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Abstract. This paper develops a least-squares functional that arises from recasting general
second-order uniformly elliptic partial differential equations in n = 2 or 3 dimensions as a system
of first-order equations. In part I [Z. Cai, R. D. Lazarov, T. Manteuffel, and S. McCormick, SIAM
J. Numer. Anal., 31 (1994), pp. 1785–1799] a similar functional was developed and shown to be
elliptic in the H(div) × H1 norm and to yield optimal convergence for finite element subspaces of
H(div)×H1. In this paper the functional is modified by adding a compatible constraint and imposing
additional boundary conditions on the first-order system. The resulting functional is proved to be
elliptic in the (H1)n+1 norm. This immediately implies optimal error estimates for finite element
approximation by standard subspaces of (H1)n+1. Another direct consequence of this ellipticity is
that multiplicative and additive multigrid algorithms applied to the resulting discrete functionals
are optimally convergent. As an alternative to perturbation-based approaches, the least-squares
approach developed here applies directly to convection–diffusion–reaction equations in a unified way
and also admits a fast multigrid solver, historically a missing ingredient in least-squares methodology.
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1. Introduction. The object of study of this paper, and its earlier companion
[11], is the solution of elliptic equations (including convection–diffusion and Helmholtz
equations) by way of a least-squares formulation for an equivalent first-order sys-
tem. Such formulations have been considered by several researchers over the last few
decades (see the historical discussion in [11]), motivated in part by the possibility of
a well-posed variational principle for a general class of problems. In [11] a similar
functional was developed and shown to be elliptic in the H(div) × H1 norm and to
yield optimal convergence for finite element subspaces of H(div)×H1. In this paper
the functional is modified by adding a compatible constraint and imposing additional
boundary conditions on the first-order system. It is shown that the resulting func-
tional is elliptic in the (H1)n+1 norm. Direct consequences of this result are optimal
approximation error estimates for standard finite element subspaces of (H1)n+1 and
optimal convergence of multiplicative and additive multigrid algorithms applied to the
resulting discrete functionals. As an alternative to perturbation-based approaches (cf.
[1, 3, 9, 10, 25, 34, 35]), the least-squares approach developed here applies directly to
convection–diffusion–reaction equations in a unified way and also admits an efficient
multilevel solver, historically a missing ingredient in least-squares methodology.
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The least-squares formulation considered in this paper differs from that of [11]
(see also [31]) in that it incorporates a curl-free constraint and tangential boundary
conditions on u (see section 2). Like the original in [11], our modified least-squares
formulation avoids the so-called inf-sup condition of Ladyzhenskaya, Babǔska, and
Brezzi (see [8]) and its attendant restrictions on the choice of finite element approx-
imation subspaces. However, our modifications to the original form, while unneces-
sary for discretization accuracy (see [11]), greatly simplify the solution process. The
unmodified form must be handled carefully because oscillatory divergence-free error
components give relatively small residuals; such components must be specially treated
in the multigrid relaxation process or eliminated in the discretization, for example.
However, our incorporation of the curl-free constraint here exposes these components:
in fact, all oscillatory error results in relatively large residuals. The modified func-
tional is easily seen to be equivalent to a modified form of the (H(div)∩H(curl))×H1

norm. This norm may be sufficient to yield optimal finite element convergence if care
is taken in choosing the finite element spaces [33, 27]. In addition, optimal multigrid
convergence can be guaranteed under certain additional constraints [27]. The theory
involving this norm is still incomplete.

In this paper the modified (H(div) ∩H(curl))×H1 norm is shown to be equiv-
alent to the (H1)n+1 norm under some additional regularity assumptions. Thus, the
modified functional yields full H1-norm equivalence for each of the system variables.
This comes at some loss of generality of the results presented here in that our proof re-
quires H2 regularity of the original problem with the lower-order terms removed. This
should be expected, however, since our aim here is to obtain H1-norm discretization
error bounds on the fluxes.

For problems with reduced regularity, alternate forms of the least-squares func-
tional must be considered, with the specific choice of form dependent on the goal of
computation: for H(div)-type flux estimates, the original functional in [11] is appro-
priate; for weaker L2-type flux estimates, for example when the right-hand side is
in H−1, an H−1 or mesh-weighted norm approach can be used (cf. [2, 4]); and for
stronger local H1-type flux estimates, for example when the coefficients are discon-
tinuous, an appropriate local H1 approach can be used [27].

The basic idea of the approach here is simple: the original functional in [11], which
fails to be fully (H1)n+1 elliptic because it incorporates only a divergence-type flux
derivative, is augmented by an admissible curl-type term. It is therefore immediate
that the new functional is equivalent to an (H(div) ∩ H(curl)) × H1-type norm.
However, to show that such a norm is in fact an (H1)n+1 norm is another matter: for
that (and only that!) we need H2 regularity of the original scalar problem without the
lower-order terms, and we need to carefully extend basic results of functional analysis
to account for general diffusion tensors and boundary conditions. This is the principal
theoretical contribution of this paper.

The idea of adding the curl constraint in developing a least-squares functional for
Poisson’s equation has been used by several researchers (see, e.g., [13, 16, 17, 23, 14,
15, 24, 30]). For Poisson’s equation, the key tool is the proof that (H(div)∩H(curl))
is algebraically and topologically imbedded in (H1)n, which was developed by Girault
and Raviart [20] for problems with strictly Dirichlet or Neumann boundary conditions.
Here, we extend the result in [20] to the context of a general diffusion tensor and a
variety of boundary conditions.

The fundamental goal of our least-squares work is to develop a functional that is
fully (H1)n+1 elliptic whenever that is possible. One of the many benefits of such a
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formulation is that the discretization and solution processes can be designed for each
variable individually, almost independently of the others. This ellipticity suggests that
the system is essentially a set of uncoupled elliptic equations in each scalar variable.
This is true to some qualitative degree, but this view should not be carried too far.
For example, this equivalence implies immediately that an optimal multigrid solver
can be designed simply as a diagonal preconditioner that uses multigrid individually
on each variable. However, multigrid can generally do much better by applying it
directly to the least-squares system: relaxation would be allowed to interact with all
variables on all levels, not just on the finest as diagonal preconditioners would do.

Unfortunately, no theory seems to exist that would allow us to claim in any
generality that such a fully integrated multigrid scheme is optimal. We are thus
compelled to establish this claim theoretically, which we do in the last section by
applying the theory developed in [5]. (The only nontrivial task here is the verification
of their second smoothing assumption.)

The next section introduces notation, describes the variational approach, and
establishes an ellipticity estimate in the necessary form. Approximation by the finite
element method and its error analysis are developed in section 3.

2. First-order system least squares. Assume that Ω is a bounded, open,
connected domain in <n (n = 2 or 3) with Lipschitz boundary ∂Ω. Consider the
following second-order elliptic boundary value problem:

−∇ · (A∇ p) +Xp = f, in Ω,

p = 0, on ΓD,

n ·A∇ p = 0, on ΓN ,

(2.1)

where the symbols ∇· and ∇ stand for the divergence and gradient operators, re-
spectively, A is an n × n symmetric matrix of functions in L∞(Ω), X is an at most
first-order linear differential operator, ΓD ∪ΓN = Γ is a partitioning of the boundary
of Ω, and n is the outward unit vector normal to the boundary. We assume that A is
uniformly symmetric positive definite and scaled appropriately: there exist positive
constants

0 < λ ≤ 1 ≤ Λ(2.2)

such that

λξT ξ ≤ ξTAξ ≤ ΛξT ξ(2.3)

for all ξ ∈ <n and almost all x ∈ Ω.
Introducing the flux variable

u = A∇p,

problem (2.1) may be rewritten as a first-order system of partial differential equations
as follows: 

u−A∇p = 0, in Ω,

∇∗u +Xp = f, in Ω,

p = 0, on ΓD,

n · u = 0, on ΓN ,

(2.4)
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where ∇∗ : H1(Ω)n → L2(Ω) is the formal adjoint of ∇ : H1(Ω) → L2(Ω)n; that is,
∇∗ ≡ −∇·. Under appropriate assumptions on ΓD and X, the associated weak form
of the system (2.1) is uniquely solvable in H1(Ω) for any f ∈ H−1(Ω) or uniquely
solvable in H1(Ω)/< (cf. [20]) if and only if f satisfies the compatibility condition∫

Ω f = 0.
Let curl ≡ ∇× denote the curl operator. (Here and henceforth, we use notation

for the case n = 3 and consider the special case n = 2 in the natural way by identifying
<2 with the (x1, x2)-plane in <3. Thus, if u is two dimensional, then ∇×u = 0 means
∂1u2−∂2u1 = 0, where u1 and u2 are the components of u. In section 2.1, we consider
only the case n = 2, so there we will interpret ∇ × u to mean ∂1u2 − ∂2u1.) Note
that if u is sufficiently smooth, then the properly scaled solution A−1u of (2.4) is curl
free, i.e., ∇× (A−1u) = 0, and the homogeneous Dirichlet boundary condition on ΓD
implies the tangential flux or no-slip condition

γτ (A−1u) = 0, on ΓD,

where γτ u ≡ n× u. Here, τ represents the unit vector tangent to the boundary Γ.
An equivalent extended system for (2.4) is

u−A∇p = 0, in Ω,

∇∗u +Xp = f, in Ω,

∇×A−1u = 0, in Ω,

p = 0, on ΓD,

n · u = 0, on ΓN ,

γτ (A−1u) = 0, on ΓD.

(2.5)

It is this system that we intend to solve by a least-squares Rayleigh–Ritz discretization
and a fully variational multigrid solver.

