4]),
kvkT 6 c4kw
1
2
TvkT ; ð29Þ

krðwTvÞkT 6 c5h�1
T kvkT ; ð30Þ
Define WT ¼ wTðf h þr � rhÞ. Using (30) and the property of bubble function yields
krWTkT 6 c5h�1
T kf T þr � rhkT ; ð31Þ

kWTkT 6 kf h þr � rhkT : ð32Þ
Using (29), (31), (32), integration by parts and the Cauchy–Schwarz inequality gives
c�2
4 kf h þr � rhk2

T 6

Z
T

wTðf h þr � rhÞ2dx ¼
Z

T
ðf þr � rhÞWT dxþ

Z
T
ðf h � f ÞWT dx

¼
Z

T
ðr� rhÞrWT dxþ

Z
T
ðf h � f ÞWT dx 6 jjr� rhjjTkrWTkT þ kf h � f kTkWTkT

6 c2h�1
T jjr� rhjjT þ kf h � f kT

� �
kf h þr � rhkT :
So, we obtain
kf h þr � rhkT 6 c2
1c2h�1

T jjr� rhjjT þ c2
1kf h � f kT ;
which together with (28) gives
h
1
2
ek½rh � ne�ke 6 c jjr� rhjjxe

þ c he inf
f h2Xh

kf � f hkxe
:

This completes the proof. h
Lemma 3.4. Let ðu; pÞ be the solution of problem (2) and ðuh; phÞ be the finite element approximation solution of problem (5) with
stabilization term (6) or (8). There exists a positive constant c independent of the mesh size such that
k½ph�ek
2
Sh
6 c

X
e2Sh

h�1
e kðu� uhÞ � nek2

e :
Proof. Using the second equation of (9) and letting qh ¼ ph give
ðr � uh; phÞ þ Sðph;phÞ ¼ 0:
We use the fact that r � u ¼ 0 and rphjT ¼ 0, the integration by parts and the Cauchy–Schwarz inequality to get
Sðph;phÞ ¼ �ðr � uh;phÞ ¼ ðr � ðu� uhÞ;phÞ ¼
X
e2Sh

ððu� uhÞ � ne; ½ph�eÞe �
X
T2sh

ðu� uh;rphÞT

6

X
e2Sh

h�1
e kðu� uhÞ � nek2

e

 !1
2

k½ph�ekSh
: ð33Þ
On another hand, we estimate the stabilization term Sðph; phÞ in two cases.
If the stabilization term is defined by (6), then
Sðph;phÞP c k½ph�ek
2
Sh
:
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If the stabilization term is defined by (8), then using the property of P1 in (15) gives
Sðph;phÞ ¼ kph �P1phk
2 P c k½ph�ek

2
Sh
:

Combining above equations with (33) leads to
k½ph�ekSh
6 c

X
e2Sh

h�1
e kðu� uhÞ � nek2

e

 !1
2

:

This completes the proof. h

Next we use the trace inequality and the Aubin-Nitsche duality argument to estimate
P

e2Sh
h�1

e kðu� uhÞ � nek2
e appearing

in Lemma 3.4.

Lemma 3.5. Let ðu; pÞ be the solution of problem (2) and ðuh; phÞ be the finite element approximate solution of problem (5) with
stabilization term (6) or (8). There exists a positive constant c independent of the mesh size such that
X

e2Sh

h�1
e kðu� uhÞ � nek2

e 6 c kjðu� uh;p� phÞkj
2
:

Proof. Using the trace inequality, we have
X
e2Sh

h�1
e kðu� uhÞ � nek2

e 6 c h�1ku� uhkku� uhk1: ð34Þ
To estimate ku� uhk, we use the Aubin-Nitsche duality argument.
For ðu;/Þ 2 L2ðXÞ2 � ðH1ðXÞ \ L2

