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a b s t r a c t

A new asymptotically exact a posteriori error estimator is developed for first-order div
least-squares (LS) finite element methods. Let (uh , σh) be LS approximate solution for
(u , σ = −A∇u). Then, E = ∥A−1/2(σh + A∇uh)∥0 is asymptotically exact a posteriori
error estimator for ∥A1/2

∇(u − uh)∥0 or ∥A−1/2(σ − σh)∥0 depending on the order of ap-
proximate spaces for σ and u. For E to be asymptotically exact for ∥A1/2

∇(u − uh)∥0, we
require higher order approximation property for σ, and vice versa. When both A∇u and
σ are approximated in the same order of accuracy, the estimator becomes an equivalent
error estimator for both errors. The underlying mesh is only required to be shape regular,
i.e., it does not require quasi-uniform mesh nor any special structure for the underlying
meshes. Confirming numerical results are provided and the performance of the estimator
is explored for other choice of spaces for (uh , σh).

Published by Elsevier Ltd.

1. Introduction

The purpose of this paper is to introduce new, straightforward a posteriori error estimators for the least-squares (LS)
finite element method for second order self-adjoint elliptic partial differential equations proposed in [1,2]. In these papers,
the second-order equations are transformed into a system of first-order by introducing a new variable (flux) σ = −A∇u.
Least-squares methods based on the first-order system lead to a minimization problem, and the resulting algebraic equa-
tions involve a symmetric and positive definite matrix. One of the advantages of LS approaches is that it does not require
inf–sup condition [3,4]. As a result, one can choose any conforming finite element spaces as approximate spaces. However, as
was explained in [5], optimal rate of convergence for the flux in L2-norm cannot be obtained without adding the redundant
curl equation to the first-order system if the standard continuous piecewise polynomial spaces are used to approximate the
dual variable σ. On the other hand, with H(div) conforming spaces (such as the Raviart–Thomas (RT) spaces[6]) for the dual
variable σ, optimal rate of convergence is achieved for least-squares finite element methods [7]. Bochev and Gunzburger
also noted the advantages of using RT spaces over the standard continuous piecewise polynomial spaces when a locally con-
servative approximation is essential [5,8]. With this as motivation, we will employ such approximation spaces in this paper.
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First-order LS methods approximate the primary variable u and dual variables σ = −A∇u simultaneously. In general,
lowest order approximation spaces are used, i.e. piecewise linear polynomial spaces for u and RT0 for σ. However, this
leads to approximation of the primary variable with O(h2), while the dual variables σ are approximated with O(h). Hence,
it is natural to consider different approximation spaces. Indeed, the error estimate in [7] indicates that using the lowest
piecewise polynomial space for u and RT1 for the dual variable approximate both variables with O(h2). This motivates us to
use different pair of approximations spaces and obtain a posteriori error estimates.

One of the advantages of div LS methods is that the LS functional can be used as an a posteriori error estimator for the
natural energy norm. Recently, a modified version of the LS functional, where weight coefficients are introduced to scale the
respective residuals, is proposed as a new a posteriori error estimator for these methods in the flux variable [9]. Our esti-
mator uses only one term in the LS functional and the estimator turns out to be asymptotically exact with a certain choices
of approximation spaces. Our estimator is of the following form:

E(D) = ∥A−1/2(σh + A∇uh)∥0,D,

where (uh, σh) is the LS solution for (u, σ = −A∇u) and D ⊆ Ω is the region of interest. Briefly, when A∇u is approximated
in higher order approximate spaces, then the estimator is asymptotically exact for ∥A−1/2(σ − σh)∥0,D and when σ is ap-
proximated in higher order, then the estimate is asymptotically exact for ∥A1/2

∇(u − uh)∥0,D. When both A∇u and σ are
approximated in the same order of approximate spaces, then the estimator is equivalent to the error under a mild assump-
tion. Note that one of the advantages of LS methods is that they do not require the inf–sup condition. We use this advantage
to choose appropriate approximation spaces for the primary function u and flux variable σ. We will provide a detailed pre-
sentation in Section 4. In our numerical experiments in Section 5, we take D = Ω , and D = τ where τ is a single element.