First we establish notation. LetD(Ω) be the linear space of infinitely differentiable
functions with compact support on Ω, and

D(Ω̄) = {ϕ|Ω : ϕ ∈ D(O) for some open subset Ω ⊂ O ⊂ <n}.

Let (· , ·)0,Ω denote the inner product on L2(Ω)n, ‖ · ‖0,Ω denote its induced norm,
and, for m ≥ 0, Hm(Ω)n denote the standard Sobolev space with norm ‖ · ‖m,Ω and
seminorms | · |i,Ω (0 ≤ i ≤ m). (We suppress the subscript n because dependence of
the vector norms on dimension will be clear by context.) Let Hs− 1

2 (Γ) for s = 1 or 2
denote the trace Sobolev space with norm

‖r‖s− 1
2 ,Γ

= inf{‖v‖s,Ω : v ∈ Hs(Ω), trace v = r on Γ}

and H−
1
2 (Γ) the dual space for H

1
2 (Γ) with the obvious dual norm

‖r∗‖− 1
2 ,Γ

= sup
{
〈r∗, r〉
‖r‖1/2,Γ

: 0 6= r ∈ H 1
2 (Γ)

}
,

where 〈· , ·〉 denotes the duality pairing between H−
1
2 (Γ) and H

1
2 (Γ). We use the

following spaces to define a least-squares variational form for the extended system
(2.5). Let

H(div; Ω) = {v ∈ L2(Ω)n : ∇∗v ∈ L2(Ω)},
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H(curlA; Ω) = {v ∈ L2(Ω)n : ∇× (A−1v) ∈ L2(Ω)2n−3},(2.6)

which are Hilbert spaces under the respective norms

‖v‖H(div; Ω) ≡
(
‖v‖20,Ω + ‖∇∗v‖20,Ω

) 1
2 ,

‖v‖H(curlA; Ω) ≡
(
‖v‖20,Ω + ‖∇× (A−1v)‖20,Ω

) 1
2 .

When A is the identity matrix in (2.6), we use the simpler notationH(curl; Ω). Define
the subspaces

W0(div; Ω) = {v ∈ H(div ; Ω) : n · v = 0 on ΓN},

W0(curlA; Ω) = {v ∈ H(curlA; Ω) : γτ (A−1v) = 0 on ΓD},

and

W = W0(div ; Ω) ∩W0(curlA; Ω).(2.7)

Finally, define the subspace

V = {q ∈ H1(Ω) : q = 0 on ΓD}.(2.8)

In [11] the following quadratic functional associated with system (2.4) was exam-
ined:

G0(v, q; f) = ‖v −A∇q‖20,Ω + ‖∇∗v +Xq − f‖20,Ω(2.9)

for (v, q) ∈W0(div ; Ω)×V . There it was shown that G0(v, q; 0) is equivalent to the
H(div; Ω)×H1(Ω) norm on W0(div ; Ω)×V under the following original assumption.

Assumption A0. Either ΓD 6= ∅ or an additional constraint is imposed on V , such
as
∫

Ω p dx = 0, so that a Poincaré–Friedrichs inequality holds: there exists a constant
d > 0 depending only on the domain Ω and the uniform bounds on A (see (2.3)) such
that

‖p‖20,Ω ≤ d‖A
1
2∇p‖20,Ω(2.10)

for p ∈ V .
If ΓD 6= ∅ or Xp 6= 0 for p ≡ constant, we assume that for any f ∈ H−1(Ω)

the associated weak form of (2.1) is invertible in H1(Ω). If ΓD = ∅ and Xp = 0
for p ≡ constant, we assume that the associated weak form of (2.1) is invertible in
H1(Ω)/< for every f ∈ H−1(Ω) such that

∫
Ω f = 0. In either case, we assume

‖Xp‖0,Ω ≤ η‖A
1
2∇p‖0,Ω(2.11)

for some η > 0 and every p ∈ V for which A∇p ∈W0(div ; Ω).
The modified quadratic functional we study here is given by

G(v, q; f) = ‖v −A∇q‖20,Ω + ‖∇∗v +Xq − f‖20,Ω + ‖∇× (A−1v)‖20,Ω(2.12)

for (v, q) ∈ W × V . Then the least-squares problem for (2.5) is to minimize this
quadratic functional over W × V : find (u, p) ∈W × V such that

G(u, p; f) = inf
(v, q)∈W×V

G(v, q; f).(2.13)
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It is easy to see that the variational form for (2.13) is to find (u, p) ∈ W × V such
that

F(u, p; v, q) = f(v, q) ∀ (v, q) ∈W × V,(2.14)

where the bilinear form F(· ; ·) : (W × V )2 −→ < is defined by

F(u, p; v, q) = (u−A∇p, v −A∇q)0,Ω + (∇∗u +Xp, ∇∗v +Xq)0,Ω

+ (∇× (A−1u), ∇× (A−1v))0,Ω(2.15)

and the linear functional f(·, ·) : W × V −→ < is defined by

f(v, q) = (f, ∇∗v +Xq)0,Ω.(2.16)

The first theorem establishes ellipticity and continuity of the bilinear form (2.15)
with respect to the (H(div; Ω)∩H(curlA; Ω))×H1(Ω) norm under only Assumption
A0.

THEOREM 2.1. Assume A0. Then there exist positive constants α0 and α1 such
that

α0
(
‖v‖20,Ω + ‖∇∗v‖20,Ω + ‖∇× (A−1v)‖20,Ω + ‖q‖21,Ω

)
≤ F(v, q; v, q)(2.17)

for any (v, q) ∈W × V and

F(u, p; v, q) ≤ α1
(
‖u‖20,Ω + ‖∇∗u‖20,Ω + ‖∇× (A−1u)‖20,Ω + ‖p‖21,Ω

) 1
2

·
(
‖v‖20,Ω + ‖∇∗v‖20,Ω + ‖∇× (A−1v)‖20,Ω + ‖q‖21,Ω

) 1
2(2.18)

for any (u, p), (v, q) ∈W × V .
Proof. This result follows from Theorem 3.1 in [11], where it was shown that the

functional

G0(v, q; f) = ‖v −A∇q‖20,Ω + ‖∇∗v +Xq − f‖20,Ω

and associated bilinear form

F0(u, p; v, q) = (u−A∇p, v −A∇q)0,Ω + (∇∗u +Xp, ∇∗v +Xq)0,Ω

satisfy the bounds (2.17) and (2.18) with the terms involving ∇× removed, for all
(u, p), (v, q) ∈W0(div ; Ω)× V . Since W ⊂W0(div ; Ω), (2.17) and (2.18) hold for
F restricted to W × V .

The purpose of the remainder of this section is to show that, under some additional
hypotheses on A and Ω, the functional (2.12) with f = 0 is equivalent to the H1(Ω)n+1

norm on W×V . This result requires a generalization of results in [20], which assumed
that A = I, X = 0, and either Γ = ΓD or Γ = ΓN .

In our proof we make use of a decomposition of W into certain gradient and curl
components. We do this by showing that these components satisfy certain boundary
value problems, which we ensure are H2(Ω) regular by making the following additional
assumptions.

Assumption A1. The domain Ω is bounded, open, and connected in <n (n = 2
or 3) with boundary Γ, which consists of a finite number of disjoint, simple, closed
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Ω1 Ω2Γ1

Γ2

Ω

Γ0

FIG. 1.

curves (surfaces) Γi, i = 0, . . . , L; Γ0 is the outer boundary and Γi, i = 1, . . . , L, are
C1,1 boundaries of a finite number of disjoint holes in Ω (see Fig. 1). Let Ωi be the
interior of Γi, i = 1, . . . , L. For n = 2, Γ0 is piecewise C1,1 with no reentrant corners,
while for n = 3, Γ0 is C1,1 or a convex polyhedron.

Assumption A2. The boundary is divided into Dirichlet and Neumann parts: Γ =
ΓD∪ΓN such that Γi ⊆ ΓD for i ∈ D and Γi ⊆ ΓN for i ∈ N with D∪N = {1, . . . , L}.
For n = 2, Γ0 is divided into a finite number of connected pieces: Γ0 = ∪i=1,...,MΓ0,i
such that Γ0,i ⊆ ΓD for i ∈ D0 and Γ0,i ⊆ ΓN for i ∈ N0; since Γ0 is a simple closed
curve, M is even; let D0 be the odd indices and N0 be the even indices. For n = 3,
either Γ0 ⊆ ΓD or Γ0 ⊆ ΓN .

Assumption A3. The matrix A is C1,1. If n = 2 and x ∈ Γ0 is a point that
separates ΓD and ΓN , then x must be a corner of Γ0 and nT−An+ ≤ 0, where n− and
n+ are the outward unit normal vectors on the adjacent edges at x.

In what follows, we will appeal often to a boundary value problem of the form

∇∗(A∇ p) = f, in Ω,

p = gi, on Γi, for i ∈ D,
p = g0i, on Γ0i, for i ∈ D0,

n ·A∇ p = hi, on Γi, for i ∈ N,
n ·A∇ p = h0i, on Γ0i, for i ∈ N0,

(2.19)

where gi, g0j ∈ H
3
2 (Γi) for i ∈ D, j ∈ D0, and hi, h0j ∈ H

1
2 (Γi) for i ∈ N, j ∈ N0.

For our needs, we assume that gi is nonzero only when Γi is C1,1. Now our additional
assumptions, together with the original ones, are sufficient to guarantee that (2.19) is
H2(Ω) regular: there exists a constant C depending only on A, X, and Ω such that

‖p‖2,Ω ≤ C
(
‖f‖0,Ω +

∑
i∈D
‖gi‖3/2,Γi +

∑
i∈D0

‖g0i‖3/2,Γi +
∑
i∈N
‖hi‖1/2,Γi

+
∑
i∈N0

‖h0i‖1/2,Γi

)
.