0ðXÞÞ, consider the dual Stokes problem: seek ðU;WÞ 2 ðH2ðXÞ2 \ H1
0ðXÞ

2Þ�
ðH1ðXÞ \ L2

0ðXÞÞ such that
Lððv ; qÞ; ðU;WÞÞ ¼ ðu;vÞ þ ð/; qÞ 8 ðv ; qÞ 2 X0 �M: ð35Þ
This problem admits a unique solution ðU;WÞ satisfying
kUk2 þ kWk1 6 c ðkuk þ k/k1Þ: ð36Þ
Moreover, there exist Uh 2 Xh and Wh 2 Mh such that
kU�Uhk1 6 c h kUk2 and kW�Whk 6 c h kWk1: ð37Þ
Taking ðv ; qÞ ¼ ðu� uh; p� phÞ in (35) yields
Lððu� uh;p� phÞ; ðU;WÞÞ ¼ ðu;u� uhÞ þ ð/;p� phÞ: ð38Þ
In addition, subtracting (5) from (2) gives
Lððu� uh;p� phÞ; ðvh; qhÞÞ � Sðph; qhÞ ¼ 0 8ðvh; qhÞ 2 Xh �Mh:
Taking ðvh; qhÞ ¼ ðUh;WhÞ admits
Lððu� uh;p� phÞ; ðUh;WhÞÞ � Sðph;WhÞ ¼ 0;
which together with (38) leads to
ðu;u� uhÞ þ ð/; p� phÞ ¼ Lððu� uh;p� phÞ; ðU�Uh;W�WhÞÞ þ Sðph;WhÞ: ð39Þ
Now we estimate the term Sðph;WhÞ in two cases.

Case 1. If the stabilization term is defined by (6), then using the Cauchy–Schwarz inequality, the property of P1 in (15) and
(16) and the trace inequality (13) gives
Sðph;WhÞ ¼ b0

X
e2Sh

he

Z
e
½ph�e½Wh�eds 6 c k½ph�ekSh

k½Wh�ekSh
6 c kðI �P1Þphkk½Wh �W�ekSh

6 c kp� phkkWh �Wk:
Case 2. If the stabilization term is defined by (8), then
Sðph;WhÞ ¼ ððI �P1Þph; ðI �P1ÞWhÞ 6 c kðI �P1Þphkk½Wh �W�ekSh
6 c kp� phkkWh �Wk:
Combining above expressions with (39) and using the continuity of Lð�; �Þ, (36) and (37) give
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ðu;u� uhÞ þ ð/;p� phÞ 6 c kjðu� uhÞ; ðp� phÞkjkjðU�UhÞ; ðW�WhÞkj þ c kp� phkkWh �Wk
6 c h ðku� uhk1 þ kp� phkÞðkUk2 þ kWk1Þ 6 c h ðku� uhk1 þ kp� phkÞðkuk0 þ k/k1Þ:
Therefore
ku� uhk þ kp� phk�1 6 c h ðku� uhk1 þ kp� phkÞ;
which together with (34) yields
X
e2Sh

h�1
e kðu� uhÞ � nek2

e 6 c ðku� uhk1 þ kp� phkÞku� uhk1 6 c kjðu� uhÞ; ðp� phÞkj
2
:

This completes the proof. h

Now we are in the position to present the main results of this subsection.

Theorem 3.2. (Efficiency) Let ðu; pÞ be the solution of problem (2) and ðuh; phÞ be the finite element approximate solution of
problem (5) with stabilization term (6) or (8). There exists a positive constant c independent of the mesh size such that
gR 6 c kjðu� uh;p� phÞkj þ c
X
e2Sh

he inf
f h2Xh

kf � f hkxe
:

Proof. Using (22), Lemma 3.3, Lemma 3.4 and Lemma 3.5 gives
gR 6 c ðk½rh � ne�kSh
þ k½ph�ekSh

Þ 6 c kr� rhk þ c
X
e2Sh

he inf
f h2Xh

kf � f hkxe
þ

X
e2Sh

h�1
e kðu� uhÞ � nek2

e

 !1
2

6 c kjðu� uhÞ; ðp� phÞkj þ c
X
e2Sh

he inf
f h2Xh

kf � f hkxe
:

This completes the proof of the efficiency. h
4. Numerical results

In this section, we present a selection of numerical results for three purposes: (1) showing that the recovery-based error
estimator works well for general P1=P0 stabilized methods, (2) presenting the practical effectivity of the recovery-based error
estimator, and (3) showing the recovery-based estimator gR is more exact than the residual error estimator gE in [12,25],

which is defined by gE :¼
P

T2sh
g2

e;T

� �1
2
with
g2
e;T :¼ kr � uhk2

T þ
1
2

X
e2@T\X

h
1
2
ek½rh � ne�k2

e :
We consider three 2-dimensional numerical tests. The first one is a flow problem with a smooth solution. The second one
is a flow problem in a singular L-shape domain. The third one models a flow problem in a cracked domain with a singular
solution. The experiments are implemented by the public software Freefem++ [15].

In order to illustrate the recovery-based error estimator gR is independent of the choice of the specific stabilized method,
we use the adaptive strategy based on gR for two stabilized methods for the Stokes problem. One is the penalizing jump sta-
bilized method, namely, the stabilized method (5) with stabilization term (6). We choose the stabilization parameter
b0 ¼ 0:05. Another is the projection stabilized method, namely, the stabilized method (5) with stabilization term (8).

4.1. Mesh refinement strategy

The mesh refinement strategy we used in FreeFem++ [15] is as follows.

Step 1. Given a triangulation sj. Compute an n-dimensional vector hj. Here n denotes the number of the vertexes of sj and
the ith (1 6 i 6 n) component of hj is the average length of the sides sharing the ith vertex.
Step 2. For every element T 2 sj, compute a local error estimator gj

T (i.e., either gT or ge;T ) and denote �gj :¼
P

T2sjgj
T=
P

T2sj 1,
the mean value of gj

T over sj.
Step 3. Give the new size hjþ1 by the following formulae
hjþ1 ¼ hj

f ðgj
TÞ
where f is a user function defined by
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f ¼ minðmaxðgj
T=c �gj;1:0Þ;3:0Þ;
and c is a user defined coefficient generally close to 1.
Step 4. Get the new mesh sjþ1 by using a variable metric/ Delaunay automatic meshing algorithm in Freefem++ with the
mesh size field hjþ1.
For simplicity, in all experiments, we choose c ¼ 0:8. One possible adaptive strategy is as follows. Given a user-specified
tolerance g� and an initial mesh s0. Refine the mesh by using the above mesh refinement strategy until the global error
estimator g (i.e., either gR or gE) satisfies g 6 g�.

For the sake of convenience, we introduce the following notions.

	 DOFj:¼ number of elements for the triangulation sj;
	 ej

r :¼kjðu� uj
h; p� pj

hÞkj=kjðu; pÞkj denotes relative error in the energy norm.

	 gR;r :¼gR=kjðu; pÞkj denotes the relative value of global recovery-based estimator.

	 gE;r:¼gE=kjðu; pÞkj denotes the relative value of global residual estimator.

	 Order:¼ 2 logðejþ1
r =ej

rÞ
logðDOFj=DOFjþ1Þ

denotes the convergence rate of the error.

	 ER:¼gR;r=er denotes effectivity index for the global recovery-based estimator gR.
	 EE:¼gE;r=er denotes effectivity index for the global residual estimator gE.

4.2. A smooth problem

The first example is a flow problem with a smooth solution, given by
u1 ¼ 2p sin2ðpxÞ sinðpyÞ cosðpyÞ;
u2 ¼ �2p sinðpxÞ cosðpxÞ sin2ðpyÞ;
p ¼ cosðpxÞ cosðpyÞ;
where domain X ¼ ð0;1Þ � ð0;1Þ.
Firstly, we consider the penalizing jump stabilized method and report numerical results for adaptive refinements via this

stabilized method with estimator gR in Table 1. We can see the refinements get good approximate solution as h! 0 and
nearly optimal convergence order (about 1.0). In addition, the effectivity index ER approaches to 1.0, which illustrates esti-
mator gR performs well for the penalizing jump stabilized method.

