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1. Introduction

The finite volume element method (FVE) is a discretization technique for partial

differential equations, especially those that arise from physical conservation laws. FVE uses

a volume integral formulation of the problem with a finite partitioning set of volumes to

discretize the equations, then restricts the admissible functions to a finite element space to

discretize the solution. FVE is closely related to the control volume finite element method

(CVFE), which was introduced several years earlier in the mechanical engineering literature

[2]. However, there are important differences in how each method treats composite grids,

especially in that FVE allows more general construction of the control volumes. The

methods are the same for simple elliptic equations and volumes based on the Voronoi

mesh. Thus, the theory here applies directly to both techniques.

The classical finite volume method (FV) is in common use for discretizing computa-

tional fluid dynamics equations. Reasons for its popularity include its ability to be faithful

to the physics in general and conservation in particular, to capture shocks, to produce

simple stencils, to apply to a fairly wide range of fluid flow equations, to effectively treat

Neumann boundary conditions and nonuniform grids, and to facilitate multigrid solution.

Yet the FV approach is not fully systematic: use of FV requires a scheme for approximat-

ing certain fluxes, which is often done in an effective but rather ad hoc and restrictive way

that depends upon truncation error analysis. The limitations of truncation error analysis

were treated in depth in [13, 14], which, among other things, demonstrated that truncation

errors can be very large (e.g., O(1)) even in cases where the actual errors are small (e.g.,

O(h) or O(h2)).

FVE was developed as an attempt to use finite element ideas to create a more system-

atic FV methodology. The basic idea is to approximate the discrete fluxes needed in FV

by replacing the unknown PDE solution by a finite element approximation. This means

that the discretization design process can pay more attention to the local character of the

solution (to choose accurate finite element spaces), and less to the equations. Furthermore,

it provides a very effective discretization process for multilevel adaptive methods (see [15]).
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In [7], we established accuracy estimates for FVE for diffusion equations on simple

composite grids; however, the proofs appeal to the resulting stencil entries and are therefore

quite complex. We developed a simple theory of FVE for diffusion equations for general

triangulations in [6], but it applies only to a special choice of control volumes. The present

paper develops error estimates for general self-adjoint elliptic boundary value problems on

triangulations with linear finite element spaces, and with a general type of control volume.

Here we also incorporate the effects of numerical integration. In Section 2, we briefly

describe the FVE method. The general construction is suggested in Section 3. Section 4 is

devoted to error estimates of the FVE method under the assumption of uniform ellipticity

of the FVE operator, a sufficient condition for which is the use of the control volumes

constructed in terms of the circumcenters of element triangles. This we describe in Section

5. Finally, in Section 6 we discuss the effects of numerical integration.

2. FVE Method

For simplicity, assume that Ω ⊂ RRR2 is a polygonal domain. Consider the self-adjoint

elliptic boundary value problem

−5 ·(A5 u) = f in Ω

u = 0 on Γ0

(A5 u) · −→n = g on Γ1 (2.1)

where Γ0 and Γ1 partition the boundary of Ω, the ds-measure of Γ0 is strictly positive,

f ∈ LLL2(Ω) and g ∈ LLL2(Γ1) are given real-valued functions, A = (aij)2×2 is a given real-

valued matrix function, and aij ∈ LLL∞(Ω), 1 ≤ i; j ≤ 2. Assume henceforth that the

following ellipticity condition holds: there exists a constant fi1 > 0 such that

»T A(x; y)» ≥ fi1»T » (2.2)

for all » ∈ RRR2 and (x; y) ∈ Ω̄.
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By taking the integral of (2.1) over any control volume V ⊂ Ω̄ with a Lipschitz

boundary and using the Gauss Divergence Theorem (see [5, 16]) on the left-hand side,

(2.1) may be transformed to the following Primitive Form (or Surface Integral Form):

Find u ∈ HHH
(2)
0 (Ω; Γ0) ≡ {v ∈ HHH1(Ω) : v = 0 on Γ0} ∩HHH2(Ω) such that, for any

volume V ⊂ Ω̄ with Lipschitz boundary,

−
∫

∂V

(A5 u) · −→n ds =
∫

V

fdz; (2.3)

where −→n is the unit outward normal vector on @V .

In general, discretizations based on the Primitive Form can in some sense preserve

this conservation law. This is quite important in computational flow dynamics (CFD),

and is one of the reasons for its popularity.

There are two ways to discretize the problem (2.3): while both use a finite set of

volumes on Ω, one method, FV, uses divided differences to appproximate the fluxes in

(2.3) (see [11]); another, FVE, restricts the unknowns to be in a finite-dimensional space.

In particular, let Vh be a finite set of control volumes and SSSh
0 be a finite-dimensional space.

Assume that the dimension of SSSh
0 equals the cardinality of Vh. The discrete FVE problem

is then written as follows:

Find uh ∈ SSSh
0 such that, for all V h ∈ Vh,

−
∫

∂V h

(A5 uh) · −→n ds =
∫

V h

fdz: (2.4)

¿From the FVE method, treatment of the Neumann boundary condition is straight-

forward: we do not need to impose the Neumann boundary condition directly on the finite

element space SSSh
0 ; instead, we incorporate it in (2.4) by specifying A5 uh whenever @V h

coincides with a Neumann boundary. However, the Dirichlet condition is imposed directly

on SSSh
0 . Therefore, we may say that the Neumann boundary condition and the Dirichlet

boundary condition are natural and essential, respectively, as in the finite element method

case. In the next section, we will discuss two basic FVE design choices, the finite element

space SSSh
0 and the finite set of control volumes Vh.
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3. Finite Element Space SSSh
0 , Control Volumes Vh, and Notation