Recently, discontinuous Petrov Galerkin (DPG) method is proposed by Demkowicz and Gopalakrishnan [10,11]. Similar
to LS approach, the method minimizes a residual of the governing equations in a certain norm. The DPG method has the
possibility to locally compute a test space that is close to optimal. It would be interesting topic to modify the a posteriori
error estimators developed in this paper for DPF method. We refer the interested readers to [12–18] and references therein
for the DPG method and its applications to various problems.

The paper is organized as follows: Section 2 introduces mathematical equations for second-order scalar elliptic partial
differential equations; the resulting div least-squares formulation for those equation is then described. In Section 3, we
prescribe the finite element spaces and describe the basic properties of the corresponding least-squares approximate
solutions. In Section 4, we propose a natural, asymptotically exact a posteriori error estimator for the flux variable σ and
discuss the properties of the error estimator for different degree pairs of (uh, σh). Also, we consider the case when the
estimator is reliable and efficient undermild assumption. Finally, in Section 5we provide numerical results that confirm the
preceding analysis and discuss the usefulness of the estimator when asymptotic exactness does not hold.

2. Problem formulation

Let Hs(Ω) denote the Sobolev space of order s defined on Ω . For s = 0,Hs(Ω) coincides with L2(Ω). We shall use the
spaces

V = H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω},

W = H(div) = {σ ∈ (L2(Ω))n : ∇ · σ ∈ L2(Ω)},

with norms ∥u∥2
1 = (u, u) + (∇u, ∇u) and ∥σ∥

2
H(div) = (∇ · σ, ∇ · σ) + (σ, σ).

Let Ω be a convex polygonal/polyhedral domain in Rn, n = 2, 3, with boundary ∂Ω . Consider

−∇ · A∇u + cu = f in Ω,
u = 0 on ∂Ω,

(2.1)

where A = (aij) is uniformly symmetric positive definite, and aij, c and f are smooth functions. We assume the following a
priori estimate:

∥u∥2+δ ≤ C∥f ∥δ, (2.2)

for some δ > 0.
By introducing a new variable σ = −A∇u ∈ W, we transform the original problem into a system of first-order

σ + A∇u = 0 in Ω,

∇ · σ + c u = f in Ω,

u = 0 on ∂Ω.

(2.3)

Then, the corresponding least-squares method for the system (2.3) is: Find u ∈ V , σ ∈ W such that

b(u, σ; v, q) ≡ (∇ · σ + c u, ∇ · q + c v) +

A−1(σ + A∇u), q + A∇v


= (f , ∇ · q + c v), (2.4)

for all v ∈ V , q ∈ W.
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3. Finite element approximation

Let Th be a regular triangulation of Ω (see [19]) with triangular/tetrahedral elements of size h = max{diam(K); K ∈ Th}.
For the approximation space for V , let V r

h denote the standard continuous piecewise polynomials of degree r . Then, it is
well-known that V r

h has the following approximation property, see [19]: let k ≥ 0 be an integer and let l ∈ [0, r]

inf
v∈V r

h

∥u − v∥1 ≤ C hl
∥u∥l+1, (3.1)

for u ∈ H l+1(Ω)∩ V . We will use the Scott–Zhang interpolant uI of u satisfying the above approximation property, see [20].
For the approximation space forW, letWk

h denote the standard H(div) conforming Raviart–Thomas space of index k [6].
Then, the Fortin projection Πh : W → Wk

h satisfies

∥σ − Πhσ∥0 ≤ Chs
∥σ∥s, (3.2)

for all σ ∈ (Hs(Ω))n for 1 ≤ s ≤ k + 1, see [21].

Remark 3.1. Throughout this paper, r and kwill denote the degree of approximation spaces for the primary variable u and
flux σ respectively.

The finite element approximation to (2.4) is: Find uh ∈ V r
h and σh ∈ Wk

h such that

b(uh, σh; vh, qh) = (f , ∇ · qh + c vh), (3.3)

for all vh ∈ V r
h , qh ∈ Wk

h.
The following estimates provide our main technical tool and is provided in [7, Theorem 4.3] and [22, Theorem 5.1].

