MATHEMATICAL MODELS OF PLANT-HERBIVORE INTERACTIONS

Zhihan Feng and Donald L. DeAngelis
Mathematical Models of Plant-Herbivore Interactions
Aims and scope:
This series aims to capture new developments and summarize what is known over the entire spectrum of mathematical and computational biology and medicine. It seeks to encourage the integration of mathematical, statistical, and computational methods into biology by publishing a broad range of textbooks, reference works, and handbooks. The titles included in the series are meant to appeal to students, researchers, and professionals in the mathematical, statistical and computational sciences, fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the field. The inclusion of concrete examples and applications, and programming techniques and examples, is highly encouraged.

Series Editors

N. F. Britton
Department of Mathematical Sciences
University of Bath

Xihong Lin
Department of Biostatistics
Harvard University

Nicola Mulder
University of Cape Town
South Africa

Maria Victoria Schneider
European Bioinformatics Institute

Mona Singh
Department of Computer Science
Princeton University

Anna Tramontano
Department of Physics
University of Rome La Sapienza

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
3 Park Square, Milton Park
Abingdon, Oxfordshire OX14 4RN
UK
An Introduction to Systems Biology: Design Principles of Biological Circuits
Uri Alon

Glycome Informatics: Methods and Applications
Kiyoko F. Aoki-Kinoshita

Computational Systems Biology of Cancer
Emmanuel Barillot, Laurence Calzone, Philippe Hupé, Jean-Philippe Vert, and Andrei Zinovyev

Python for Bioinformatics, Second Edition
Sebastian Bassi

Quantitative Biology: From Molecular to Cellular Systems
Sebastian Bassi

Methods in Medical Informatics: Fundamentals of Healthcare Programming in Perl, Python, and Ruby
Jules J. Berman

Chromatin: Structure, Dynamics, Regulation
Ralf Blossey

Computational Biology: A Statistical Mechanics Perspective
Ralf Blossey

Game-Theoretical Models in Biology
Mark Broom and Jan Rychtář

Computational and Visualization Techniques for Structural Bioinformatics Using Chimera
Forbes J. Burkowski

Structural Bioinformatics: An Algorithmic Approach
Forbes J. Burkowski

Spatial Ecology
Stephen Cantrell, Chris Cosner, and Shigui Ruan

Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling
Arnaud Chauvière, Luigi Preziosi, and Claude Verdier

Bayesian Phylogenetics: Methods, Algorithms, and Applications
Ming-Hui Chen, Lynn Kuo, and Paul O. Lewis

Statistical Methods for QTL Mapping
Zehua Chen

An Introduction to Physical Oncology: How Mechanistic Mathematical Modeling Can Improve Cancer Therapy Outcomes
Vittorio Cristini, Eugene J. Koay, and Zhihui Wang

Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems
Qiang Cui and Ivet Bahar

Kinetic Modelling in Systems Biology
Oleg Demin and Igor Goryanin

Data Analysis Tools for DNA Microarrays
Sorin Draghici

Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition
Sorin Drăghici

Computational Neuroscience: A Comprehensive Approach
Jianfeng Feng

Mathematical Models of Plant-Herbivore Interactions
Zhilan Feng and Donald L. DeAngelis

Biological Sequence Analysis Using the SeqAn C++ Library
Andreas Gogol-Döring and Knut Reinert

Gene Expression Studies Using Affymetrix Microarrays
Hinrich Göhlmann and Willem Talloen

Handbook of Hidden Markov Models in Bioinformatics
Martin Gollery

Meta-analysis and Combining Information in Genetics and Genomics
Rudy Guerra and Darlene R. Goldstein

Differential Equations and Mathematical Biology, Second Edition
D.S. Jones, M.J. Plank, and B.D. Sleeman

Knowledge Discovery in Proteomics
Igor Jurisica and Dennis Wigle

Introduction to Proteins: Structure, Function, and Motion
Amit Kessel and Nir Ben-Tal
Published Titles (continued)

RNA-seq Data Analysis: A Practical Approach
Eija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, and Garry Wong

Introduction to Mathematical Oncology
Yang Kuang, John D. Nagy, and Steffen E. Eikenberry

Biological Computation
Ehud Lamm and Ron Unger

Optimal Control Applied to Biological Models
Suzanne Lenhart and John T. Workman

Clustering in Bioinformatics and Drug Discovery
John D. MacCuish and Norah E. MacCuish

Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation
Horst Malchow, Sergei V. Petrovskii, and Ezio Venturino

Stochastic Dynamics for Systems Biology
Christian Mazza and Michel Benaim

Statistical Modeling and Machine Learning for Molecular Biology
Alan M. Moses

Engineering Genetic Circuits
Chris J. Myers

Pattern Discovery in Bioinformatics: Theory & Algorithms
Laxmi Parida

Exactly Solvable Models of Biological Invasion
Sergei V. Petrovskii and Bai-Lian Li

Computational Hydrodynamics of Capsules and Biological Cells
C. Pozrikidis

Modeling and Simulation of Capsules and Biological Cells
C. Pozrikidis

Cancer Modelling and Simulation
Luigi Preziosi

Introduction to Bio-Ontologies
Peter N. Robinson and Sebastian Bauer

Dynamics of Biological Systems
Michael Small

Genome Annotation
Jung Soh, Paul M.K. Gordon, and Christoph W. Sensen

Niche Modeling: Predictions from Statistical Distributions
David Stockwell

Algorithms for Next-Generation Sequencing
Wing-Kin Sung

Algorithms in Bioinformatics: A Practical Introduction
Wing-Kin Sung

Introduction to Bioinformatics
Anna Tramontano

The Ten Most Wanted Solutions in Protein Bioinformatics
Anna Tramontano

Combinatorial Pattern Matching Algorithms in Computational Biology
Using Perl and R
Gabriel Valiente

Managing Your Biological Data with Python
Allegra Via, Kristian Rother, and Anna Tramontano

Cancer Systems Biology
Edwin Wang

Stochastic Modelling for Systems Biology, Second Edition
Darren J. Wilkinson

Big Data Analysis for Bioinformatics and Biomedical Discoveries
Shui Qing Ye

Bioinformatics: A Practical Approach
Shui Qing Ye

Introduction to Computational Proteomics
Golan Yona
I dedicate this book to my daughter Haiyun and my son Henry
for all your love and support
– Zhilan Feng

I thank my wife Lie for her love and patience
– Donald L. DeAngelis
Contents

Foreword xiii
Preface xv
List of Figures xvii
List of Tables xix

I Basic Theory and Simple Models 1

1 Introduction 3
1.1 Types of plant-herbivore interactions; e.g., plant and herbivore diversity, types of herbivore feeding on plants 3
1.2 Plant growth and allocation 5
1.3 Modeling herbivore foraging strategies 6
1.4 The consequences of herbivore-plant interactions 8

2 Predator-Prey Interactions 11
2.1 Beginnings of predator-prey modeling 11
2.2 Derivation of the Holling type 2 and type 3 functional responses 13
2.3 Incorporating the predator functional response into one-predator and one-prey equations 16
2.3.1 Equilibria of the one-prey one-predator system 18
2.4 Functional response for predation on two or more prey species 19
2.5 Stability of model equilibria 20

3 Overview of Some Results of Plant-Herbivore Models 23
3.1 Introduction 23
3.1.1 Non-interactive 23
3.1.2 Interactive 24
3.2 The theory of top-down control 24
3.3 Paradox of enrichment 28
3.4 Collapse of a grazer-plant system 31
3.5 Herbivore outbreaks 34
3.6 Effects of plant quality 38
3.7 Glossary 41
4 Models with Toxin-Determined Functional Response