Here, as in [6], we restrict ourselves to piecewise linear finite element spaces defined

on triangulations. To describe SSSh
0 , first consider a family of piecewise linear finite element

spaces

SSSh = {v ∈ CCC0(Ω) : v|K is linear for all K ∈ T h}:

Here, T h is a triangulation of the domain Ω̄ so that each K ∈ T h is a triangle and

Ω̄ = ∪T hK. We assume that T h is regular (see [8]): there exists a constant ¾ such that,

for all K ∈ ∪hT h,
hK

‰K
≤ ¾; (3.1)

where

hK = diam(K)

and

‰K = sup{diam(C) : C is a circle contained in K}:

It is known that (3.1) is equivalent to Zlámal’s condition (see [18]): there exists a constant

µ0 > 0 such that, ∀K ∈ ∪hT h,

µK ≥ µ0; (3.2)

where µK denotes the smallest interior angle of K. Under these assumptions, we choose

SSSh
0 = {v ∈ SSSh : v|Γ0 = 0}:

In general, we may construct the control volumes as follows: choose any interior point

or median, zK , of K ∈ ∪hT h and connect it with the medians, of K (see Figure 3.1). In

this paper, we are particularly interested in the case that is the circumcenter, orthocenter,

incenter, or centroid (i.e., center of gravity) of the triangle K, which are the respective

midpoint of the circumscribed circle of K, intersection of its altitudes, midpoint of its

inscribed circle, and intersection of its medians. The control volume associated with the

circumcenter of the triangle was considered in [6] and forms the so-called Voronoi mesh;
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that related to the centroid is in common use in CFD and forms the so-called Donald mesh.

In order to keep the circumcenter and orthocenter from lying outside of the triangle, we

assume throughout this paper that no interior angle of any triangle in T h is larger than

900.

Suppose that the m ≥ n grid points (i.e., vertices of T h) are singly subscripted so

that

Ω̄h = {zh
i : 1 ≤ i ≤ m}

denotes the set of nodes of T h and

Ωh = {zh
i : 1 ≤ i ≤ n} = Ω̄h ∩ (Ω ∪ Γ1)

denotes nodes of both its interior and Neumann boundary Γh
1 = Ω̄h∩Γ1. Let Γh

0 = Ω̄h\Ωh.

Here and henceforth, we drop the superscript h when there is no danger of ambiguity. For

each i=1,...,m, let N(i) denote the set of neighbors of zi in Ω̄h (i.e., points zj such that zi

and zj are distinct vertices of a common element K ∈ T h). Let

!i = {j : zj ∈ N(i); 1 ≤ j ≤ m}

denote the subscript set for neighbors of zi in Ω̄h and let

! = {{i; j} : 1 ≤ i; j ≤ m; j ∈ !i}:

Note that the unordered pairs {i; j} = {j; i} in ! are in one-to-one correspondence to the

edges in T h. Now given 1 ≤ i; j ≤ m such that {i; j} ∈ !, let

°ij = Vi ∩ Vj

where Vi and Vj are the control volumes associated with points zi and zj , respectively.

Let −→n ij to be the unit outward normal vector on °ij (outward with respect to V h
i ). Let

Zij denote the line segment connecting zi and zj . For each {i; j} ∈ !, let |°ij | and |Zij |
denote the Euclidean lengths of °ij and Zij , respectively.
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Now each {i; j} ∈ ! corresponds to two triangles, with a common face Zij , which we

denote by K ′ and K ′′. We say that the control volumes are symmetric if °ij ∩ K ′ and

°ij ∩ K ′′ are perpendicular to Zij and |°ij ∩ K ′| = |°ij ∩ K ′′| for all {i; j} ∈ !; they are

essentially symmetric if they are symmetric except for some volumes lying in a subregion,

Ω̃, that consists of a fixed number of strips in Ω with width O(h); otherwise, they are

nonsymmetric . Note that the control volumes associated with either the orthocenter, the

incenter, or the centroid are symmetric if each triangle K ∈ T h is equilateral; the control

volumes related to the circumcenter are symmetric if T h consists of equilateral triangles

or triangles which are obtained by bisecting rectangles of the same shape.

By connecting the point zK with the vertices of K ∈ T h, we obtain a new triangulation

T̃ h. We say that the control volumes are regular if the triangulation T̃ h is regular. For

this, we have the following simple facts from geometry.

Proposition 3.1. If T h is regular, then the control volumes associated with the

incenter and centroid are regular.

Denote the angles of K ′ and K ′′ opposite the common face Zij by the respective µ̄K′

and µ̄K′′ (see Figure 3.2).

Proposition 3.2. Assume that T h is regular.

(1) If there exists a constant µ̃ > 0 such that, for all K ′, K ′′ ∈ T h,

µ̄K′ ≥ µ̃ and µ̄K′′ ≥ µ̃; (3.3)

then the control volumes related to the orthocenter are regular.

(2) If there exists a constant µ̃ > 0 such that, for all K ′, K ′′ ∈ T h,

either µ̄K′ =
…

2
or µ̄K′ ≤ …

2
− µ̃ (3.4)

and

either µ̄K′′ =
…

2
or µ̄K′′ ≤ …

2
− µ̃; (3.5)

then the control volumes related to the circumcenter are regular.
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Define the discrete HHH1 semi-norm by

|v|1,Ω̄h =


 ∑

{i,j}∈ωh

(v(zi)− v(zj))2




1
2

: (3.6)

For each {i; j} ∈ !, define the linear functional bij by

bij(v) = −
∫

γij

(A5 v) · −→n ijds (3.7)

and the linear operator B by

Bv =


∑

j∈ωi

bij(v)




n

i=1

: (3.8)

We call B uniformly elliptic on SSSh
0 if there exists a constant fi2 > 0 independent of the

space SSSh
0 such that, for all v in SSSh

0 ,

n∑

i=1

v(zi)(Bv)i ≥ fi2|v|21,Ω̄h : (3.9)

Conditions which guarantee uniform ellipticity of B will be given in the Sections 5 and 6.