Theorem 3.1. Let (u, σ) and (uh, σh) satisfy the equations in (2.4) and (3.3) respectively and u ∈ H2(Ω). Then for sufficiently
small h, there exists a constant C independent of h, u, σ, f such that

∥σ − σh∥0 ≤ C

∥σ − Πhσ∥0 + h∥∇(u − uI)∥1


, (3.4)

and

∥∇(u − uh)∥0 ≤ C

∥∇(u − uI)∥0 + h∥σ − Πhσ∥H(div)


. (3.5)

4. Asymptotically exact a posteriori error estimator: residual type

We develop an a posteriori error estimator which is asymptotically exact for the error for the flux (σ = −A∇u). If an
estimator E converges to the true error in the limit h → 0, then the estimator is said to be asymptotically exact. Also, an
estimator E is said to be equivalent to the error | ∥e∥ | if there exists reliability and efficiency constants Cref and Ceff such that

Ceff · E ≤ | ∥e∥ | ≤ Cref · E .

In order to do construct asymptotically exact error estimators, we will choose different approximate spaces for u and σ.
For the remainder of this paper, we set

E(D) = ∥A−1/2(σh + A∇uh)∥0,D,

where D ⊆ Ω . For the construction of asymptotically exact a posteriori error estimators in Sections 4.1 and 4.2, we assume
u ∈ H2+δ(Ω) for some δ > 0 satisfying the a priori estimate (2.2).

4.1. Asymptotically exact estimators for ∥A1/2
∇(u − uh)∥0

In order to construct an asymptotically exact estimator for ∥A1/2
∇(u−uh)∥0, we take k = r . Note that with this choice of

approximate spaces, σh provides a higher order approximation for σ (= − A∇u) compared to A∇uh. We present our result
for k = r = 1. Other cases are a straightforward extension of this result.

Let 0 < ϵ ≪ δ be a fixed constant. Using the continuous piecewise linear functions (i.e. r = 1) to approximate u, it is
well-known that ∥∇(u − uh)∥0 ∼ O(h). Thus, we assume for sufficiently small h,

h1+ϵ
|u|2 ≤ ∥∇(u − uh)∥0. (4.1)

The above bound is proved in [23]. Also, we assume that the mesh size h is small enough to have

hδ−2ϵ
|u|2+δ ≤ |u|2. (4.2)
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Using the approximation property (3.2) with k = 1, and by combining (4.1) and (4.2), we have

∥σ − Πhσ∥0 ≤ Ch1+δ
|σ|1+δ ≤ Ch1+δ

|u|2+δ ≤ Ch1+2ϵ
|u|2

≤ Chϵ
∥∇(u − uh)∥0. (4.3)

Using uniform boundedness of A, (3.4), and (4.3), we have

∥A−1/2(σ − σh)∥0 ≤ C∥σ − σh∥0

≤ C∥σ − Πhσ∥0 + Ch∥∇(u − uh)∥0

≤ C(hϵ
+ h)∥∇(u − uh)∥0

≤ Chϵ
∥A1/2

∇(u − uh)∥0

= mΩ(h)∥A1/2
∇(u − uh)∥0, (4.4)

where mΩ(h) = Chϵ . In short, we have

∥A−1/2(σ − σh)∥0 ≤ mΩ(h)∥A1/2
∇(u − uh)∥0, (4.5)

where mΩ(h) = Chϵ . This plays a key role to construct asymptotically exact a posteriori error estimators in the following
theorem.

Theorem 4.1. Let k = r = 1 and fix 0 < ϵ ≪ δ. There exist a constant C = C(k, n, aij, c, ϵ) such that, for h small enough,

1
1 + mΩ(h)

E(Ω) ≤ ∥A1/2
∇(u − uh)∥L2(Ω) (4.6)

and if mΩ(h) < 1,

1
1 + mΩ(h)

E(Ω) ≤ ∥A1/2
∇(u − uh)∥L2(Ω) ≤

1
1 − mΩ(h)

E(Ω), (4.7)

where

mΩ(h) = Chϵ .