(2.20)

This result follows from standard partition of unity arguments (cf. [19]). For both
n = 2 and n = 3, the solution is clearly in H2 in the interior and along smooth
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portions of the boundary. For n = 2 the arguments in Chapter 4 of Grisvard [21] can
be used near the corners. There, polygonal domains are studied with A = I and H2

regularity results if there are no reentrant corners and each corner that separates ΓD
from ΓN has an angle less than π/2. In our context, we consider A ∈ C1,1. Since
A is smooth, there exists a smooth transformation to a problem in a new coordinate
system with A replaced by I. The results of Grisvard can be applied in this frame
and the inverse transformation yields the criterion in Assumption A3. For n = 3,
Γ0 is either C1,1, which poses no problem or Γ0 is a convex polyhedron. Since by
assumption Γ0 ⊆ ΓD or Γ0 ⊆ ΓN the results in Chapter 8 of [21] imply that a convex
polyhedron is sufficient.

We remark that the results in this paper are applicable to any domains for which
problems of the type (2.19) are H2(Ω) regular. Our assumptions reflect the limit of
current knowledge in this respect.

Our main theorem establishes equivalence of the bilinear form (2.15) and the
H1(Ω)n+1 norm under the additional assumptions A1–A3.

THEOREM 2.2. Assume A0–A3. Then there exist positive constants α2 and α3
such that

α2
(
‖v‖21,Ω + ‖q‖21,Ω

)
≤ F(v, q; v, q)(2.21)

for any (v, q) ∈W × V and

F(u, p; v, q) ≤ α3
(
‖u‖21,Ω + ‖p‖21,Ω

) 1
2
(
‖v‖21,Ω + ‖q‖21,Ω

) 1
2(2.22)

for any (u, p), (v, q) ∈W × V .
Proof. In light of Theorem 2.1, to prove Theorem 2.2 we need only show that W

is algebraically and topologically included in H1(Ω)n; that is, for any v ∈ W there
exist constants α̂2 and α̂3 such that

α̂2‖v‖21,Ω ≤ ‖v‖20,Ω + ‖∇∗v‖20,Ω + ‖∇×A−1v‖20,Ω ≤ α̂3‖v‖21,Ω.(2.23)

The upper bound in (2.23) follows from the triangle inequality. We prove the lower
bound for n = 2 and 3 separately. The two-dimensional result could have been
deduced as a special case of the three-dimensional result, but it would then have
inherited the more restrictive assumptions.

2.1. Two dimensions. In this section, we interpret the curl of a vector function
u to mean the scalar function ∇×u = ∂1u2−∂2u1. Note that, for n = 2, the operator
∇⊥ defined by

∇⊥q ≡
(

0 1

−1 0

)
∇q =

(
∂2q

−∂1q

)
is the formal adjoint of ∇×:

∇×v = ∇∗
(

0 −1

1 0

)
v.

Let

P =

(
0 1

−1 0

)
;
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then

P∇ = ∇⊥, P ∗∇⊥ = ∇,

∇∗P ∗ = ∇×, ∇×P = ∇∗.
(2.24)

Let n = (n1, n2)t be the outward unit normal and let τ = (τ1, τ2)t be the unit
tangent oriented clockwise on Γ0. Then τ = Pn. Many general results involving ∇∗
and ∇ can be restated for ∇× and ∇⊥ by using P . In [20] we find the following result.

LEMMA 2.1. Let Ω ⊂ <2; then w ∈ H(div; Ω) such that ∇∗w = 0 and
∫

Γi
n ·w =

0 for i = 1, . . . , L if and only if w = ∇⊥q with q ∈ H1(Ω).
Proof. See Theorem 3.1 in Chapter I of [20].
This becomes the following.
LEMMA 2.2. Let Ω ⊂ <2; then w ∈ H(curl ; Ω) such that ∇×w = 0 and∫

Γi
τ ·w = 0 for i = 1, . . . , L if and only if w = ∇q with q ∈ H1(Ω).
Proof. The proof follows from Lemma 2.1 and (2.24).
A result analogous to Green’s formula also follows:

(∇×z, φ) = (z, ∇⊥φ)−
∫

Γ
(τ · z)φ(2.25)

for z ∈ H(curl ; Ω) and φ ∈ H1(Ω).
The next lemma obtains sufficient conditions for a vector function in W to be

zero.
LEMMA 2.3. Let A be uniformly symmetric positive definite on Ω, which satisfies

Assumptions A1 and A2. Let z ∈W satisfy

i) ∇∗z = 0, in Ω,

ii) ∇×A−1z = 0, in Ω,

iii)
∫

Γi
n · z = 0, for i ∈ D,

iv)
∫

Γi
τ ·A−1z = 0, for i ∈ N,

and either
v)

∫
Γ0j

n · z = 0, for j ∈ D0,

or

vi)
∫

Γ0j
τ ·A−1z = 0, for j ∈ N0.

(2.26)

Then z = 0.
Proof. Assumptions (2.26) i), ii), iii), and iv) together with Lemmas 2.1 and 2.2

yield

z = A∇p, z = ∇⊥φ,

with p, φ ∈ H1(Ω). Using Green’s formula and assumption i), we have

(∇∗z, p) = (z, ∇p)−
∫

Γ
(n · z)p

= (A−1z, z)−
∫

Γ
(n · z)p = 0.

Thus,

(A−1z, z) =
∫

Γ0

(n · z)p+
∑
i∈D

∫
Γi

(n · z)p+
∑
i∈N

∫
Γi

(n · z)p.(2.27)
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The last sum is zero because n · z = 0 on ΓN . The second sum is also zero because
integration by parts on each of its terms yields∫

Γi
(n · z)p = −

∫
Γi

(τ · ∇φ)p =
∫

Γi
(τ · ∇p)φ =

∫
Γi

(τ ·A−1z)φ = 0,

since the integration is around a closed path and τ ·A−1z = 0 on ΓD.
To prove that the first term on the right-hand side of (2.27) is also zero, assume

first that (2.26) v) holds. Since z ∈W, then n · z = 0 on ΓN and we have∫
Γ0

(n · z)p =
∑
j∈D0

∫
Γ0j

(n · z)p+
∑
j∈N0

∫
Γ0j

(n · z)p

=
∑
j∈D0

∫
Γ0j

(n · z)p.

Using this relation and noting that τ ·A−1z = τ · ∇p = 0 on ΓD, which implies that
p = αj on Γ0j for j ∈ D0 and some constant αj , we have∫

Γ0

(n · z)p =
∑
j∈D0

αj

∫
Γ0j

n · z = 0

by assumption v).
Next, assume that case (2.26) vi) holds. Since the integration is over a closed

path, and τ · ∇p = τ ·A−1z = 0 on ΓD, we have∫
Γ0

(n · z)p = −
∫

Γ0

(τ · ∇φ)p

=
∫

Γ0

(τ · ∇p)φ

=
∑
j∈D0

∫
Γ0j

(τ · ∇p)φ+
∑
j∈N0

∫
Γ0j

(τ · ∇p)φ

=
∑
j∈N0

∫
Γ0j

(τ · ∇p)φ.

Similar to the above, using this relation and noting that n · z = −τ · ∇φ = 0 on ΓN ,
which implies that φ = βj on Γ0j for j ∈ N0 and some constant βj , we have∫

Γ0

(n · z)p =
∑
j∈N0

βj

∫
Γ0j

τ ·A−1z = 0

by assumption vi).
In either case, we thus have

(A−1z, z) = 0.

Since A is uniformly symmetric positive definite, it follows that z = 0.
We now construct a basis for the functions in W that satisfy (2.26) i) and ii).

Consider the functions pi for i ∈ D that satisfy
∇∗A∇ pi = 0, in Ω,

pi = 1, on Γi,

pi = 0, on ΓD \ Γi,

n ·A∇ pi = 0, on ΓN ,

(2.28)
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and the functions p0j for j ∈ D0 that satisfy
∇∗A∇ p0j = 0, in Ω,

p0j = 1, on Γ0j ,

p0j = 0, on ΓD \ Γ0j ,

n ·A∇ p0j = 0, on ΓN .

(2.29)

Clearly, A∇pi, A∇p0j ∈W, and they satisfy (2.26) i) and ii). Suppose that Assump-
tions A1–A3 hold. Then we can recast (2.29) so that it has homogeneous boundary
data but a nonzero source term bounded in L2(Ω) by a constant depending only on
Ω. (This is easily done by extending the special Dirichlet data of (2.29) smoothly into
Ω while satisfying the homogeneous Neumann boundary conditions, then restating
(2.29) as an equation for the difference.) Thus, (2.20) applies so that both (2.28) and
(2.29) are H2(Ω) regular and

‖pi‖2,Ω ≤ Ci, ‖p0j‖2,Ω ≤ C0j ,(2.30)

for i ∈ D and j ∈ D0, where Ci and C0j depend only on Ω and A.
Next, note that

∇×A−1∇⊥ = ∇∗P ∗A−1P∇ = ∇∗B∇,(2.31)

where

B ≡ P ∗A−1P =
1

det(A)
A.(2.32)

This relation is easily verified algebraically for any 2× 2 symmetric matrix A. Now
B is uniformly symmetric positive definite:

1
Λ
ξT ξ ≤ ξTBξ ≤ 1

λ
ξT ξ

for all ξ ∈ Rn and x ∈ Ω̄. Consider the functions φi for i ∈ N that satisfy
∇∗B∇φi = 0, in Ω,

φi = 1, on Γi,

φi = 0, on ΓN \ Γi,

n ·B∇φi = 0, on ΓD,

(2.33)

and the functions φ0j for j ∈ N0 that satisfy
∇∗B∇φ0j = 0, in Ω,

φ0j = 1, on Γ0j ,

φ0j = 0, on ΓN \ Γ0j ,

n ·B∇φ0j = 0, on ΓD.