Let −→n i be the unit outward normal vector on @Vi (i = 1; :::; n). Since

(Bv)i =
∑

j∈ωi

bij(v) = −
∫

∂Vi

(A5 v) · −→n ids; (3.10)

then we can rewrite (2.4) as follows:

Find uh ∈ SSSh
0 such that

Buh = fh; (3.11)

where fh is the n-dimensional vector with components fh
i =

∫
Vi

fdz.
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4. Error Estimates

Let u ∈ HHH
(2)
0 (Ω; Γ0) and uh ∈ SSSh

0 denote the solutions of (2.3) and (2.4), respectively.

Since HHH
(2)
0 (Ω; Γ0) ⊂ CCC0(Ω), we may define the linear interpolant uI of u in SSSh

0 as follows:

uI ∈ SSSh
0 such that uI(zi) = u(zi); 1 ≤ i ≤ m. Our central aim is to estimate the discrete

HHH1 semi-norm of the discretization error

e = u− uh:

To do this, we will make use of its discrete counterpart

eh = uI − uh

and the interpolation error

eI = u− uI :

Denote

!0 = {{i; j} ∈ ! : |°ij | 6= 0}:

Our first lemma develops a basic error estimate which establishes convergence of the FVE

discretization.

Theorem 4.1. Assume that B satisfies (3.9). Then

|e|1,Ω̄h ≤ 1
fi2


 ∑

{i,j}∈ω0

(bij(eI))2




1
2

: (4.1)

Proof. From (2.3) and (2.4) we have

Bu = Buh:

Hence, from the linearity of B, we have

Beh = −BeI :
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Note that e(zi) = eh(zi); 1 ≤ i ≤ m, and that bij(eI) = −bji(eI) for all {i; j} ∈ !. Thus,

by (3.9), it follows that

fi2|e|21,Ω̄h = fi2|eh|21,Ω̄h

≤
n∑

i=1

eh(zi)(Beh)i

= −
n∑

i=1

eh(zi)
∑

j∈ωi

bij(eI)

=
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invertible mapping Fij : RRR2 −→ RRR2 of the affine form Fij(z) = Dijz + dij such that

Eij = Fij(Ê). Let °̂ = F−1
ij (°ij) and Ẑ = F−1

ij (Zij). Without loss of generality, suppose

that °̂ and Ẑ lie on the x̂ and ŷ axes, respectively. Define the linear functional fij by

fij(v) = bij(v − vI) = −
∫

γij

(A5 (v − vI)) · −→n ijds; (4.4)

where vI is the linear interpolant of v in SSSh
0 . We then have the following stronger result.

Lemma 4.1. Assume that the matrix A is constant on °ij and that Eij is affine-

equivalent to the reference rhombus Ê. Then for the case of symmetric volumes, the linear

functional f̂ij defined by f̂ij(v̂) ≡ fij(v) vanishes on PPP 2(RRR
2).

Proof. Let v(z) = v̂(ẑ) and vI(z) = v̂I(ẑ). Then

f̂ij(v̂) = −
∫

γ̂

‖n̂ij‖2(AD−T
ij 5̂(v̂ − v̂I)) · (Dij n̄ij)

|°ij |
|°̂| dŝ;

where n̂ij = D−1
ij
−→n ij and n̄ij = n̂ij

‖n̂ij‖2 . Apparently, f̂ij(v̂) vanishes on PPP 1(RRR
2). For any

v̂ ∈ PPP 2(RRR
2), v̂ may be represented by

v̂ = ṽ + (A1ẑ; ẑ);

where A1 is a 2 × 2 symmetric constant matrix and ṽ ∈ PPP 1(RRR
2). By the linearity of

f̂ij ; 5̂v̂ = 2A1ẑ and
∫

γ̂
5̂v̂I = 0 for v̂ = (A1ẑ; ẑ). We thus have, for any v̂ ∈ PPP 2(RRR

2), that

f̂ij(v̂) = −
∫

γ̂

‖n̂ij‖2(2AD−T
ij A1ẑ) · (Dij n̄ij)

|°ij |
|°̂| dŝ

= −2‖n̂ij‖2 |°ij |
|°̂| (AD−T

ij A1

∫

γ̂

ẑdŝ) · (Dij n̄ij)

= 0:

Hence, the lemma is proved.

Let E be any triangle (or rhombus), the respective ° and Z be any one side and its

median (or diagonal) of E, and −→n be the unit vector which is orthogonal to °. Let

hE = diam(E)
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and

‰E = sup{diam(C) : C is a circle contained in E}:

Assume that there exists a constant ¾E such that

hE ≤ ¾E |Z| and hE ≤ ¾E‰E : (4.5)

Define the linear functional f by

f(v) = −
∫

γ

(A5 (v − vI)) · −→n ds;

where vI is interpolant of v in SSSh
0 . We then have the following estimate of |f(v)|.