4.1 A simple TDFRM with a single plant population

4.1.1 Derivation and emerging properties of the model

4.1.2 Dynamics for constant browsing preference

4.1.2.1 Bifurcation analysis

4.1.3 Dynamics for non-constant browsing preference

4.1.4 Global dynamics of the 2-dimensional TDFRM

4.2 A 3-dimensional TDFRM with two plant species

4.2.1 The model with two plant species

4.2.2 Validation of the model

4.2.3 Analytic results for fixed allocation of foraging effort σ_i

4.2.3.1 Analysis of the model in the absence of toxins

4.2.3.2 Analysis of the model with toxins included

4.2.4 Adaptive foraging by adjusting feeding effort $\sigma_i(t)$

4.3 Plant-herbivore interactions with age-dependent toxicity

4.3.1 The model with age-dependent toxicity

4.3.2 Herbivore extinction and oscillations

4.4 Reaction-diffusion modeling approach

4.4.1 A 2-D TDFRM with herbivore movement included

4.4.2 Existence of traveling wave solutions

4.5 Glossary

II Applications

5 Plant Quality and Plant Defenses: Parallels and Differences

5.1 Induced defense in plants: Effects on plant-herbivore interactions

5.1.1 Introduction

5.1.2 Model 1

5.1.3 Model 2

5.2 Plant defense allocation strategies

5.2.1 Allocation of resources by plants

5.2.2 Allocation when anti-herbivore defenses are included

5.2.2.1 PLATHO model

5.2.3 Methods of compensation for herbivore damage

5.2.3.1 Model of plant compensation

5.2.3.2 Deriving a function for the optimization of G

5.2.3.3 Numerical evaluation of G as a function of allocations η_f, η_r, and η_w

5.3 Glossary

6 Herbivore Strategies: The Role of Plant Quality and Defenses

6.1 Herbivore strategies in exploiting plants

6.1.1 Introduction

6.1.1.1 Food quality

6.1.1.2 Plant defenses

6.1.2 Herbivore adaptations

6.1.3 Modeling feeding choice to optimize intake of a limiting nutrient

6.1.4 Constraint on plant toxin intake
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.5 An herbivore foraging on spatially distinct patches</td>
<td>124</td>
</tr>
<tr>
<td>6.1.6 Linear programming to determine optimal selection of plant types</td>
<td>127</td>
</tr>
<tr>
<td>6.2 Snowshoe hares browsing strategy in the presence of predator</td>
<td>129</td>
</tr>
<tr>
<td>6.2.1 Vegetation-hare-generalist predator model</td>
<td>130</td>
</tr>
<tr>
<td>6.2.2 Vegetation-hare-specialist predator model</td>
<td>133</td>
</tr>
<tr>
<td>6.3 Glossary</td>
<td>137</td>
</tr>
<tr>
<td>7 Plant Toxins, Food Chains, and Ecosystems</td>
<td>139</td>
</tr>
<tr>
<td>7.1 A plant toxin mediated mechanism for the lag in snowshoe hare dynamics</td>
<td>139</td>
</tr>
<tr>
<td>7.1.1 Application of the model to the shrub birch Betula glandulosa</td>
<td>142</td>
</tr>
<tr>
<td>7.1.2 Experiments</td>
<td>143</td>
</tr>
<tr>
<td>7.1.3 Model predictions</td>
<td>146</td>
</tr>
<tr>
<td>7.1.4 Discussion</td>
<td>148</td>
</tr>
<tr>
<td>7.2 Dynamics of the TDFRM with plant, herbivore, and predator</td>
<td>150</td>
</tr>
<tr>
<td>7.2.1 Invasion criterion of toxic plant in an equilibrial environment</td>
<td>153</td>
</tr>
<tr>
<td>7.2.2 Invasion criterion of toxic plant in an oscillatory environment</td>
<td>157</td>
</tr>
<tr>
<td>7.3 Applications of TDFRM to a boreal forest landscape</td>
<td>159</td>
</tr>
<tr>
<td>7.3.1 Integration of TDFRM and ALFRESCO</td>
<td>161</td>
</tr>
<tr>
<td>7.3.2 Plant toxins and trophic cascades alter fire regime and succession on a boreal forest landscape</td>
<td>164</td>
</tr>
<tr>
<td>7.3.3 More on the integration of TDFRM and ALFRESCO</td>
<td>166</td>
</tr>
<tr>
<td>7.3.3.1 Parameter estimation and calibration</td>
<td>169</td>
</tr>
<tr>
<td>7.3.4 Discussion</td>
<td>172</td>
</tr>
<tr>
<td>7.4 Glossary</td>
<td>173</td>
</tr>
<tr>
<td>8 Fire, Herbivory, Tree Chemical Defense, and Spatial Patterns in the Boreal Forest</td>
<td>175</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>175</td>
</tr>
<tr>
<td>8.2 Fire’s relationship to browsing mammal abundance</td>
<td>175</td>
</tr>
<tr>
<td>8.3 Antibrowsing chemical defenses of B. neoalaskana and B. papyrifera: Benefit and cost</td>
<td>176</td>
</tr>
<tr>
<td>8.4 Fire’s relationship to the distributions of B. neoalaskana and B. papyrifera</td>
<td>179</td>
</tr>
<tr>
<td>9 Example of Mathematica Notebooks</td>
<td>183</td>
</tr>
<tr>
<td>9.1 Simulations of a simple plant-herbivore model</td>
<td>183</td>
</tr>
<tr>
<td>9.2 Sample codes for simulations of TDFRM</td>
<td>185</td>
</tr>
<tr>
<td>9.3 Plots of stochastic simulations for spatial distributions of vegetation</td>
<td>187</td>
</tr>
<tr>
<td>9.4 Mathematica notebooks</td>
<td>189</td>
</tr>
<tr>
<td>References</td>
<td>193</td>
</tr>
<tr>
<td>Index</td>
<td>217</td>
</tr>
</tbody>
</table>
Foreword