The estimator is asymptotically exact as h → 0 since mΩ(h) → 0 as h → 0.

Proof. By the triangle inequality with σ + A∇u = 0, and (4.5), we have

∥A−1/2(σh + A∇uh)∥0 ≤ ∥A−1/2(σ − σh)∥0 + ∥A1/2
∇(u − uh)∥0

≤ (mΩ(h) + 1)∥A1/2
∇(u − uh)∥0.

Hence, we have

1
1 + mΩ(h)

∥A−1/2(σh + A∇uh)∥0 ≤ ∥A1/2
∇(u − uh)∥0. (4.8)

This proves the lower bound.
For the upper bound, we assumemΩ(h) = Chϵ < 1. This is clearly true when h is small. By the triangle inequality, using

σ + A∇u = 0 and (4.5), we have

∥A1/2
∇(u − uh)∥0 ≤ ∥A−1/2(σ − σh + A∇(u − uh))∥0 + ∥A−1/2(σ − σh)∥0

≤ ∥A−1/2(σh + A∇uh)∥0 + mΩ(h)∥A1/2
∇(u − uh)∥0. (4.9)

Thus, we have

∥A1/2
∇(u − uh)∥0 ≤

1
1 − mΩ(h)

∥A−1/2(σh + A∇uh)∥0. (4.10)

This completes the proof. �

Remark 4.1. Note that our theorem has many similarities with the one developed in [24]. The key ingredient is a construc-
tion of a better approximation for A∇u than A∇uh. In the LS formulation, the direct approximation σh for σ = −A∇u with
k = r provides the higher order approximate solution and this is the key ingredient for our approach. One important feature
of our estimator is that it allows highly graded meshes and still produces asymptotically exactness under the condition that
the mesh size h → 0.
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An interesting fact about the estimator ∥A−1/2(σh + A∇uh)∥0 is that it can also be used as a local estimator for the error
for a region of interest D ⊂ Ω . Let D be a fixed region of interest. In order to provide local estimator, we need to introduce
two constant R1, R2 defined as follows:

R1(D) =
∥σ − σh∥0,Ω

∥σ − σh∥0,D
≥ 1, (4.11)

and

R2(D) =
∥A1/2

∇(u − uh)∥0,Ω

∥A1/2∇(u − uh)∥0,D
≥ 1. (4.12)

Note that for any fixed ϵ > 0 and for sufficiently small h, we have

h
ϵ
2 ∥A1/2

∇(u − uh)∥0,Ω ≤ ∥A1/2
∇(u − uh)∥0,D. (4.13)

Using uniform boundedness of A, (3.4), and (4.5), we have

∥A−1/2(σ − σh)∥0,D ≤ C∥σ − σh∥0,D =
C

R1(D)
∥σ − σh∥0,Ω

≤
C

R1(D)
∥σ − Πhσ∥0,Ω +

C
R1(D)

h∥∇(u − uh)∥0

≤
C

R1(D)
(hϵ

+ h)∥∇(u − uh)∥0

≤
C

R1(D)
hϵ

∥A1/2
∇(u − uh)∥0 = C

R2(D)

R1(D)
hϵ

∥A1/2
∇(u − uh)∥0,D

= mD(h)∥A1/2
∇(u − uh)∥0,D, (4.14)

wheremD(h) = C R2(D)

R1(D)
hϵ . Note that using (4.13), we have

mD(h) → 0 as h → 0.

In short, we have

∥A−1/2(σ − σh)∥0,D ≤ mD(h)∥A1/2
∇(u − uh)∥0,D, (4.15)

wheremD(h) → 0 as h → 0.
Now, we present a local asymptotically-exact error estimator.