Lemma 4.2. Assume that ‖A‖2 is bounded on E, E satisfies (4.5), and E is affine-

equivalent to a reference element Ê ⊂ RRR2. Suppose that the linear functional f̂ defined by

f̂(v̂) = f(v) vanishes on PPP ν−1(RRR
2) for some ” ≥ 2. Then, for all v ∈ HHH

(ν)
0 (Ω; Γ0), we have

|f(v)| ≤ c′maxz∈γ‖A‖2hν−1
E |v|ν,E ; (4.6)

where c′ is a constant independent of hE .

Proof. Let v(z) = v̂(ẑ), vI(z) = v̂I(ẑ), and A(z) = Â(ẑ). Then

f(v) = f̂(v̂) = −
∫

γ̂

‖n̂‖2(AD−T 5̂(v̂ − v̂I)) · (Dn̄)
|°|
|°̂|dŝ;

where n̂ = D−1−→n and n̄ is the unit normal vector with the same direction as n̂. Since

‖n̄‖2 = 1, by using the Cauchy-Schwarz inequality and the Sobolev trace imbedding theo-

rem (see [1]), we have

|f̂(v̂)| ≤ ‖D−1‖22maxẑ∈γ̂‖Â(ẑ)‖2‖D‖2 |°||°̂|
∫

γ̂

‖5̂(v̂ − v̂I)‖2dŝ

≤ maxz∈γ‖A(z)‖2‖D−1‖22‖D‖2
|°|
|°̂| |°̂|

1
2 (

∫

γ̂

‖5̂(v̂ − v̂I)‖22dŝ)
1
2

≤ c1|°̂|− 1
2 maxz∈γ‖A(z)‖2‖D−1‖22‖D‖2|°| · ‖v̂ − v̂I‖ν,Ê ;
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where c1 is a constant independent of v̂. From the Bramble-Hilbert lemma (see [4]), one

has

|f̂(v̂)| ≤ c1c2|°̂|− 1
2 maxz∈γ‖A(z)‖2‖D−1‖22‖D‖2|°| · |v̂ − v̂I |ν,Ê

≤ c1c2c3|°̂|− 1
2 maxz∈γ‖A(z)‖2‖D−1‖22‖D‖ν+1

2 |°||det(D)|− 1
2 |v|ν,E :

Let ‰̂ = sup{diam(Ĉ) : Ĉ is a circle contained in Ê}; ĥ = diam(Ê), and |E| and |Ê| be

the areas of E and Ê, respectively. We have (see [8])

‖D‖2 ≤ hE

‰̂
; ‖D−1‖2 ≤ ĥ

‰
; |det(D)| = |E|

|Ê| ; and |E| = c4|Z||°|;

where c4 = 1
2 sinµ0 or 1

2 , and µ0 is the interior angle of E between two sides Z and °. These

facts and (4.5) imply that

|f(v)| = |f̂(v̂)|

≤ c1c2c3|°̂|− 1
2 maxz∈γ‖A(z)‖2

(
ĥ

‰

)2 (
hE

‰̂

)ν+1

|°|
(

|Ê|
c4|Z||°|

) 1
2

|v|ν,E

≤ c′maxz∈γ‖A(z)‖2hν−1
E |v|ν,E ;

where

c′ = c1c2c3c
− 1

2
4 ¾

−(2+ 1
2 )

E |°̂|− 1
2 ĥ2|Ê| 12 ‰̂−(ν+1):

This proves the lemma.

Theorem 4.2. Assume that aij(z) ∈ WWW 1
∞(Ω), 1 ≤ i; j ≤ 2, and u ∈ HHH(ν)(Ω), ” = 2

or 3. Suppose that B is uniformly elliptic on SSSh
0 and that the triangulation T h and the

control volumes, Vh, are regular. Then we have:

(1) for the general case,

|e|1,Ω̄h ≤ ch|u|2,Ω; (4.7)

(2) for the case of essentially symmetric control volumes,

|e|1,Ω̄h ≤ ch
3
2 ‖u‖3,Ω; (4.8)
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(3) for the case of symmetric control volumes,

|e|1,Ω̄h ≤ ch2‖u‖3,Ω: (4.9)

Here, c is a constant independent of the mesh size h = maxK∈T hhK .

Proof. (1) By Theorem 4.1 and Lemma 4.2, we have

|e|1,Ω̄h ≤ 1
fi 2


 ∑

{i,j}∈ω0

(bij(eI)2




1
2

≤
√

2
fi2


 ∑

{i,j}∈ω0

∑

K∈T h

(
∫

γij∩K

(A5 eI) · −→n ijds)2




1
2

≤
√

2
fi2


 ∑

{i,j}∈ω0

[(c′maxz∈γ′
ij
‖A‖2hE′

ij
|u|2,E′

ij
)2 + (c′maxz∈γ′′

ij
‖A‖2hE′′

ij
|u|2,E′′

ij
)2]




1
2

:

(4.7) is thus proved with c =
√

2c′
α2

maxz∈Ω‖A‖2.
(3) For convenience, we drop the subscripts ij. Let Ā = A(z̄) where z̄ is the midpoint

of Z. Then

f(u) = I1 + I2;

where

I1 = −
∫

γ

((A− Ā)5 (u− uI)) · −→n ds

and

I2 = −
∫

γ

(Ā5 (u− uI)) · −→n ds:

Since aij(z) ∈ WWW 1
∞(Ω); 1 ≤ i; j ≤ 2, then

maxz∈γ‖A− Ā‖2 ≤ c′′hE ;

where c′′ is a constant independent of hE . It follows from Lemma 4.2 that

|I1| ≤ c′c′′h2
E |u|2,E
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and

|I2| ≤ c′‖Ā‖2h2
E |u|3,E :

(4.9) is now proved with c = 1
α2

max{c′′; maxẑ∈Ω‖Ā‖2}.
(2) Let !1 = {{i; j} ∈ ! : Eij ∩K ⊂ Ω̃ for some K ∈ T h}. By (1) and (3) we know

that

|e|1,Ω̄h ≤ 1
fi 2


 ∑

{i,j}∈ω1

+
∑

{i,j}∈ω\ω1

(bij(eI))2




1
2

≤ c

fi2
(h2|u|2

2,Ω̃
+ h4‖u‖2

3,Ω\Ω̃)
1
2 :

(4.8) thus follows from the observation that

‖u‖3,Ω\Ω̃ ≤ ‖u‖3,Ω

and that (see [5, 17])

|u|2,Ω̃ ≤ c̃h
1
2 ‖u‖3,Ω;

where c̃ is a constant independent of the mesh size h.