(2.34)

Since

τ ·A−1∇⊥φi = n ·B∇φi = 0, on ΓD,

n · ∇⊥φi = τ · ∇φi = 0, on ΓN ,

τ ·A−1∇⊥φ0j = n ·B∇φ0j = 0, on ΓD,

n · ∇⊥φ0j = τ · ∇φ0j = 0, on ΓN ,
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it follows from (2.31), (2.33), and (2.34) that∇⊥φi,∇⊥φ0j ∈W, and that they satisfy
(2.26) i) and ii). We note that if Assumptions A1–A3 hold, then problems (2.33) and
(2.34) satisfy our additional assumptions: the uniformly symmetric positive definite
matrix B is C1,1 and, if x ∈ Γ0 separates ΓN and ΓD, then

nT−Bn+ =
1

det(A)
nT−An+ ≤ 0.

Thus, since (2.20) applies as before, then both (2.33) and (2.34) are H2(Ω) regular
and there exist constants C ′i and C ′0j such that

‖φi‖2,Ω ≤ C ′i, ‖φ′0j‖2,Ω ≤ C ′0j(2.35)

for i ∈ N and j ∈ N0, where C ′i and C ′0j depend only on Ω and A.
LEMMA 2.4. Let A be C1,1 and uniformly symmetric positive definite on Ω, which

satisfies Assumptions A1 and A2. Let z ∈W satisfy

i) ∇∗z = 0, in Ω,

ii) ∇×A−1z = 0, in Ω.
(2.36)

Then

z =
∑
j∈D0

α0jA∇p0j +
∑
i∈D

αiA∇pi +
∑
j∈N0

β0j∇⊥φ0j +
∑
i∈N

βi∇⊥φi.(2.37)

Moreover, if Assumption A3 holds, then z ∈ H1(Ω)2 and

‖z‖1,Ω ≤ C‖z‖0,Ω,(2.38)

where C depends only on Ω and A.
Proof. We begin by constructing a function w in one of two ways:

w = z−

∑
j∈D0

α0jA∇p0j +
∑
i∈D

αiA∇pi +
∑
i∈N

βi∇⊥φi

(2.39)

or

w = z−

∑
i∈D

αiA∇pi +
∑
j∈N0

β0j∇⊥φ0j +
∑
i∈N

βi∇⊥φi

 .(2.40)

We will then show that proper choices of coefficients lead to the conclusion that w = 0.
To this end, choose α0j , αi, β0j , and βi so that∫

Γi
n ·w = 0, i ∈ D ,

∫
Γi
τ ·A−1w = 0, i ∈ N,(2.41)

and

either
∫

Γ0j

n ·w = 0, j ∈ D0, or
∫

Γ0j

τ ·A−1w = 0, j ∈ N0.(2.42)
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A decomposition of the form (2.39) is accomplished by solving the linear system

(2.43)
∑

j∈D0

(∫
Γ0i

n · A∇p0j
)
α0j +

∑
j∈D

(∫
Γ0i

n · A∇pj
)
αj +

∑
j∈N

(∫
Γ0i

n · ∇⊥φj
)
βj =

∫
Γ0i

n · z for i ∈ D0,

∑
j∈D0

(∫
Γi

n · A∇p0j
)
α0j +

∑
j∈D

(∫
Γi

n · A∇pj
)
αj =

∫
Γi

n · z for i ∈ D,

∑
j∈D0

(∫
Γi

τ · ∇p0j
)
α0j +

∑
j∈N

(∫
Γi

n · B∇φj
)
βj =

∫
Γi

τ · A−1z for i ∈ N.

Note that
∫

Γi
n · ∇⊥φj =

∫
Γi
τ · ∇φj = 0 for i ∈ D and

∫
Γi
τ · ∇pj = 0 for i ∈ N

because the integrations are carried out on a closed path.
To see that (2.43) has a solution, note first that it is a singular but consistent

system of linear equations. Consider the first two block rows in the upper left of the
tableau. Since each A∇pi, A∇p0j , and ∇⊥φj is divergence free, then

∫
Γ n · A∇pi =∫

Γ n ·A∇p0i =
∫

Γ n · ∇⊥φj0. Thus, the sum of any column of these two block rows is
zero. The sum of the first two blocks of the right-hand side is also zero by the same
reasoning. The null space of the transpose is the same as the null space of the matrix
and consists of setting αi = α for i ∈ D, α0i = α for i ∈ D0, and βi = 0 for i ∈ N .
This corresponds to a constant function, which is in the null space of ∇. A reduced
nonsingular system can be found by setting any αi or α0i to zero and deleting the
corresponding row. To see that this reduced system is nonsingular, assume otherwise;
then, for some z, there are two solutions whose αi’s differ by something other than
a constant; their difference would yield a nonzero function of the form (2.37) that
satisfies the hypotheses of Lemma 2.3, which is a contradiction.

With this choice for α0j , αi, and βi, the function w satisfies the hypotheses of
Lemma 2.3, which implies w = 0. If the form (2.40) had been chosen, a similar
argument would yield coefficients αi, β0j , and βi with one β set to zero.

Now suppose Assumption A3 holds. Since the linear system represented by the
left-hand side of (2.43) depends only upon Ω and A, then there exist constants C1 –
C4 such that

max
j∈D∪D0

|αj |+ max
j∈N∪N0

|βj | ≤ C1

(
max

j∈D∪D0

∣∣∣∣∣
∫

Γj
n · z

∣∣∣∣∣+ max
j∈N∪N0

∣∣∣∣∫
Γi
τ ·A−1z

∣∣∣∣
)

≤ C2(‖n · z‖−1/2,Γ + ‖τ ·A−1z‖−1/2,Γ)

≤ C2(‖z‖H(div; Ω) + ‖A−1z‖H(curl ; Ω))

≤ C3‖z‖0,Ω.

Finally, (2.30), (2.35), and (2.37) yield

‖z‖1,Ω ≤ C4

(
max

i∈D∪D0
|αi|+ max

i∈N∪N0
|βi|
)
≤ C‖z‖0,Ω,

and the lemma is proved.
We remark that the decomposition of z is not unique. For example, any linear

combination of (2.39) and (2.40) whose coefficients sum to one again yields zero.
Proof of Theorem 2.2. We now prove the lower bound in (2.23) by decomposing

v as

v = A∇p+∇⊥φ,(2.44)
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where p, φ ∈ H2(Ω). This is done by first choosing p0 to satisfy
∇∗A∇ p0 = ∇∗v, in Ω,

p0 = 0, on ΓD,

n ·A∇ p0 = 0, on ΓN ,

(2.45)

which by our assumptions is H2(Ω) regular and thus (2.20) holds. Together with (2.3)
and Assumption A3, this implies that there exist constants C1 and C2 such that

‖A∇p0‖1,Ω ≤ C1‖p0‖2,Ω ≤ C2‖∇∗v‖0,Ω.(2.46)

Note also that p0 = 0 on ΓD, which implies τ · A−1(A∇p0) = τ · ∇p0 = 0 on ΓD.
Together with n · (A∇p0) = 0 on ΓN , we see that A∇p0 ∈W.

Next we construct φ0 to satisfy
∇∗B∇φ0 = ∇×A−1v, in Ω,

φ0 = 0, on ΓN ,

n ·B∇φ0 = 0, on ΓD.

(2.47)

Again we see that (2.47) is H2(Ω) regular and there exists a constant C3 such that

‖∇⊥φ0‖1,Ω ≤ ‖φ0‖2,Ω ≤ C3‖∇×A−1v‖0,Ω.(2.48)

Moreover, by similar arguments, we have ∇⊥φ0 ∈W.
Now, let

z = v −A∇p0 −∇⊥φ0.(2.49)

Then z satisfies the hypotheses of Lemma 2.4. Combining (2.49), Lemma 2.4, (2.46),
and (2.48) yields

‖v‖1,Ω ≤ ‖z‖1,Ω + ‖A∇p0‖1,Ω + ‖∇⊥φ0‖1,Ω
≤ C ‖z‖0,Ω + ‖A∇p0‖1,Ω + ‖∇⊥φ0‖1,Ω
≤ C (‖v‖0,Ω + ‖A∇p0‖0,Ω + ‖∇⊥φ0‖0,Ω) + ‖A∇p0‖1,Ω + ‖∇⊥φ0‖1,Ω
≤ C ‖v‖0,Ω + C4‖A∇p0‖1,Ω + C5‖∇⊥φ0‖1,Ω
≤ C6

(
‖v‖0,Ω + ‖∇∗v‖0,Ω + ‖∇×A−1v‖0,Ω

)
for some constant C6, and the theorem is proved.

Finally, we remark that the full decomposition of v takes the form

v = A∇p0 +
∑
j∈D0

α0jA∇p0j +
∑
i∈D

αiA∇pi +∇⊥φ0 +
∑
j∈N0

β0j∇⊥φ0j +
∑
i∈N

βi∇⊥φi,

where αi and βi are chosen as in Lemma 2.4.

2.2. Three dimensions. Our additional assumptions for n = 3 restrict the
boundary Γ0 to be either Dirichlet or Neumann; that is, Γ0 ⊆ ΓD or Γ0 ⊆ ΓN .
Further, Γ0 is now either C1,1 or a convex polyhedron. The results in this section
generalize Theorems 3.7, 3.8, and 3.9 in Chapter I of [20], where, in addition to the
above restrictions on Γ0, it is assumed that the entire boundary is either Dirichlet or
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Neumann and that A = I. Unlike the two-dimensional proof, we use the result in [20]
in our three-dimensional proof, and thus make the same assumptions on Γ0.