Theorem 4.2. Let k = r = 1 and fix 0 < ϵ ≪ δ and D ⊂ Ω . There exist a constant C = C(k, n, aij, c, ϵ,D) such that, for h
small enough,

1
1 + mD(h)

E(D) ≤ ∥A1/2
∇(u − uh)∥0,D (4.16)

and if mD(h) < 1,

1
1 + mD(h)

E(D) ≤ ∥A1/2
∇(u − uh)∥L2(D) ≤

1
1 − mD(h)

E(D), (4.17)

where

mD(h) = C
R2(D)

R1(D)
hϵ .

The estimator is asymptotically exact as h → 0 since mD(h) → 0 as h → 0.

Proof. By the triangle inequality, using σ + A∇u = 0 and (4.15), we have

∥A1/2
∇(u − uh)∥0,D ≤ ∥A−1/2(σ − σh + A∇(u − uh))∥0,D + ∥A−1/2(σ − σh)∥0,D

≤ ∥A−1/2(σh + A∇uh)∥0,D + mD(h)∥A1/2
∇(u − uh)∥0,D. (4.18)

Thus, we have

∥A1/2
∇(u − uh)∥0,D ≤

1
1 − mD(h)

∥A−1/2(σh + A∇uh)∥0,D. (4.19)

This proves the upper bound. The lower bound can be obtained in a similar manner. This completes the proof. �
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4.2. Asymptotically exact estimators for ∥A−1/2(σ − σh)∥0

In order to construct asymptotically exact estimators for ∥A−1/2(σ − σh)∥0, we take r > k+ 1. Note that with the choice
of approximate spaces, A∇uh provides the higher order approximation for σ (= − A∇u) compared to σh. We present our
result for r = 2 and k = 0. It is straightforward extension for other cases. Let 0 < ϵ ≪ δ be a fixed constant, where δ is
defined in (2.2).

Using the lowest RT elements (i.e. k = 0) to approximate σ, it is well-known that ∥σ − σh∥0 ∼ O(h). Thus, we assume
that for sufficiently small h,

h1+ϵ
|σ|1 ≤ ∥A−1/2(σ − σh)∥0. (4.20)

Also, we assume that the mesh size h is small enough to have

hδ−2ϵ(|σ|1+δ + ∥f ∥δ) ≤ |σ|1. (4.21)
Using (3.5), approximation properties, (2.3), and combining (4.20) and (4.21), we have

∥A1/2
∇(u − uh)∥0 ≤ C∥∇(u − uI)∥0 + Ch∥σ − Πhσ∥H(div)

≤ Ch1+δ(|u|2+δ + |σ|1 + |∇ · σ|δ) ≤ Ch1+δ(|σ|1+δ + ∥f ∥δ)

≤ Ch1+2ϵ
|σ|1 ≤ Chϵ

∥A−1/2(σ − σh)∥0. (4.22)
We these assumptions, we present an asymptotically exact a posteriori error estimator for ∥A−1/2(σ − σh)∥0.

Theorem 4.3. Let k = 0 and r = 2 and fix 0 < ϵ < 1. There exist a constant C = C(k, n, aij, c, ϵ) such that, for h small enough,

1
1 + mΩ(h)

E(Ω) ≤ ∥A−1/2(σ − σh)∥0 (4.23)

and if mΩ(h) < 1,

1
1 + mΩ(h)

E(Ω) ≤ ∥A−1/2(σ − σh)∥0 ≤
1

1 − mΩ(h)
E(Ω), (4.24)

where

mΩ(h) = Chϵ .

The estimator is asymptotically exact as h → 0 since mΩ(h) → 0 as h → 0.

Proof. Using the triangle inequality and (4.22) withmΩ(h) = Chϵ , we have

∥A−1/2(σ − σh)∥0 ≤ ∥A−1/2(σ − σh + A∇(u − uh))∥0 + ∥A1/2
∇(u − uh)∥0

≤ ∥A−1/2(σh + A∇uh)∥0 + mΩ(h)∥A−1/2(σ − σh)∥0.

Thus, we have

∥A−1/2(σ − σh)∥0 ≤
1

1 − mΩ(h)
E(Ω).