In the latter half of the twentieth century, research directed toward obtaining a mechanistic understanding of the causes and effects of plant anti-herbivore defense became the focus of intense research in ecology and evolution. Part of this research effort has been the development of a diverse set of mathematical models of these mechanisms. The intent of this book is to introduce and summarize the current state of these modeling efforts. Professor Feng and Dr. DeAngelis have admirably achieved this.

This book begins with a sound introduction to basic mathematical theories of general predator-prey interactions such as the Rosenzweig–MacArthur equations. This introduction is followed by consideration of how these equations have been used to mathematically analyze interactions between plants and their herbivore predators. Then more recent mathematical models of plant herbivore interactions, such as linear programming models, are discussed, and in this introduction the notion of plant chemical anti-herbivore defense is introduced. Following the introduction into mathematical models of the idea that plant chemical defenses could constrain herbivore attack of plants, a more recent set of models is introduced. These are based upon the effects that plant toxins could have on the functional response of herbivores to plant biomass. This toxin-determined functional response model (the TDFRM), which has been successfully tested at least once in a long-term ecological research project, provides a potentially very powerful theoretical basis for plant chemical defense theory, especially as it applies to generalist herbivores such as browsing mammals.

The TDFRM is founded upon two observations that I made in Alaska over forty years ago. The first observation was on winter browsing mammals such as the snowshoe hare (*Lepus americanus*), the moose (*Alces alces gigas*), and ptarmigan (*Lagopus* spp.). These fed preferentially upon woody plant species, the ontogenetic stages (juvenile versus mature) of these species, and parts of the twigs of ontogenetic stages that were not rich in lipid-soluble substances that were potentially toxic. They tended to avoid eating much of the biomass of species, ontogenetic stages, and twig parts that were comparatively rich in these potential toxins. This observation suggested that the browsing mammals that I was familiar with were attempting to minimize toxin intake. The second observation was that, when a generally little-browsed species that was rich in lipid-soluble toxins, such as the Siberian green alder (*Alnus viridis* subsp. *fruitcosa*), occurred in low biomass in a forest patch, snowshoe hares browsed it to an extraordinarily high degree. I could come up with only one explanation for this observation: Even though an individual snowshoe hare could eat only a few grams of the twig biomass of green alder, if the biomass of green alder was a relatively small fraction of the forest vegetation and multiple hares each fed on the few green alder plants available to them, the combined effect of numerous hares would result in severe browsing of the few green alders. But, if the biomass of green alder was greater and the biomass of hares was constant, then, as generally observed, green alder would be lightly browsed. This observation again suggested that toxins, in this case the stilbenes pinosylvin and pinosylvin mono-methyl ether of green alder, were regulating the rate at which the herbivores, in this case snowshoe hares, were eating the biomass of their prey. If this was the case, then the rate of intake of green alder biomass by snowshoe hares could be modeled as some sort of Michaelis–Menten function in which detoxification processes
were controlling the herbivore’s rate of predation on its plant prey. Subsequent experiments using snowshoe hares and a toxic defense of the juvenile stage of the Alaska paper birch (*Betula neoalaskana*), the dammarane triterpene papyriferic acid, strongly supported this hypothesis.

With this information in hand, I was fortunate enough to meet with Professor Feng and to mention this possibility to her. Professor Feng immediately suggested that a good way to mathematically describe what I explained to her was to add a term to C. S. Holling’s functional response predator-prey model that enabled toxicity to regulate the intake of plant biomass by a generalist herbivore. This was the beginning of the TDFRM theory developed in later chapters of this book. Subsequent to the building of the initial TDFRM, the effects of predators of herbivores such as wolves in a tritrophic system were developed, and the results of this extension now appear to accurately predict the dynamics of a woody plant-moose-wolf system in interior Alaska. Additionally, the notion of herbivore evasion of their predators has been coupled to the initial TDFRM, and this coupling could well provide a powerful tool in analyzing the “landscape of fear” hypothesis that predicts that, at the level of the landscape, toxin-determined foraging and the fear of predation interact to determine the foraging behavior of herbivores.