THEOREM 2.3. Let Ω ∈ <3 satisfy Assumption A1. Assume that A = I and that
either ΓN = Γ or ΓD = Γ. Then Theorem 2.2 holds.

Proof. The proof follows from Theorems 3.7 and 3.9 in Chapter I of [20] and
Theorem 3.1 in [11].

Given the more general assumptions on A, ΓD, and ΓN , the upper bound in (2.23)
is immediate, so our task is again to establish the lower bound in (2.23). We first
gather some tools. The next two lemmas are technical but essential to what follows.

LEMMA 2.5. Let Ω ⊂ <3 such that the boundary ∂Ω is piecewise C1,1. If v ∈
H(curl ; Ω) and n× v = 0 on Γ̂ ⊆ Γ, then n · (∇×v) = 0 on Γ̂ (in the trace sense).

Proof. The proof follows from a modification to Remark 2.5 in [20]. We offer the
following heuristic proof. First, since v ∈ H(curl ; Ω), then n × v is well defined on
Γ. Also, ∇×v ∈ H(div; Ω) so n · (∇×v) is well defined on Γ. Now n × v = 0 on
Γ̂ implies v is normal to Γ̂. Assume that v ∈ D(Ω) and let x ∈ Γ̂. Consider the
definition

∇×v(x) = lim
∆V→0

1
∆V

∫
∂V

n̂× v,

where the limit is taken over any convenient neighborhood V ⊂ Ω of x with volume
∆V and surface normal n̂. For example, since Γ is piecewise C1,1, we may choose cubes
with two sides tangent to the boundary, on which n̂ = n, which yields n · (n̂ × v) =
v · (n̂ × n) = 0; on the other cube sides, we have the limiting property n · (n̂ ×
v)∆A

∆V → 0 since v is normal to ∂Ω at x. The result for v ∈ H(curl ; Ω) follows by
continuity.

LEMMA 2.6. Let Ω ⊂ <3 and let Γ be a simple, closed, piecewise C1,1 surface in
Ω. Let p ∈ H1(Ω) and ψ ∈ H1(Ω)3. Then∫

Γ
((n · ∇×ψ)p+ (n×ψ) · ∇p) = 0.(2.50)

Proof. The proof follows from a modification to Remark 2.5 in [20]. We offer the
following heuristic proof. Let n = (n1, n2, n3), ψ = (ψ1, ψ2, ψ3). Then

n×ψ =

 0 n3 −n2

−n3 0 n1

n2 −n1 0


 ψ1

ψ2

ψ3

 , ∇×ψ =

 0 ∂3 −∂2

−∂3 0 ∂1

∂2 −∂1 0


 ψ1

ψ2

ψ3

 .

Notice that each row of the matrix defining n× is a vector tangent to the surface, say
τ 1, τ 2, τ 3. A little algebra on (2.50) yields∫

Γ
((n · ∇×ψ)p+ (n×ψ) · ∇p) =

3∑
i=1

∫
Γ
τ i · ∇(ψip).

Since the surface is piecewise C1,1 and closed, each term in the sum is zero.
The next two theorems summarize results found in [20] that we will need.
THEOREM 2.4. Let Ω ⊂ <3 satisfy Assumption A1.
a. Then

w ∈ H(div; Ω), ∇∗w = 0,
∫

Γi
n ·w = 0 for i = 0, . . . , L(2.51)
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if and only if there exists ψ ∈ H(curl ; Ω) such that

w = ∇×ψ.(2.52)

b. Given (2.51), then there exists ψ ∈ H1(Ω)3 such that

w = ∇×ψ, ∇∗ψ = 0.(2.53)

c. Given (2.51), then there exists ψ ∈ H(curl ; Ω) such that

w = ∇×ψ, ∇∗ψ = 0, n ·ψ = 0 on Γ.(2.54)

If Ω is simply connected, then ψ is unique. Moreover, if Γ is C1,1, then ψ ∈ H1(Ω)3.
d. Given (2.51) and, in addition, Ω is simply connected and n ·w = 0 on Γ, then

there exists a unique ψ ∈ H(curl ; Ω) such that

w = ∇×ψ, ∇∗ψ = 0, n×ψ = 0 on Γ,
∫

Γi
n ·ψ = 0 for i = 0, . . . , L.(2.55)

Moreover, if Γ is C1,1, then ψ ∈ H1(Ω)3.
Proof. See Theorems 3.4, 3.5, and 3.6 in Chapter I of [20].
THEOREM 2.5. Let Ω ⊂ <3 satisfy Assumption A1. Assume that either n×w = 0

on Γ or that Ω is simply connected. Then w ∈ H(curl ; Ω) and ∇×w = 0 if and only
if w = ∇p for some p ∈ H1(Ω) and p is unique up to a constant.

Proof. See Theorem 2.9 in Chapter I of [20].
Next, as in the two-dimensional proof, we provide a result that allows us to declare

that a vector in W is 0.
LEMMA 2.7. Let A be uniformly symmetric positive definite on a simply connected

Ω ⊂ <3, which satisfies Assumptions A1 and A2. Let z ∈W satisfy

i) ∇∗z = 0, in Ω,

ii) ∇×A−1z = 0, in Ω,

iii)
∫

Γi
n · z = 0, for i ∈ D.

(2.56)

Then z = 0.
Proof. If Γ0 ⊆ ΓN , then n · z = 0 on Γ0 and we let N̂ = N ∪ {0}, D̂ = D. If

Γ0 ⊆ ΓD, let N̂ = N, D̂ = D ∪ {0}. In either case, since z ∈ W, then assumptions
(2.56) i) and iii) and Theorem 2.4 imply there exists ψ ∈ H1(Ω)3 such that z = ∇×ψ.
Assumptions (2.56) ii) and Theorem 2.5 imply there exists p ∈ H1(Ω) such that
A−1z = ∇p. Assumption (2.56) i) and Green’s formula then yield

0 = (∇∗z, p)

= (z, ∇p)−
∫

Γ
(n · z)p

= (A−1z, z)−
∫

Γ
(n · z)p.

Since z ∈W implies n · z = 0 on ΓN , we then have

(A−1z, z) =
∑
i∈D̂

∫
Γi

(n · z)p+
∑
i∈N̂

∫
Γi

(n · z)p

=
∑
i∈D̂

∫
Γi

(n · z)p.
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Likewise, z ∈W implies n×A−1z = 0 on ΓD, which by Lemma 2.6 yields∫
Γi

(n · z)p =
∫

Γi
(n · ∇×ψ)p = −

∫
Γi

(n×ψ) · ∇p

=
∫

Γi
(n×∇p) ·ψ =

∫
Γi

(n×A−1z) ·ψ = 0

for i ∈ D̂. Thus,

(A−1z, z) = 0.

Since A is uniformly symmetric positive definite, it follows that z = 0.
The next result is a generalization of Theorem 2.4.
THEOREM 2.6. Let Ω ⊂ <3 be simply connected and satisfy Assumptions A1 and

A2. Then

w ∈ H(div; Ω), ∇∗w = 0, n ·w = 0 on ΓD,∫
Γi

n ·w = 0 for i ∈ N
(2.57)

if and only if there exists a unique ψ ∈ H(curl ; Ω) such that

w = ∇×ψ, ∇∗ψ = 0, n ·ψ = 0 on ΓN ,

n×ψ = 0 on ΓD,
∫

Γi
n ·ψ = 0 for i ∈ D.

(2.58)

If Γ0 is C1,1, then ψ ∈ H1(Ω)3 and

‖ψ‖1,Ω ≤ C‖w‖0,Ω,(2.59)

where C is a constant depending only on Ω.
Proof. First assume that (2.58) holds. Then, by Theorem 2.4a, w ∈ H(div; Ω),

∇∗w = 0, and
∫

Γi
n ·w = 0 for i = 1, . . . , L. Lemma 2.5 yields n ·w = n · (∇×ψ) = 0

on ΓD.
Now assume that (2.57) holds. We will establish (2.58) and (2.59) together. First

suppose that two functions ψ1 and ψ2 satisfy (2.58). Then it follows from Lemma 2.7
with A = I that z = ψ1 − ψ2 = 0, which proves the uniqueness. We must now
construct ψ ∈ H(curl ; Ω) satisfying (2.58) and, when Γ0 is C1,1, (2.59). To apply
Theorem 2.4c, we first extend w by 0 beyond the Dirichlet boundaries according to
our two cases:

1) If Γ0 ⊆ ΓN , let N̂ = N ∪ {0} and D̂ = D, and define

Ω̂ = Ω ∪
(
∪i∈DΩi

)
.

Note that ∂Ω̂ = ΓN .
2) If Γ0 ⊆ ΓD, let O be any bounded, open, simply connected set
in <3 with connected C1,1 boundary such that Ω ⊂ O. Let Ω0 be
the portion of O outside Γ0 (see Fig. 2). Then let N̂ = N and
D̂ = D ∪ {0}, and define

Ω̂ = Ω0 ∪ Γ0 ∪ Ω ∪
(
∪i∈DΩi

)
.

Note that ∂Ω̂ = ΓN ∪ ∂O.
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Ω1 Ω2Γ1

Γ2

Ω

Γ0

Ω0

∂O

FIG. 2. A section of Ω ⊂ <3.

Now define

ŵ =

{
w, in Ω,

0, in (Ω̂ \ Ω) ∪ (∂Ω̂ \ ∂Ω).