For the lower bound, by the triangle inequality and using σ = −A∇u, we have

∥A−1/2(σh + A∇uh)∥0 ≤ ∥A−1/2(σh − σ)∥0 + ∥A−1/2(σ + A∇uh)∥0

= ∥A−1/2(σ − σh)∥0 + ∥A1/2
∇(u − uh)∥0

≤ ∥A−1/2(σ − σh)∥0 + mΩ(h)∥A−1/2(σ − σh)∥0

= (1 + mΩ(h))∥A−1/2(σ − σh)∥0.

Hence, we have
1

1 + mΩ(h)
∥A−1/2(σh + A∇uh)∥0 ≤ ∥A−1/2(σ − σh)∥0.

This completes the proof. �

For the local error estimators, note that for any fixed ϵ > 0, we have for sufficiently small h,

hϵ/2
∥A−1/2(σ − σh)∥0,Ω ≤ ∥A−1/2(σ − σh)∥0,D. (4.25)

With the above inequality and following the similar procedure in (4.14) we obtain

∥A1/2
∇(u − uh)∥0,D ≤ mD(h)∥A−1/2(σ − σh)∥0,D, (4.26)

where mD(h) = C R1(D)

R2(D)
hϵ

→ 0 as h → 0. The following can be obtained following Theorem 4.2.
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Theorem 4.4. Let k = 0 and r = 2 and fix 0 < ϵ ≪ δ and D ⊂ Ω . There exist a constant C = C(k, n, aij, c, ϵ,D) such that, for
h small enough,

1
1 + mD(h)

E(D) ≤ ∥A−1/2(σ − σh)∥L2(D) (4.27)

and if mD(h) < 1,

1
1 + mD(h)

E(D) ≤ ∥A−1/2(σ − σh)∥0,D ≤
1

1 − mD(h)
E(D), (4.28)

where

mD(h) = C
R1(D)

R2(D)
hϵ .

The estimator is asymptotically exact as h → 0 since mD(h) → 0 as h → 0.

4.3. Equivalent a posteriori error estimator

We now consider the case k + 1 = r , i.e. both A∇u and σ are approximated in the same order of accuracy. When using
a common pairing of div LS spaces (Pk+1 − RTk), our error estimator loses asymptotic exactness for either error. This is not
unreasonable, as our analysis requires one of the pairings to be ‘‘higher-order’’ (even if it is a mere power of epsilon). The
more interesting question is whether or not E produces a reliable and efficient estimator for either error. We provide an
argument that ∥A−1/2(σh + A∇uh)∥ is an equivalent error estimators for both ∥A1/2

∇(u − uh)∥ and ∥A−1/2(σ − σh)∥ under
a mild assumption. Our assumption is of the following form:

1
m

∥A1/2
∇(u − uh)∥0,D ≤ ∥A−1/2(σ − σh)∥0,D ≤ m∥A1/2

∇(u − uh)∥0,D, (4.29)

where m, 0 < m < 1 is a fixed constant independent of h. Note that both σh and A∇uh are approximate solutions for the
flux(σ = −A∇u), modulo sign. Thus, it is natural to expect that the direct approximation σh is more accurate approximation
for σ compared to A∇uh when the approximate spaces for the both variable are of the same order, i.e. k + 1 = r and this
is reflected in our assumption (4.29). Our numerical experiments confirm this. The above inequality is the same inequality
as in (4.15) and (4.26) except the fact 0 < m < 1 is a constant, not m → 0 as h → 0. We want to remind the reader that
m → 0 as h → 0 in (4.15) and (4.26) since one variable is approximated higher order than the other variable.

Now, using the second inequality in our assumption (4.29) and using the same procedure in the proof of Theorem 4.2,
we have

Theorem 4.5. Let k + 1 = r and assume (4.29). Then,

1
1 + m

E(D) ≤ ∥A1/2
∇(u − uh)∥0,D ≤

1
1 − m

E(D). (4.30)

Using the first inequality in our assumption (4.29) and following the same procedure in the proof of Theorem 4.4.