So, to summarize, this book begins with an excellent introduction of predator-prey theory as it applies to plant-herbivore interactions and ends with what now appears to be a powerful mathematical model of how plant toxins affect the dynamics of these interactions at levels extending from individual plant parts and individual herbivores to tritrophic interactions across entire landscapes.

John P. Bryant

Cora, Wyoming (Institute of Arctic Biology, University of Alaska Fairbanks, retired)
Preface

This book arose out of a long collaboration between the authors on attempting to use mathematical modeling to describe and understand the effects that plant defenses have on plant-herbivore dynamics. The core of the book involves a toxin-determined functional response model (the TDFRM) that was formulated with specific reference to mammalian browsers in the boreal forest confronted with plant communities in which species could have varying degrees of defense. This model and its elaborations itself spans a great range of dynamic behaviors. However, we felt it was not enough to constitute a complete book. Therefore, we have expanded the book both to include other plant-herbivore work we have been involved with and to provide an even broader context of modeling plant-herbivore interactions.

The book is divided into two halves, one a mathematical overview and the other selected applications. We begin in Chapter 1 with a very general conceptual overview of the modeling of plant growth and resource allocation, as well as of herbivore foraging, and then briefly review the resultant plant-herbivore interactions. Chapter 2 derives the basic Holling type 2 functional response and some of the general properties of predator-prey interactions with the functional response. In Chapter 3, well-known ecological models are used to illustrate five key concepts in herbivore-plant interactions. The TDFRM is described in detail in Chapter 4, including extension to spatial situations.

The applied half of the book begins with models related to a plant’s dealing with herbivory, both through allocation of energy to inducible defenses and its ability to compensate for various levels of herbivory (Chapter 5). In Chapter 6, the emphasis is on herbivores’ foraging strategies in response to the problems posed by low plant quality (low nutrient concentration) toxins, and predators. The use of the TDFRM to describe effects of toxicity at the food chain and ecosystem levels is covered in Chapter 7. In Chapter 8, we try to provide a broader conceptual view of how the prevalence of fire is related to the strong presence of plant toxicity in the boreal biome and how this shapes species distributions. Chapter 9 is a primer on the use of Mathematica in simulating the models described here. Particularly, we demonstrate the feature that allows the simultaneous visualization of model outcomes as parameter values are varying, which is especially useful for decision making in management.

This book is intended for graduate students and others who have some background in nonlinear differential equations, but we hope that the material in Chapters 2 and 3 is a relatively easy introduction that will make the rest of the book accessible to many readers. The book is not intended to be a complete textbook, as the topics by no means cover all the vast field of modeling of plant-herbivore interactions but to some extent reflect both the authors’ primary experience with mammal browsers in the boreal forest. Also, we have generally avoided large, complex simulation models in favor of mathematical models of moderate complexity. But many of the key ways that nonlinear differential equations are used to describe plant-herbivore interactions are represented here.

We are indebted to our many collaborators on earlier works and publications, some of which are represented here. The TDFRM initially was developed as a collaboration between John Bryant, Zhilan Feng, and Robert Swihart, motivated by John’s conjectures based on
field observations and experiences in real ecological systems. This collaboration was later joined by Donald DeAngelis and Rongsong Liu. An NSF grant that supported this project (DMS-0920828) helped to establish the collaboration with a team from the University of Alaska in Fairbanks, including F. Stuart Chapin III, Tim Glaser, Knut Kielland, Mark Olson, and Jennifer Schmidt, and to provide support for students at Purdue University including Jorge Alfaro-Murillo, Matthew Barga, Muhammad Hanis B. Ahamad Tamrin, and Yiqiang Zheng. The inducible defense modeling described in Chapter 5 was the result of a collaboration of DeAngelis and a team of empiricists and modelers led by Matthijs Vos. The snowshoe hare dynamics modeling was done with Rongsong Liu, Stephen Gourley, and John Bryant. A model of plant compensation was the work of DeAngelis with Shu Ju. Some of the results for the TDFRM described in Chapters 4 and 7 involved collaborations of DeAngelis and Feng with Carlos Castillo-Chavez, Xiuli Cen, Wenzhang Huang, Ya Li, Zhipeng Qiu, and Yulin Zhao.