Since ∇∗ŵ ∈ L2(Ωi) and n · ŵ is continuous across each Γi for i ∈ D̂, then ŵ ∈
H(div; Ω̂) and ∇∗ŵ = 0 in Ω̂. In either case 1) or 2),

∫
Γi

n · ŵ = 0 on each piece of

∂Ω̂ by assumption, so Theorem 2.4c implies that there exists a unique ψ̂ ∈ H(curl ; Ω̂)
such that

ŵ = ∇×ψ̂, ∇∗ψ̂ = 0, n · ψ̂ = 0 on ∂Ω̂,(2.60)

and, if Γ0 is C1,1, then ψ̂ ∈ H1(Ω̂)3.
We now construct ϕ ∈ H(curl ; Ω̂) such that ∇∗ϕ = 0, ∇×ϕ = 0 in Ω̂, and

n×ϕ matches n× ψ̂ on ΓD. Notice that ∇×ψ̂ = 0 in Ωi for i ∈ D̂. Since Ω is simply
connected, then each Ωi is simply connected (cf. proof of Theorem 3.6 in Chapter I
of [21]). By Theorem 2.5, ψ̂ = ∇qi in Ωi, where by (2.60) qi satisfies{

∇∗∇ qi = 0, in Ωi,

n · ∇ qi = n · ψ̂, on Γi
(2.61)

for i ∈ D, which is a compatible Neumann problem in H1(Ωi)/<.
If Γ0 is C1,1, then ψ̂ ∈ H1(Ω̂)3, which implies ψ̂ ∈ H1(Ωi)3. Together with the

fact that Γi is C1,1, we conclude that n ·ψ̂ ∈ H1/2(Γi). Thus, (2.61) is H2(Ωi) regular
and

‖qi‖2,Ωi ≤Mi‖n · ψ̂‖1/2,Γi ,(2.62)

where Mi is a constant depending only on Ωi.
For case 2), we need to define the additional function q0 that satisfies{

∇∗∇ q0 = 0, in Ω0,

n · ∇ q0 = n · ψ̂, on Γ0 ∪ ∂O,
(2.63)
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which is a compatible Neumann problem in H1(Ω0)/<. If Γ0 is C1,1, then the same
argument as above shows that (2.63) is H2(Ω0) regular and

‖q0‖2,Ω0 ≤M0‖n · ψ̂‖1/2,Γ0 ,(2.64)

where M0 is a constant depending only on Ω0.
Next, we choose q to satisfy

∇∗∇ q = 0, in Ω,

q = qi, on Γi, i ∈ D̂,
n · ∇ q = 0, on ΓN .

(2.65)

Then

q̂ =

{
q, in Ω,

qi, in Ωi, i ∈ D̂,

is in H1(Ω̂), which implies that ∇q̂ ∈ H(curl ; Ω̂), implying in turn that n ×∇qi =
n×∇q on ΓD. Thus,

n× ψ̂ = n×∇qi = n×∇q(2.66)

on ΓD.
If Γ0 is C1,1, then each qi ∈ H2(Ωi), which implies that qi ∈ H3/2(Γi), that

problem (2.65) is H2(Ω) regular, and, using (2.62) and (2.64), that there are constants
C1 − C3 such that

‖q‖2,Ω ≤ C1

∑
i∈D̂

‖qi‖3/2,Γi ≤ C2

∑
i∈D̂

‖qi‖2,Ωi

≤ C3

∑
i∈D̂

‖n · ψ̂‖1/2,Γi ≤ C3‖ψ̂‖1,Ω.(2.67)

Consider the functions pi for i ∈ D̂ that satisfy
∇∗∇ pi = 0, in Ω,

pi = 1, on Γi,

pi = 0, on ΓD \ Γi,

n · ∇ pi = 0, on ΓN .

(2.68)

Clearly, (2.68) is H2(Ω) regular and

‖pi‖2,Ω ≤ Ni(2.69)

for some constants Ni depending only on Ω.
We now set

ϕ = ∇q +
∑
i∈D̂

αi∇pi,(2.70)

where the constants αi are chosen so that∫
Γi

n · (ψ̂ −ϕ) = 0 for i ∈ D̂.(2.71)
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It is easy to see that ϕ is divergence and curl free in Ω, i.e.,

∇∗ϕ = 0 and ∇×ϕ = 0, in Ω.(2.72)

Now the αi are determined by solving the matrix equation

∑
j∈D̂

(∫
Γi

n · ∇pj
)
αj =

∫
Γi

n · (ψ̂ −∇q),(2.73)

for i ∈ D̂. Thus, ψ̂−∇q and each∇pj are divergence free and their normal components
vanish on ΓN , so the integrals of their normal components over the entire boundary
are zero. This implies that each column of the system sums to zero, as does the
right-hand side. Hence, it is a consistent but singular system, with a null space that
contains constant solutions, which yield a zero of ∇. Now if we delete any column
and corresponding row, setting the corresponding αi to zero, then Lemma 2.7 with
A = I implies that this reduced system is nonsingular: the difference of any two
functions arising from (2.70) and (2.73) satisfies the hypotheses of Lemma 2.7, so
that the difference is zero; this implies that any solution of the reduced system must
be unique; since the system is square, it must be nonsingular.

Since the left-hand side of (2.73) depends only on Ω (see (2.69)), then there is a
constant C4 depending only on Ω such that

max
i∈D̂
|αi| ≤ C4

∑
i∈D̂

∣∣∣∣∫
Γi

n · (ψ̂ −∇q)
∣∣∣∣ ≤ C4

∑
i∈D̂

‖n · (ψ̂ −∇q)‖−1/2,Γi

≤ C4‖ψ̂ −∇q‖H(div; Ω) = C4‖ψ̂ −∇q‖0,Ω.(2.74)

We now define

ψ = ψ̂ −ϕ.(2.75)

To see that ψ satisfies (2.58), note first that (2.60) and (2.72) imply

∇∗ψ = 0 and ∇×ψ = w in Ω.

Equation (2.71) implies that ∫
Γi

n ·ψ = 0

for i ∈ D̂. Finally, note that (2.60), (2.65), (2.68), and (2.70) yield

n ·ψ = n · ψ̂ − n ·ϕ = 0

on ΓN , while (2.70), (2.68), and (2.66) yield

n×ψ = n× ψ̂ − n×∇q = 0

on ΓD.
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If Γ0 is C1,1, then, as was mentioned above, ψ̂ ∈ H1(Ω̂)3. Now, ψ̂ and Ω̂ were
constructed so that ψ̂ ∈ H(div, Ω̂)∩H(curl, Ω̂) with n ·ψ̂ = 0 on ∂Ω̂. Thus, Theorem
3.9 in Chapter I of [20] applies and yields

‖ψ̂‖1, Ω̂ ≤ C5(‖ψ̂‖0, Ω̂ + ‖∇∗ψ̂‖0, Ω̂ + ‖∇×ψ̂‖0, Ω̂)

= C5(‖ψ̂‖0,Ω̂ + ‖∇×ψ̂‖0, Ω̂),(2.76)

for some constant C5 depending only on Ω̂. Lemma 3.6 in Chapter I of [20] yields

‖ψ̂‖0, Ω̂ ≤ C6‖∇×ψ̂‖0, Ω̂(2.77)

for some constant C6 depending only on Ω̂. Since ∇×ψ̂ = 0 in Ω̂ \Ω, then (2.76) and
(2.77) yield

‖ψ̂‖1,Ω ≤ ‖ψ̂‖1, Ω̂ ≤ C7‖∇×ψ̂‖0, Ω̂ = C7‖w‖0,Ω.(2.78)

We remark that because of the manner in which Ω̂ was chosen, the constants C5–C7
can be considered to depend only on Ω.

We also have from (2.70), (2.69), (2.74), and (2.67) that

‖ϕ‖1,Ω ≤ ‖∇q‖1,Ω +
∑
i∈D̂

|αi|‖∇pi‖1,Ω

≤ ‖∇q‖1,Ω + C8‖ψ̂ −∇q‖0,Ω

≤ C9‖q‖2,Ω + C8‖ψ̂‖0,Ω

≤ C10‖ψ̂‖1,Ω,(2.79)

where C8–C10 depend only on Ω. Equations (2.78) and (2.79) yield

‖ψ‖1,Ω ≤ ‖ψ̂‖1,Ω + ‖ϕ‖1,Ω ≤ C ‖w‖0,Ω,

which proves the theorem.
Proof of Theorem 2.2. To prove the lower bound in (2.23), we first restrict Ω

to be simply connected and Γ0 to be C1,1, and define D̂ and N̂ as in the proof of
Theorem 2.6.

Let v ∈W and define w = ∇×A−1v. By Theorem 2.4, w ∈ H(div; Ω) and

∇∗w = 0,
∫

Γi
n ·w = 0 for i = 0, . . . , L.

Since v ∈ W, then A−1v ∈ H(curl ; Ω) and n × A−1v = 0 on ΓD, so Lemma 2.5
applied to A−1v yields

n ·w = n · ∇×A−1v = 0

on ΓD. Thus, w satisfies hypothesis (2.57) of Theorem 2.6, so there exists ψ ∈ H1(Ω)3

such that

w = ∇×ψ, ∇∗ψ = 0, n ·ψ = 0, on ΓN ,

n×ψ = 0 on ΓD,
∫

Γi
n ·ψ = 0, for i ∈ D.

(2.80)
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Moreover,

‖ψ‖1,Ω ≤ C1‖w‖0,Ω = C1‖∇×A−1v‖0,Ω.(2.81)

Next, consider A−1v − ψ, which is in H(curl ; Ω). Since ∇×(A−1v − ψ) = 0, then
Theorem 2.5 implies that A−1v−ψ = ∇p for some p ∈ H1(Ω). We first construct p,
then bound it. Let p0 satisfy

∇∗A∇ p0 = ∇∗v −∇∗Aψ, in Ω,

p0 = 0, on ΓD,

n ·A∇ p0 = −n ·Aψ, on ΓN .