Theorem 4.6. Under the same assumption as Theorem 4.5, we have

1
1 + m

E(D) ≤ ∥A−1/2(σ − σh)∥0,D ≤
1

1 − m
E(D). (4.31)

Remark 4.2. We observe that our estimator is similar in philosophy to the estimator developed for conforming linear finite
elements by Cai and Zhang in [25]. In that paper, a weighted least-squares projection into H(div) is used to recover the flux
which is compared with the numerical flux as an estimator. In the div LS method the flux is ‘‘reconstructed’’ directly as part
of the solution process. Additionally, in the spirit of [26], we believe that reliability, not asymptotic exactness, is a realistic
goal for ‘‘function recovery’’ when trying to construct an estimator for ∥A−1/2(σ − σh)∥0.

5. Numerical experiments

In this section,weprovide numerical experiments confirming the asymptotic exactness of our estimatorwith appropriate
approximation degrees k and r , and investigate the performance of the estimator in two dimensional spaces. For higher
dimensional cases, the degree of freedom (DOF) has to grow exponentially. We refer to [27,28], where the difficulty is
overcome by using canonical tensor decomposition combined with Chebyshev spectral differentiation.

We define the ‘‘effectivity index’’ of an estimator in a standard way, as the ratio of our estimator E(Ω) to the ratio of the
true error. In our experiments, we approximate −1u = f , with homogeneous Dirichlet boundary conditions. In the first
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Table 5.1
Effectivity indices for a uniform mesh and smooth solution, P1 − RT1 .

# of elements Eff. index, ∇(u − uh) Eff. index, σ − σh .

8 1.089124 0.133016
32 1.017700 0.073681

128 1.004440 0.035210
512 1.001111 0.017401

2048 1.000278 0.008675
8192 1.000069 0.004334

Table 5.2
Effectivity indices for a uniform mesh and smooth solution, P2 − RT0 .

# of elements Eff. index, ∇(u − uh) Eff. index, σ − σh .

8 0.425977 1.064655
32 0.419813 1.056767

128 0.205775 1.014065
512 0.102347 1.003508

2048 0.051105 1.000876
8192 0.025544 1.000219

Table 5.3
Effectivity indices for uniform mesh and smooth solution, P1 − RT0 .

# of elements Eff. index, ∇(u − uh) Eff. index, σ − σh .

8 1.055975 0.568269
32 0.910413 0.565012

128 0.867158 0.532794
512 0.856389 0.524865

2048 0.853699 0.522891
8192 0.853027 0.522397

two examples, the domain Ω = [0, 1] × [0, 1]. In the final example, the domain Ω is [−1, 1] × [−1, 1], again with zero
Dirichlet boundary conditions.

Example 1 (Smooth Solution, u = sinπx sinπy). We first present a study of the estimator on uniform meshes. Here is a
table of effectivities for uniform meshes of size 2−i, i = 1, 2, . . . , 6, for −∆u = f , uh approximated using the P1 − RT1 pair.
As predicted by Theorem 4.1, our estimator is asymptotically exact for ∥∇(u − uh)∥. When the estimator is asymptotically
exact for ∥∇(u−uh)∥0, it is of orderO(h). On the other hand, ∥σ−σh∥0 is of orderO(h2). Hence, E would be a poor estimator
for σ − σh and our numerical result confirms this.

We follow with another uniform study, on the same model problem, employing the P2 − RT0 pair. As predicted in
Theorem 4.3, the estimator is asymptotically exact for ∥σ −σh∥0. When the estimator is asymptotically exact for ∥σ −σh∥0,
it is of order O(h). Hence, it would be a poor estimator for ∥∇(u − uh)∥0 since it is of order O(h2).

Here we present the results for our estimator for P1 − RT0. Clearly, the estimators is not asymptotically exact for either
error component, but the results suggest equivalence and reliability for either error.

Remark 5.1. Our proposed estimator behaves identically on this example for uniformly refined quadrilateral meshes with
the corresponding choice ofQr−BDMk spaces.We obtain asymptotic exactness in the corresponding variablewhen k+1 > r
(or vice-versa), and equivalence (for either error) when k + 1 = r , see Tables 5.1–5.3.