Secondly, we use the adaptive strategy for the projection stabilized method. The numerical results are presented in Table
2. They show the convergence rate of the error in energy norm keeps order 1.0, and the estimator gR is almost exact. They are
consistent with the results in Table 1.

From all the results in Table 1 and 2, we can see the recovery-based error estimator gR works well for general P1=P0 sta-
bilized methods.
for adaptive refinements via penalizing jump stabilized method with gR .

l DOFj
ej

r
Order gR;r ER

208 0.3026 – 0.2989 0.9881
314 0.2332 1.2644 0.2323 0.9961
513 0.1732 1.2107 0.1759 1.0151
927 0.1304 0.9607 0.1301 0.9983
1597 0.0971 1.0858 0.0971 1.0011

for adaptive refinements via projection stabilized method with gR .

l DOFj
ej

r
Order gR;r ER

208 0.3498 – 0.3362 0.9611
321 0.2526 1.4992 0.2513 0.9947
533 0.1885 1.1549 0.1882 0.9986
978 0.1363 1.0671 0.1353 0.9925
1708 0.1025 1.0221 0.1018 0.9926
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4.3. L-shape domain problem

The second example is a flow problem in the L-shape domain X ¼ ð�1;1Þ2 � ½0;1�2. The right hand side f of the Stokes
problem (1) is determined by exact velocity u ¼ ðu1;u2Þ and pressure p:
Table 3
Results

Leve

0
1
2
3
4

u1ðx;yÞ¼
y�0:1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�0:1Þ2þðy�0:1Þ2
q ;

u2ðx;yÞ¼�
x�0:1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�0:1Þ2þðy�0:1Þ2
q ;

pðx;yÞ¼ 1
yþ1:05

� logð2:05Þþ logð1:05Þ�2logð0:05Þ
3

:

We note that both the velocity u and the pressure p are smooth in the domain. However, it is clear that u and p are singular at
the point (0.1,0.1) and along the line y ¼ �1:05, respectively.

Firstly, we consider the projection stabilized method. In order to show the practical effectivity of the recovery-based esti-
mator gR, we compare the results of adaptive refinements with those of uniform refinements, also compare the effectivity
index of gR with that of the residual estimator gE.

Table 3–5 show the numerical results for uniform/adaptive refinements with recovery-based estimator gR and residual
estimator gE. Fig. 1 shows the adaptive meshes based on the both error estimators. The observations and conclusions of this
experiment are presented as follows.

	 The stabilized method based on adaptive refinements obtains much better approximate solution than that based on uni-
form refinements. To get the similar accuracy, i.e. the relative error er ¼ 0:13, it uses 4258 elements in the uniform case
(see Level 4 in Table 3), while it only uses 820 elements in the adaptive case with gR (see Level 2 in Table 4 and 1130
elements with gE (see Level 3 in Table 5). Moreover, the numerical results show that the convergence rate for adaptive
refinements is a little bit higher than that for the uniform case (see Order in Table 3–5).
	 Mesh refinements based on both estimator gR and gE are efficient. From Fig. 1, we can see the refined meshes appear

around the origin and along the line y ¼ �1, which are near the locations of singularity.
X

Y

-1 -0.5 0 0.5 1-1

-0.5
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0.5

1

X

Y

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

Fig. 1. Refinements via projection stabilized method with gR(left) and gE(right).

for uniform refinements via projection stabilized method.

l DOFj
ej

r
Order gR;r ER gE;r EE

166 0.4871 – 0.2972 0.6102 1.0193 1.4901
652 0.3108 0.6570 0.2158 0.6946 0.8059 1.8461
1526 0.2281 0.7272 0.1661 0.7284 0.6091 1.9001
2688 0.1719 0.9982 0.1321 0.7684 0.4912 2.0301
4258 0.1359 1.0217 0.1097 0.8069 0.4193 2.1907



Table 4
Results for adaptive refinements via projection stabilized method with gR .

Level DOFj
ej

r
Order gR;r ER

0 176 0.4479 – 0.2955 0.6598
1 427 0.2315 1.4891 0.1763 0.7614
2 820 0.1365 1.6176 0.1248 0.9140
3 1322 0.1072 1.0112 0.1006 0.9384
4 2172 0.0804 1.1580 0.0781 0.9712

Table 5
Results for adaptive refinements via projection stabilized method with gE .