(2.82)

By hypothesis, problem (2.82) is H2(Ω) regular and, using (2.81), we have

‖p0‖2,Ω ≤ C2(‖∇∗v‖0,Ω + ‖∇∗Aψ‖0,Ω + ‖n ·Aψ‖1/2,ΓN )

≤ C2 ‖∇∗v‖0,Ω + C3‖ψ‖1,Ω
≤ C2 ‖∇∗v‖0,Ω + C4‖∇×A−1v‖0,Ω.(2.83)

As in the proof of Theorem 2.6, consider the functions pi for i ∈ D that satisfy
∇∗A∇ pi = 0, in Ω,

pi = 1, on Γi,

pi = 0, on ΓD \ Γi,

n ·A∇ pi = 0, on ΓN .

(2.84)

Clearly, (2.84) is H2(Ω) regular and

‖pi‖2,Ω ≤ Ni(2.85)

for some constants Ni depending only on Ω and A.
Now set

p = p0 +
∑
i∈D

αipi,(2.86)

and choose the αi so that∫
Γi

n · (v −A∇p−Aψ) = 0 for i ∈ D.(2.87)

This yields the matrix equation

∑
j∈D

(∫
Γi
A∇pj

)
αj =

∫
Γi

n · (v −A∇p0 −Aψ) for i ∈ D.(2.88)

Similar to the proof of Theorem 2.6, this system has a solution that is either unique
(when D 6= D̂) or unique up to a constant (when D = D̂). The matrix of (2.88)
depends only on Ω and A, so there is a constant C5 depending only on Ω and A such
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that

max
i∈D̂
|αi| ≤ C5

∑
i∈D̂

∣∣∣∣∫
Γi

n · (v −A∇p0 −Aψ)
∣∣∣∣

≤ C5

∑
i∈D̂

‖n · (v −A∇p0 −Aψ)‖−1/2,Γi

≤ C5‖v −A∇p0 −Aψ‖H(div; Ω)

≤ C5‖v‖H(div; Ω) + C6‖p0‖2,Ω + C7‖ψ‖1,Ω.(2.89)

To see that v = A∇p+Aψ, set

z = v −A∇p−Aψ,

and note from (2.80) that

∇×A−1z = ∇×A−1v −∇×ψ = 0

and from (2.82) that

∇∗z = ∇∗v −∇∗A∇p0 −∇∗Aψ = 0.

Since v ∈W implies n · v = 0 on ΓN , then (2.82) and (2.84) yield

n · z = n · v − n ·A∇p− n ·Aψ
= −n ·A∇p0 − n ·Aψ = 0

on ΓN . Likewise, v ∈ W implies n × A−1v = 0 on ΓD and (2.82) and (2.84) imply
n×∇p = 0 on ΓD. Together with (2.80) we then have

n×A−1z = n×A−1v − n×∇p− n×ψ = 0

on ΓD. Finally, with (2.87) we see that z satisfies the hypotheses of Lemma 2.7, so
z = 0 and, hence, v = A∇p+Aψ.

The bounds (2.85), (2.89), (2.81), and (2.83) yield

‖v‖1,Ω ≤ ‖A∇p0‖1,Ω +
∑
i∈D
|αi|‖A∇pi‖1,Ω + ‖Aψ‖1,Ω

≤ ‖A∇p0‖1,Ω + C8(‖v‖H(div; Ω) + ‖p0‖2,Ω + ‖ψ‖1,Ω) + ‖Aψ‖1,Ω
≤ C8‖v‖H(div; Ω) + C9‖p0‖2,Ω + C10‖ψ‖1,Ω

≤ C(‖v‖0,Ω + ‖∇∗v‖0,Ω + ‖∇×A−1v‖0,Ω)

for some constants C8 − C10 and C depending only on Ω and A. This proves the
theorem for simply connected Ω and smooth Γ0.

The proof for multiply-connected regions follows from a partition of unity argu-
ment as in part 2) of the proof of Theorem 3.7 in Chapter I of [21]. The proof when
Γ0 is a convex polyhedron is analogous to the proof for this case offered in Theorem
3.9 in Chapter I of [20]. There, a sequence of subregions Ωj ⊆ Ω with C1,1 boundaries
is constructed to converge outward to Ω. Using the fact that the result holds on each
Ωj , the result is shown to hold on Ω.

In the remainder of this paper, we will assume that the conclusion of Theorem
2.2 holds.
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3. Finite element approximation. Using two-dimensional terminology in these
last two sections, to discretize the least-squares variational form (2.14), let Th be a
regular triangulation of Ω with elements of size O(h) satisfying the inverse assumption
(see [18]). Assume we are given two finite element approximation subspaces

Wh ⊂W and Vh ⊂ V

defined on the triangulation Th. Then the finite element approximation to (2.14) is
to find (uh, ph) ∈Wh × Vh such that

F(uh, ph ; v, q) = f(v, q) ∀ (v, q) ∈Wh × Vh.(3.1)

For simplicity, we only consider continuous piecewise linear finite element spaces; i.e.,

Vh = {q ∈ C0(Ω) : q|K ∈ P1(K) ∀K ∈ Th, q ∈ V }

and

Wh = {v ∈ C0(Ω)n : vl|K ∈ P1(K) ∀K ∈ Th, v ∈W},

where P1(K) is the space of polynomials of degree at most one. Extension of the fol-
lowing results to higher-order finite element approximation spaces is straightforward.
(See [11] for the more general case and for the proofs of both theorems of this section.)

THEOREM 3.1. Assume that the solution, (u, p), of (2.14) is in H1+α(Ω)n+1 for
some α ∈ [0, 1], and let (uh, ph) ∈Wh × Vh be the solution of (3.1). Then

‖p− p
h
‖1,Ω + ‖u− uh‖1,Ω ≤ C hα (‖p‖1+α,Ω + ‖u‖1+α,Ω) ,(3.2)

where the constant C does not depend on h, p, or u.
Proof. The proof is a direct result of Theorem 2.2, Céa’s lemma, and interpolation

properties of piecewise linear functions (cf. [18]).
Let {φ1, . . . , φN} and {ψ1, . . . ,ψM} be bases for Vh and Wh, respectively. Then,

for any q ∈ Vh and v ∈Wh, we have

q =
N∑
i=1

ηiφi and v =
M∑
i=1

ξiψi.

Let |η| and |ξ| denote the respective l2-norms of the vectors η = (. . . , ηi, . . .)T and
ξ = (. . . , ξi, . . .)T . Assume that there exist positive constants βi (i = 0, 1, 2, 3) such
that

β0 h
n |η| ≤ ‖q‖0,Ω ≤ β1 h

n |η|(3.3)

and

β2 h
n |ξ| ≤ ‖v‖0,Ω ≤ β3 h

n |ξ|.(3.4)

Standard finite element spaces with the usual bases satisfy these bounds.
THEOREM 3.2. The condition number of the linear system resulting from (3.1) is

O(h−2).
Proof. The proof is the same as the proof of Theorem 6.1 in [11].
Remark 3.1. The proof of Theorem 6.1 in [11] shows that the smallest and largest

eigenvalues of the matrices arising from (3.1) are O(hn) and O(hn−2), respectively.
It is natural to scale the matrix by multiplying it by a factor of order h−n, so that
the smallest and largest eigenvalues are O(1) and O(h−2), respectively. In subsequent
sections, we assume that the matrix arising from (3.1) and the operator associated
with the bilinear form F(· ; ·) are so scaled.
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4. Multilevel additive and multiplicative algorithms. To develop multi-
level solution methods for matrix equations arising from problem (3.1), we start with
a coarse grid triangulation T0 of Ω̄ having the property that the boundary Γ is com-
posed of edges of triangles K ∈ T0 and points of Γ̄D ∩ Γ̄N are included as nodes of
T0. T0 is then regularly refined several times, giving a family of nested triangulations

T0, T1, . . . , TJ = Th

such that every triangle of Tj+1 is either a triangle of Tj or is generated by subdividing
a triangle of Tj into some congruent triangles (cf. [18]). Let hj denote the mesh size
of triangulation Tj and assume that

1 < γ ≤ γj ≡
hj
hj+1

≤ C

for fixed constants γ and C and for j = 0, 1, . . . , J − 1. (Here and henceforth, we will
use C with or without subscripts to denote a generic positive constant independent
of the mesh parameter h and the number of levels J . We will also use subscripts like
j in place of the more cumbersome hj so that Vj is used in place of Vhj , for example.)
Without loss of generality, we assume more specifically that

γ = γj = 2, j = 0, 1, . . . , J − 1.

For each j = 0, 1, . . . , J , we associate the triangulation Tj with the continuous piece-
wise linear finite element space Wj ×Vj . It is easy to verify that the family of spaces
{Wj × Vj} is nested, i.e.,

W0 × V0 ⊂W1 × V1 ⊂ · · · ⊂WJ × VJ = Wh × Vh.

Our multigrid algorithms are described in terms of certain auxiliary operators.
Fixing j ∈ {0, 1, . . . , J}, define the (self-adjoint) level j operator Fj : Wj × Vj −→
Wj × Vj for (u, p) ∈Wj × Vj by

(Fj(u, p); v, q) = F(u, p; v, q) ∀ (v, q) ∈Wj × Vj ,

where the inner product (· ; ·) is defined by

(u, p; v, q) = (u, v)0,Ω + (p, q)0,Ω.

Also, define the respective elliptic and L2 projection operators Pj , Qj : Wh×Vh −→
Wj × Vj for (u, p) ∈Wh × Vh by

F(Pj(u, p); v, q) = F(u, p; v, q) ∀ (v, q) ∈Wj × Vj

and

(Qj(u, p); v, q) = (u, p; v, q) ∀ (v, q) ∈Wj × Vj .