Example 2 (Smooth Solution, Adaptive Algorithm, u = (1− x)4x sin(2πy4)). This example uses E(τ ) to drive a basic adaptive
algorithm using the Dörfler mark and refine strategy [29] for the adaptive algorithm and Delaunay edge-swaps after mesh
refinement. The solution, u = (1 − x)4x sin(2πy4), is smooth, but has significant local features. The initial mesh is uniform
with h = 0.5. The algorithm terminates when less than 1% (normalized) global error is estimated. Fig. 5.1 gives effectivity
indices for our estimator, while Fig. 5.2 shows the final adapted mesh.

In Table 5.4we present local element effectivity statistics, E(τ )/∥∇(u−uh)∥L2(τ ), at the final adaptive level. As illustrated
in Fig. 5.2, some mesh elements are quite coarse, but the results are excellent.

We repeated the adaptive experiment, this time employing P1−RT0, but again usingE(τ ) to drive an adaptive experiment.
The statistics for ∇(u − uh) on the final refined mesh are given in Table 5.5.

Example 3 (Rough Adaptive Solution, u = (x2 − 1)(y2 − 1)(x2 + y2)0.51). In this example, Ω is [−1, 1] × [−1, 1] with zero
Dirichlet boundary conditions. The solution u = (x2 − 1)(y2 − 1)(x2 + y2)0.51 is not smooth near the origin. We again use
the same adaptive algorithm as in Example 2, driven by E(τ ).



656 Z. Cai et al. / Computers and Mathematics with Applications 70 (2015) 648–659

Fig. 5.1. Effectivity indices, adapted mesh, smooth solution, P1 − RT1 .

Fig. 5.2. Adapted mesh, smooth solution, P1 − RT1 .

Table 5.4
Effectivity statistics, adapted mesh, smooth solution, P1 − RT1 .

Max. eff Min. eff Mean eff Median eff Std. deviation

2.427740 0.901903 1.001792 1.000076 0.032406

Table 5.5
Effectivity statistics, adapted mesh, smooth solution, P1 − RT0 .

Max. eff Min. eff Mean eff Median eff Std. deviation

6.011135 0.368994 1.394727 1.388164 0.216872

In Fig. 5.3, we show the effectivity index for our estimator at each level. The convergence rate(not shown) versus the
number of degrees of freedom is consistent with an accurately guided adaptive algorithm.
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Fig. 5.3. Effectivity indices, adaptive rough solution, P1 − RT1 .

Fig. 5.4. Final adapted mesh, P1 − RT1 , ‘‘Rough’’ solution.

Table 5.6
Effectivity statistics, adapted mesh, rough solution, P1 − RT1 .

Max. eff Min. eff Mean eff Median eff Std. deviation

1.141773 0.856132 1.000002 0.999956 0.008080

In Fig. 5.4, we show the final adapted mesh, with the expected refinement near the singularity at the origin.
The local (on an element τ ) effectivity statistics, given in Table 5.6, demonstrate the local asymptotic properties and

robustness of the estimator.
In Table 5.7, we give the effectivity statistics for our ‘‘rough’’ model problem, using P2 − RT0, at the final mesh level.
When the P1−RT0 spaces are used for this example problem, as predicted in Section 4.3, the estimator provides a reliable

and efficient estimator, as shown in Fig. 5.5.
As in the earlier examples, the estimator is not asymptotically exact, but clearly still useful. This can be observed from

the local statistics are given in Table 5.8, especially in the fairly small standard deviation of the estimator.
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Fig. 5.5. Real and estimated errors, rough adaptive solution, P1 − RT0 .

Table 5.7
Effectivity statistics, adapted mesh, rough solution, P2 − RT0 .

Max. eff Min. eff Mean eff Median eff Std. deviation

1.154280 0.134993 0.999026 1.000025 0.038547

Table 5.8
Effectivity statistics, rough adaptive solution, P1 − RT0 .

Max. eff Min. eff Mean eff Median eff Std. deviation

5.098134 0.491717 1.343084 1.305963 0.248348
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