Level DOFj
ej

r
Order gE;r EE

0 166 0.4871 – 0.7259 1.4901
1 317 0.3158 1.3394 0.5163 1.6346
2 592 0.1942 1.5563 0.3734 1.9222
3 974 0.1343 1.4812 0.3043 2.2651
4 1532 0.1080 0.9634 0.2482 2.2981
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	 The recovery-based error estimator gR is more exact than the residual error estimator gE. From Table 4, the effectivity
index of gR approaches 1.0 as the number of elements for triangulations increases. However, the effectivity index of gE

in Table 5 does not approach 1.0. Hence, gR is asymptotically exact for the problem, while gE is not.

Secondly, we use the adaptive strategy for the penalizing jump stabilized method. The left part of Fig. 2 shows the final
adaptive mesh based on the estimator gR. The refinements occur around the origin and along the line y ¼ �1. Meanwhile, the
right part of Fig. 2 compares the value of estimator gR with the true error. It shows the estimated error based on gR is close to
the true error. This illustrates gR also works well for the penalizing jump stabilized method.

4.4. A singular problem

In the third example, we consider X be a disk of radius 1 with a crack joining the center to the boundary as presented in
[24] and the exact solution u ¼ ðu1;u2Þ and p are given as follows:
u1 ¼ 1:5r1=2ðcosð0:5hÞ � cosð1:5hÞÞ;
u2 ¼ 1:5r1=2ð3 sinð0:5hÞ � sinð1:5hÞÞ;
p ¼ �6r�1=2 cosð0:5hÞ;
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Fig. 2. Results by penalizing jump stabilized method with recovery-based estimator gR.
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Fig. 3. Results by projection stabilized method with recovery-based estimator gR .
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Fig. 4. Results by penalizing jump stabilized method with recovery-based estimator gR.
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where ðr; hÞ is a polar representation of a point in the disk. Obviously, the pressure is singular at the end of the crack; i.e., at
the center of the disk (0,0). f is determined by (1) and u is enforced with appropriate inhomogeneous boundary conditions.

Fig. 3 and Fig. 4 show the results for adaptive refinements with gR based on projection stabilized and penalizing jump
stabilized method, respectively. From the left parts of both figures, we note that the local refinements appear near the crack
due to the singularity of this problem. The right parts of both figures show the comparison of the value of estimator gR and
the true error. We can see that gR is still asymptotically exact for the singular problem, independent of the choice of stabil-
ization term.

To compare the effectivity index of gR with that of the residual estimator gE, we present the numerical results of the pro-
jection stabilized method with the gE based adaptive strategy in Fig. 5. Comparing the right part of Fig. 5 with that of Fig. 3,
we found that the recovery-based error estimator gR is more exact than the residual error estimator gE.

5. Conclusions

In this paper, we propose a recovery-based error estimator for the stabilized P1=P0 finite element approximations to the
Stokes equation. It establishes the reliability and effectivity bounds of the estimator for both the penalizing jump and the
projection stabilized methods. Moreover, it shows numerically that the recovery-based estimator gR is more accurate than
the residual estimator gE. One advantage of the recovery-based error estimator is that no information of the underlying prob-
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Fig. 5. Results by projection stabilized method with residual estimator gE .
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lem is needed. Therefore, it is easy to apply to other complex models such as Navier–Stokes problem, conduction convection
problem.

When the underlying problem, e.g., the Stokes interface problem, is not smooth, the recovery-based estimator studied in
this paper is no longer efficient. This is because the estimator will lead to over-refinements at where there are no errors. (For
detailed discussion on the elliptic interface problem, see [7–9].) Therefore, for the Stokes interface problem, we need to re-
cover a stress tensor, GðrhÞ, in the conforming finite element spaces of Hðdiv; XÞd, instead of C0ðXÞd�d, and to use the proper
norm. This modified recovery-based estimator will be studied in a forthcoming article.
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