It is easy to verify that

QjFJ = FjPj .(4.1)

Let R0 = F−1
0 and let Rj : Wj×Vj −→Wj×Vj for 1 ≤ j ≤ J denote the smoothing

operators. Below we specify certain general conditions on Rj . For this purpose, we
define λj to be the largest eigenvalue (or spectral radius) of Fj for 1 ≤ j ≤ J .
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Problem (3.1) can be rewritten as

FJ(u
J
, p

J
) = FJ ,(4.2)

where FJ is the right-hand side vector. The additive multigrid preconditioner is
defined by

GJ =
J∑
j=0

RjQj .(4.3)

The effectiveness of GJ is estimated by the condition number of the preconditioned
operator

GJFJ =
J∑
j=0

Tj ,(4.4)

where

Tj = RjQjFJ .

For the multiplicative multigrid scheme, we define the following.
ALGORITHM 4.1 (Multiplicative multigrid algorithm). Given the initial approxi-

mation (uold
J
, pold

J
), perform the following steps:

1. Letting zJ = (uold
J
, pold

J
), compute an update from each successively coarser

level according to

zJ−j−1 = zJ−j +RJ−jQJ−j(FJ −FJzJ−j) for j = 0, 1, . . . , J − 1.

2. Letting ẑ0 = z0, compute an update from each successively finer level according
to

ẑj = ẑj−1 +Rj−1Qj−1(FJ −FJ ẑj−1) for j = 1, 2, . . . , J.

3. The final approximation is

(unew
J

, pnew
J

) = ẑJ .

Letting (u
J
, p

J
) denote the exact solution of (4.2), then it is easy to verify that

the multiplicative multigrid error equation for the new approximation (unew
J

, pnew
J

)
is given by

(u
J
, p

J
)− (unew

J
, pnew

J
) = EsJ

(
(u

J
, p

J
)− (uold

J
, pold

J
)
)
,

where the least-squares error reduction operator is given by

EsJ = EJE∗J ,

with

EJ = (I − TJ)(I − TJ−1) · · · (I − T0),

E∗J = (I − T ∗0 ) · · · (I − T ∗J−1)(I − T ∗J ).
(4.5)
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(Here we use the fact that the coarsest grid uses an exact solver, so that I − T0 =
(I−T0)2.) Note that E∗J is the adjoint of EJ with respect to the inner product F(· ; ·).
Since the error reduction operator EsJ is self-adjoint with respect to the inner product
F(· ; ·), we have

‖EsJ‖F = ‖EJ‖2F ,(4.6)

where the F-norm is defined by

‖ · ‖F =
√
F(· ; ·).

Remark 4.1. Algorithm 4.1 is a conventional V (1, 1)-cycle multigrid algorithm
applied to problem (4.2). More general multigrid algorithms, including nonsymmetric
cycling schemes like V (1, 0)-cycles and other cycling schemes like W -cycles, may
be defined (see [22] and [26]), but we restrict ourselves to the above algorithm for
concreteness and because the results are most interesting for this case. The following
immediately extends to such schemes, although the W -cycle results are not stronger
(see [6]). Moreover, our optimal V -cycle theory can be used in the usual way (cf.
[26]) to establish optimal total complexity of full-multigrid V-cycles (FMV). This is
straightforward but nevertheless important: while the V -cycle is viewed as an iterative
method that obtains optimal algebraic convergence factors, an FMV algorithm based
on such cycles is essentially a direct method that achieves overall accuracy to the level
of discretization error at a total cost proportional to the number of unknowns.

Letting

G(u, p; v, q) = (u, p; v, q) + (∇∗u, ∇∗v)0,Ω

+(curl (A−1u), curl (A−1v))0,Ω + (∇p, ∇q)0,Ω

and

(u, p; v, q)1,Ω = (u, p; v, q) + (∇u, ∇v)0,Ω + (∇p, ∇q)0,Ω,(4.7)

by Theorems 2.1 and 2.2 we know that the bilinear forms F(· ; ·) and G(· ; ·) and
the inner product (· ; ·)1,Ω are uniformly equivalent on Wh × Vh with respect to
h and J ; i.e., there exist positive constants Ci (i = 0, 1, 2, 3) such that, for any
(v, q) ∈Wh × Vh,

C0 (v, q; v, q)1,Ω ≤ C1 G(v, q; v, q) ≤ F(v, q; v, q)

≤ C2 G(v, q; v, q) ≤ C3 (v, q; v, q)1,Ω.(4.8)

Optimality of the additive scheme is a direct consequence of this equivalence and
existing multigrid theory (cf. [28, 29, 5]). We state it without proof.

THEOREM 4.1 (Additive multigrid algorithm). For any (v, q) ∈Wh×Vh, assume
that Rj is a symmetric operator with respect to (·; ·) and that it satisfies

C1
‖(v, q)‖20,Ω

λj
≤ (Rj(v, q); v, q) ≤ C2

‖(v, q)‖20,Ω
λj

for j = 1, 2, . . . , J.

Then

C1 F(v, q; v, q) ≤ F(GJFJ(v, q); v, q) ≤ C2 F(v, q; v, q).(4.9)
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Although multiplicative multigrid is often more efficient than the additive scheme,
its convergence theory can be more complicated. We will establish convergence of
multiplicative multigrid by verifying conditions required by the theory developed in
[5] (see also [36]), the only nontrivial task of which is to verify their second assumption
on the smoother as the next lemma does.

LEMMA 4.1. Let R̃0 = F−1
0 , R̃j = 1

λj
I for j > 0, where I is the identity operator,

and T̃j = R̃jQjFJ . Then, for any fixed β ∈ [0, 1
2 ), we have

F(T̃j(v, q); v, q) ≤ C
(
hj
hi

)2β

F(v, q; v, q)(4.10)

for any (v, q) ∈Wi × Vi with i ≤ j.
Proof. First note that (see Lemma 4.3 of [5]) for any β ∈ [0, 1

2 ), ϕ ∈ H1(Ω)n+1,
and ψ ∈ H1+β(Ω)n+1, we have∣∣∣∣∫

Ω

∂ϕs
∂xk

∂ψt
∂xl

dx

∣∣∣∣ ≤ C (η−1‖ϕs‖0,Ω + η
β

1−β ‖ϕs‖1,Ω
)
‖ψt‖1+β,Ω

for 1 ≤ s, t ≤ n + 1, 1 ≤ k, l ≤ n, and any η > 0. (It is important to note that
continuous piecewise linear functions are in H1+β(Ω) so that ‖ψt‖1+β,Ω < ∞; see
[7].) Hence,

|F(ϕ; ψ)| ≤ C
(
η−1‖ϕ‖20,Ω + η

β
1−β ‖ϕ‖21,Ω

) 1
2 ‖ψ‖1+β,Ω.(4.11)

Analogous to the proof of Lemma 4.2 in [5], we use the vector inverse inequalities

‖ϕ‖1,Ω ≤ Ch−1
j ‖ϕ‖0,Ω ∀ϕ ∈Wj × Vj ,

‖ψ‖1+β,Ω ≤ Ch−βi ‖ψ‖1,Ω ∀ψ ∈Wi × Vi,
(4.12)

for any β ∈ [0, 1
2 ), which follow immediately from the inverse inequalities for scalar

functions; see [7]. From the definitions of Fj and T̃j , we have

F(T̃j(v, q); v, q) =
1
λj
F(Fj(v, q); v, q) =

1
λj

(Fj(v, q); Fj(v, q)).(4.13)

For (v, q) ∈Wi × Vi with i ≤ j, (4.11) and (4.12) imply

‖Fj(v, q)‖0,Ω = sup
(w, p)∈Wj×Vj

|((w, p); Fj(v, q))|
‖(w, p)‖0,Ω

= sup
(w, p)∈Wj×Vj

|F((w, p); (v, q))|
‖(w, p)‖0,Ω

≤ C(η−1 + Cη
β

1−β h−2
j )

1
2h−βi ‖(v, q)‖1,Ω.(4.14)

Setting η = h2−2β
j and using (4.14) in (4.13) yields (4.10).

Assume that the smoothing operator Rj satisfies the following conditions for
j = 0, 1, . . . , J and for all (v, q) ∈Wh × Vh, where Kj = I −RjFj and ω ∈ (0, 2):

‖(v, q)‖20,Ω
λj

≤ C ((I −K∗jKj)F−1
j (v, q); v, q),

F(Tj(v, q); Tj(v, q)) ≤ ωF(Tj(v, q); v, q).
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These assumptions, which correspond to A4 and A5 of [5], are easily verified in general
for standard smoothers like Jacobi and Gauss–Seidel (cf. [26]).

THEOREM 4.2 (Multiplicative multigrid algorithm). We have

F(EJ(v, q); EJ(v, q)) ≤ γ F(v, q; v, q) ∀ (v, q) ∈Wh × Vh,(4.15)

where

γ = 1− 1
C
∈ (0, 1).

Proof. Since the boundary of the domain Ω is C1, 1 or a convex polyhedron, it is
easy to show (cf. [28, 29, 5]) that, for any (v, q) ∈Wh × Vh,

(v, q; v, q)1,Ω ≤ C
J∑
j=0

(T̃j(v, q); v, q)1,Ω.

Together with Lemma 3.1 in [5] and (4.8), this inequality implies that

F(v, q; v, q) ≤ C
J∑
j=0

F(T̃j(v, q); v, q).

The theorem now follows from Theorem 3.2 in [5] and Lemma 4.1.
Remark 4.2. Similar results can be obtained for domain decomposition (see [12])

and local mesh refinement methods (see [5]).
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