5. Sufficient Conditions for Uniform Ellipticity of B

In the previous section, we established error estimates for FVE under the assumption

that B is uniformly elliptic. Uniform ellipticity of B is established in [6] for the case

that control volumes are defined by circumcenters and A is diagonal. Here we first give a

sufficient condition for uniform ellipticity of B for the case that control volumes which are

not defined by the circumcenters and A = a(z)I. We will then consider the circumcenter

case for general A.

Proposition 5.1. Assume that A = a(z)I and that it satisfies the condition (2.2).

Then there exists an h0 > 0 and a constant fi > 0, dependent only on h0 and fi1, such

that, for all h ≤ h0, (3.9) holds with constant fi2 = fi. Furthermore, if a(z) ≡ 1, then (3.9)

holds with fi2 = 1 for any mesh size h > 0.
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Proof. The proof is just a straightforward consequence of the Lemma 3 in [3] and its

analogue.

We now give a sufficient condition for the case that A is not diagonal. However, for

this theory we restrict our attention to the case that the control volume are associated

with circumcenters.

For each element K ∈ ∪hT h, denote the vertices, side segments, and control volume

segments of K by ai, Zi and °i, respectively, and let −→n i be the unit normal vector on °i,

i = 1; 2; 3, (see Figure 5.1). We first establish (3.5) for the case that A is constant.

Lemma 5.1. Suppose that the matrix A is constant on each K ∈ ∪hT h and that

it satisfies the uniformly ellipticity condition (2.2). If each element is either a right or

isosceles triangle, then B is uniformly elliptic with constant fi2 = fi1¾−1.

Proof. Note that

n∑

i=1

v(zi)(Bv)i =
∑

{i,j}∈ω0

(v(zj)− v(zi))bij(v)

=
∑

{i,j}∈ω0

|Zij |(5v;−→n ij)
∑

K∈∪hT h

∫

γij∩K

(A5 v;−→n ij)ds

=
∑

K∈∪hT h

wK ;

where

wK =
3∑

i=1

|Zi||°i|(5v;−→n i)(A5 v;−→n i):

Suppose that the element K is isosceles. Without loss of generality, assume that the vertex

angle, which is the angle formed by two equal sides, is µ. Since

−→n 3 = −
−→n 1 +−→n 2

‖−→n 1 +−→n 2‖
;
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then

wK = (A5 v;

3∑

i=1

|Zi||°i|(5v;−→n i)−→n i)

= (A5 v; [(|Z1||°1|+ |Z3||°3|
a

)(5v;−→n 1) +
|Z3||°3|

a
(5v;−→n 2)]−→n 1

+ [
|Z3||°3|

a
(5v;−→n 1) + (|Z2||°2|+ |Z3||°3|

a
)(5v;−→n 2)]−→n 2);

where a = ‖−→n 1 +−→n 2‖2 = 2(1 + cos〈−→n 1;−→n 2〉) = 2(1− cosµ). We now proceed to obtain

a lower bound on wK . First note that, since −→n 1 and −→n 2 are linearly independent in RRR2,

we may let

5v = v1
−→n 1 + v2

−→n 2:

But then

(5v;−→n 1) = v1 − v2cosµ and (5v;−→n 2) = −v1cosµ + v2:

Solving these two equations for v1 and v2 yields

v1 =
1

sin2µ
[(5v;−→n 1) + (5v;−→n 2)cosµ]

and

v2 =
1

sin2µ
[(5v;−→n 1)cosµ + (5v;−→n 2)]:

Note that |Z3||°3| = 2cosµ|Z1||°1| = 2cosµ|Z2||°2|. Then wK = (A5 v; q) where

q = [(|Z1||°1|+ |Z3||°3|
a

)(5v;−→n 1) +
|Z3||°3|

a
(5v;−→n 2)]−→n 11

+ [
|Z3||°3|

a
(5v;−→n 1) + (|Z2||°2|+ |Z3||°3|

a
)(5v;−→n 2)]−→n 2

= |Z1||°1|{[(1 +
2cosµ

2(1− cosµ)
)(5v;−→n 1) +

2cosµ

2(1− cosµ)
(5v;−→n 2)]−→n 1

+ [
2cosµ

2(1− cosµ)
(5v;−→n 1) + (1 +

2cosµ

2(1− cosµ)
)(5v;−→n 2)]−→n 2}

=
|Z1||°1|
1− cosµ

{[(5v;−→n 1) + cosµ(5v;−→n 2)]−→n 1 + [cosµ(5v;−→n 1) + (5v;−→n 2)]−→n 2}

= |Z1||°1| sin2µ

1− cosµ
5 v:
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Hence,
wK = (A5 v; q)

= |Z1||°1| sin2µ

1− cosµ
(A5 v;5v)

≥ fi1|Z1||°1| sin2µ

1− cosµ
(5v;5v):

In other words, we can bound wK from below by replacing A by fi1. Returning to the

definition of wK , this means that

wK ≥ fi1

3∑

i=1

(5v;−→n i)(5v;−→n i)|Zi||°i|

= fi1[(v(z2)− v(z1))2
|°1|
|Z1| + (v(z3)− v(z2))2

|°2|
|Z2| + (v(z1)− v(z3))2

|°3|
|Z3| ]

≥ fi1¾−1[(v(z2)− v(z1))2 + (v(z3)− v(z2))2 + (v(z1)− v(z3))2];

where ¾ is from (3.1). For the case of that the element K is a right triangle, the above

inequality of wK follows from observations that

|°3|
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then

|w̃K | ≤
3∑

i=1

|Zi||°i|‖ 5 v‖2 max
z∈K

‖A− Ā‖

≤ c1h

3∑

i=1

|Zi||°i|‖ 5 v‖2

≤ c1c2h

3∑

i=1

|Zi||°i|(5v;−→n i)2:

The last inequality follows from the fact that there exists a constant c2 > 0 such that, for

any K ∈ T h,
3∑

i=1

|Zi||°i| ≤ c2

3∑

i=1

|Zi||°i|cos2〈5v;−→n i〉:

We then have

n∑

i=1

v(zi)(Bv)i =
∑

{i,j}∈ω0

|Zij |(5v;−→n ij)
∑

K∈T h

∫

γij

(Ā5 v;−→n ij)ds

+
∑

{i,j}∈ω0

|Zij |(5v;−→n ij)
∫

γij

((A− Ā)5 v;−→n ij)ds

=
∑

K∈T h

(wK + w̃K)

≥ fi1¾−1|v|21,Ω̄h − c1c2h|v|21,Ω̄h :

Hence, the theorem follows from chosing h0 such that, for all h ≤ h0,

fi = fi1¾−1 − c1c2h > 0:

6. The Effects of Numerical Integration

Denote the basis of the space SSSh
0 by {`l(z)}n

l=1, where `l(z) is the hat function asso-

ciated with zl, that is, `l(z) is linear on each triangle element K ∈ T h and `l(zi) = –li for

all 1 ≤ l; i ≤ n. Then solving the corresponding discrete problem amounts to finding the
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coefficients ul; 1 ≤ l ≤ n, of the expansion uh =
∑n

l=1 ul`l. These coefficients are solution

of the linear system
n∑

l=1

(B`l)iul = fi; 1 ≤ i ≤ n; (6.1)

where

fi =
∫

Vi

fdz =
∑

K∈T h

∫

Vi∩K

fdz: (6.2)

Let −→n ij be the unit outward normal vector on °ij , which is associated with Vi. Then, for

any v ∈ SSSh
0 , we have

−
∫

∂Vi

(A5 v) · −→n ids = −
∑

j∈ωi

∫

γij

(A5 v) · −→n ijds

= −
∑

j∈ωi

∑

K∈T h

∫

γij∩K

(A5 v) · −→n ijds

= −
∑

j∈ωi

∑

K∈T h

(
∫

γij∩K

Ads)5 v · −→n ij :

The last equality follows from the fact that5v and −→n ij are constant on °ij∩K. Therefore,

(3.10) can be rewritten as

(Bv)i = −
∑

j∈ωi

∑

K∈T h

(
∫

γij∩K

Ads)5 v · −→n ij : (6.3)

Note that the integral of a matrix M = (mij)n×n is defined componentwise by
∫

Md„ = (
∫

mijd„)n×n:

In practice, even if the functions aij and f have simple analytical expressions, the

integrals
∫

γij∩K
A(z)ds and

∫
Vi∩K

f(z)dz which appear in (6.3) and (6.2), respectively, are

seldom computed exactly. To study the effects of numerical integration, we will assume

that aij(z) and f(z) are defined everywhere on the respective {@Vi : i = 1; :::; m} and Ω̄.

For each 1 ≤ i ≤ n, j ∈ !i, and K ∈ T h, let

Fij,K : ẑ ∈ K̂ −→ Fij,K(ẑ) = Dij,K ẑ + dij,K (6.4)
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be the invertible affine mapping from K̂ onto K. Assume without loss of generality that

the Jacobian of the mapping Fij,K is positive. Let °̂ be such that Fij,K(°̂) = °ij ∩K and

V̂ be such that Fij,K(V̂ ) = Vi ∩K. Then
∫

γij∩K

A(z)ds =
|°ij ∩K|
|°̂|

∫

γ̂

Â(ẑ)dŝ (6.5)

and ∫

Vi∩K

f(z)dz = det(Dij,K)
∫

V̂

f̂(ẑ)dẑ; (6.6)

where the hat quantities are defined by the usual correspondence, i.e., A(z) = Â(ẑ) and

f(z) = f̂(ẑ) for all z = Fij,K(ẑ), ẑ ∈ K̂. In other words, computing the integrals
∫

γij∩K
Ads

and
∫

Vi∩K
fdz amounts to computing the respective integrals

∫
γ̂

Â(ẑ)dŝ and
∫

V̂
f̂(ẑ)dẑ.

Let fl̂l,γ̂ (l = 1; :::; L1) and fl̂l,V̂ (l = 1; :::; L2) be the quadrature coefficients, and ·̂l,γ̂

(l = 1; :::; L1) and ·̂l,V̂ (l = 1; :::; L2) be the quadrature points. Assume that fl̂l,γ̂ and fl̂l,V̂

are strictly positive, and ·̂l,γ̂ ∈ °̂, ·̂l,V̂ ∈ V̂ . Then the integrals
∫

γ̂
Â(ẑ)dŝ and

∫
V̂

f̂(ẑ)dẑ

are approximated by quatratures as follows:

∫

γ̂

Â(ẑ)dŝ ∼
L1∑

l=1

fl̂l,γ̂Â(·̂l,γ̂) (6.7)

and ∫

V̂

f̂(ẑ)dẑ ∼
L2∑

l=1

fl̂l,V̂ f̂(·̂l,V̂ ): (6.8)

For 1 ≤ l ≤ L1, define

fll,γij∩K =
|°ij ∩K|
|°̂| fl̂l,γ̂ and ·l,γij∩K = Fij,K(·̂l,γ̂) (6.9)

and, for 1 ≤ l ≤ L2, define

fll,Vi∩K = det(Dij,K)fl̂l,V̂ and ·l,Vi∩K = Fij,K(·̂l,V̂ ): (6.10)

Then the quadrature approximations over element K are given by

∫

γij∩K

A(z)ds ∼
L1∑

l=1

fll,γij∩KA(·l,γij∩K) (6.11)
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and ∫

Vi∩K

f(z)dz ∼
L2∑

l=1

fll,Vi∩Kf(·l,Vi∩K): (6.12)

Accordingly, we introduce the following quadrature error functionals: for any 1 ≤ i ≤ n,

j ∈ !i and each K ∈ T h, define

Rγij∩K(A) =
∫

γij∩K

A(z)ds−
L1∑

l=1

fll,γij∩KA(·l,γij∩K); (6.13)

R̂γ̂(Â) =
∫

γ̂

Â(ẑ)dŝ−
L1∑

l=1

fl̂l,γ̂Â(·̂l,γ̂); (6.14)

RVi∩K(f) =
∫

Vi∩K

f(z)dz −
L2∑

l=1

fll,Vi∩Kf(·l,Vi∩K); (6.15)

and

R̂V̂ (f̂) =
∫

V̂

f̂(ẑ)dẑ −
L2∑

l=1

fl̂l,V̂ f̂(·̂l,V̂ ): (6.16)

These are related by

Rγij∩K(A) =
|°ij ∩K|
|°̂| R̂γ̂(Â) (6.17)

and

RVi∩K(f) = det(Dij,K)R̂V̂ (f̂): (6.18)

Let

f̃h
i ≡

∑

K∈T h

f̃h
i,K =

∑

K∈T h

L2∑

l=1

fll,Vi∩Kf(·l,Vi∩K) (6.19)

and define the linear operator B̃ : SSSh
0 −→ RRRn by its elements:

(B̃v)i = −
∑

j∈ωi

∑

K∈T h

L1∑

l=1

fll,γij∩KA(·l,γij∩K)5 v · −→n ij ; 1 ≤ i ≤ n: (6.20)

As in Section 3, we say B̃ uniformly elliptic on SSSh
0 if there exists a constant fĩ > 0

independent of the space SSSh
0 such that, for all v ∈ SSSh

0 ,

n∑

i=1

v(zi)(B̃v)i ≥ fĩ|v|21,Ω̄h : (6.21)
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Now, instead of solving the linear system (6.1) with the coefficients (6.3) and right-

hand sides (6.2), we solve the modified linear system

n∑

i=1

(B̃`k)iuk = f̃h
i ; 1 ≤ i ≤ n: (6.22)

For our subsequent analysis, rather than working with the matrix system (6.22), it

will be more convenient to consider the following equivalent formulation of the discrete

problem:

Find uh ∈ SSSh
0 such that

B̃uh = f̃h (6.23)

where f̃h is the vector in RRRn with components f̃h
i , 1 ≤ i ≤ n.

For any v ∈ SSSh
0 , define the discrete LLL2 norm by

|v|0,Ω̄h = (
∑

{i,j}∈ω

v2(zi))
1
2 ; (6.24)

For any vector w ∈ RRRn, define the lll2 norm by

|w|0,Ω̄h = (
n∑

i=1

w2
i )

1
2 : (6.25)

We now have the following basic error estimate.

Theorem 6.1. Assume that B̃ satisfies (6.21). Then

|e|1,Ω̄h ≤ 1
fĩ
{c′|fh − f̃h|0,Ω̄h + (

∑

{i,j}∈ω0

b2
ij(eI))

1
2

+ [
∑

{i,j}∈ω0

(
∑

K∈T h

(Rγij∩K(A)5 uI) · −→n ij)2]
1
2 }; (6.26)

where c′ is a constant dependent only on the domain Ω.
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Proof. By the linearity of B and B̃, (2.3), and (6.23), we have

(B̃eh)i = (B̃uI)i − (BuI)i + (BuI)i − (Bu)i + (Bu)i − (B̃uh)i

= ((B̃ −B)uI)i − (BeI)i + (fh
i − f̃h

i ):

¿From this, (6.21), and the fact that e(zi) = eh(zi), 1 ≤ i ≤ m, it follows that

fĩ|e|21,Ω̄h = fĩ|eh|21,Ω̄h

≤
n∑

i=1

eh(zi)(B̃eh)i

≤ |
n∑

i=1

eh(zi)((B̃ −B)uI)i|+ |
n∑

i=1

eh(zi)(BeI)i|+ |
n∑

i=1

eh(zi)(fh
i − f̃h

i )|: (6.27)

According to (6.20) and (6.3) and since −→n ij = −−→n ji, we then have

|
n∑

i=1

eh(zi)((B̃ −B)uI)i|

= |
n∑

i=1

eh(zi)
∑

j∈ωi

∑

K∈T h

(
∫

γij∩K

Ads−
L1∑

l=1

fll,γij∩KA(·l,γij∩K))5 uI · −→n ij |

= |
∑

{i,j}∈ω0

(eh(zi)− eh(zj))
∑

K∈T h

Rγij∩K(A)5 uI · −→n ij |

≤ |eh|1,Ω̄h [
∑

{i,j}∈ω0

(
∑

K∈T h

Rγij∩K(A)5 uI · −→n ij)2]
1
2 : (6.28)

The last inequality follows from the Cauchy-Schwarz inequality. ¿From the proof of The-

orem 4.1, we know that

|
n∑

i=1

eh(zi)(BeI)i| ≤ |eh|1,Ω̄h(
∑

{i,j}∈ω0

b2
ij(eI))

1
2 : (6.29)

By the Cauchy-Schwarz inequality and the Poincaré-Friedrichs inequality (see [8]), we have

|
n∑

i=1

eh(zi)(fh
i − f̃h

i )| ≤ |eh|0,Ω̄h |fh − f̃h|0,Ω̄h

≤ c′|eh|1,Ω̄h |fh − f̃h|0,Ω̄h ; (6.30)
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where c′ is a constant dependent only on the domain Ω. (6.17) now follows from inequalities

(6.27), (6.28), (6.29), and (6.30). Hence, the theorem is proved.

Estimating the discretization error now amounts to bounding the three terms on the

right-hand side of inequality (6.27). We can use the assumptions and proof of Theorem

4.2 to show that the second term,
(∑

{i,j}∈ω0
b2
ij(eI)

) 1
2
, is O(hν), where ” = 1 in general,

” = 3
2
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and

RVi∩K(f) = det(Dij,K)R̂V̂ (f̂);

where |V̂ | is the measure of V̂ . Hence, the lemma is proved.

Without loss of generality, assume that the line segment °̂ lies on x̂ axis. We omit the

proof of the next lemma since it is virtually the same as that for Lemma 6.1.

Lemma 6.2. Assume that, for some integer ” ≥ 1, the quadrature error functional

R̂γ̂(v̂) vanishes on PPP ν−1(°̂). Then, for any v ∈ WWW ν
∞(°ij ∩K) (1 ≤ i ≤ n; j ∈ !i), we have

|Rγij∩K(v)| ≤ chν+1
K |v|ν,γij∩K ; (6.32)

where c is a constant independent of K ∈ T h and hK .

Note that |∂uI

∂x | and |∂uI

∂y | are both bounded by ch
− 1

2
K ‖u‖2,Eij∩K for all z ∈ K. Ac-

cording to Lemma 6.2, we then have that

|Rγij∩K(A)5 uI · −→n ij | ≤
2∑

l=1

(|Rγij∩K(al1)||@uI

@x
|+ |Rγij∩K(a2l)||@uI

@y
|)

≤ ch
ν+ 1

2
K

2∑

l,k=1

|alk|ν,∞,γij∩K‖u‖2,Eij∩K ;

where c absorbs various constants. Therefore, application of the Cauchy-Schwarz inequa-

lity implies that

 ∑

K∈T h

(Rγij∩K(A)5 uI) · −→n ij




2

≤ c
∑

K∈T h

((Rγij∩K(A)5 uI) · −→n ij)2

≤ ch2ν+1
∑

K∈T h

(
2∑

l,k=1

|alk|ν,∞,γij∩K)2‖u‖22,Eij∩K

≤ ch2ν+1
∑

K∈T h

2∑

l,k=1

|alk|2ν,∞,γij∩K‖u‖22,Eij∩K

≤ ch2ν+1
2∑

l,k=1

|alk|2ν,∞,γij
‖u‖22,Eij

:
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Hence, the third term on the right-hand side of inequality (6.26) is bounded according

to

 ∑

{i,j}∈ω

(
∑

K∈T h

(Rγij∩K(A)5 uI) · −→n ij)2



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Theorem 6.2. Assume that aij(z) ∈ WWW ν
∞(Ω), 1 ≤ i; j ≤ 2, ” ≥ 1; f(z) ∈ WWW 1

q(Ω)

with q > 2; and u ∈ HHH(ν)(Ω), ” = 2 or 3. Suppose that B̃ is uniformly elliptic on SSSh
0 and

that T h and Vh are regular. Suppose also that the quadrature error functionals R̂γ̂(v̂) and

R̂V̂ (v̂) vanish on the respective PPP 0(°̂) and PPP 0(V̂ ). Then we have:

(1) for the general case,

|e|1,Ω̄h ≤ ch(h|f |1,q,Ω + |u|2,Ω + h
1
2 ‖u‖2,Ω

2∑

l,k=1

|alk|1,∞,Ω); (6.35)

(2) for the case of essentially symmetric control volumes,

|e|1,Ω̄h ≤ ch
3
2 (h

1
2 |f |1,q,Ω + ‖u‖3,Ω + ‖u‖2,Ω

2∑

l,k=1

|alk|1,∞,Ω); (6.36)

(3) for the case of symmetric control volumes,

|e|1,Ω̄h ≤ ch2(|f |1,q,Ω + ‖u‖3,Ω + h
1
2 ‖u‖2,Ω

2∑

l,k=1

|alk|2,∞,Ω): (6.37)

Here, c is a constant independent of h.
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Figure 3.1. Sample control volume V h (dotted lines).

Figure 3.2. Opposing angles µ̄K′ and µ̄K′′ of the respective triangles

K ′ and K ′′ with respect to the common face.
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Figure 4.1. Sample rhombus Eij (dotted lines).

Figure 5.1. Vertices zi, side segments Zi, control volume segments

°i (dotted lines), and unit normal vectors −→n i.


