Fred Brauer
Carlos Castillo–Chavez
Zhilan Feng

Mathematical Models in Epidemiology

February 20, 2019

Springer
Contents

Preface ... xii
Acknowledgements .. xiv

Part I Basic Concepts of Mathematical Epidemiology

1 Introduction: A Prelude to Mathematical Epidemiology 3
 1.1 Introduction ... 3
 1.2 Some History .. 4
 1.2.1 The Beginnings of Compartmental Models 5
 1.2.2 Stochastic Models .. 7
 1.2.3 Developments in Compartmental Models 9
 1.2.4 Endemic disease models 11
 1.2.5 Diseases transmitted by vectors 12
 1.2.6 Heterogeneity of mixing 14
 1.3 Strategic Models and this Volume 15
References .. 16

2 Simple Compartmental Models for Disease Transmission 21
 2.1 Introduction to Compartmental Models 22
 2.2 The SIS Model ... 26
 2.3 The SIR Model with Births and Deaths 30
 2.4 The Simple Kermack-McKendrick Epidemic Model 34
 2.5 Epidemic Models with Deaths due to Disease 42
 2.6 *Project: Discrete Epidemic Models 44
 2.7 *Project: Pulse Vaccination 46
 2.8 *Project: A Model with Competing Disease Strains 48
 2.9 Project: An Epidemic Model in Two Patches 51
 2.10 Project: Fitting Data for an Influenza Model 51
 2.11 Project: Social Interactions 52
 2.12 Exercises .. 53
3 Endemic Disease Models

3.1 More Complicated Endemic Disease Models

3.1.1 Exposed periods
3.1.2 A treatment model
3.1.3 Vertical transmission

3.2 Some Applications of the SIR Model

3.2.1 Herd immunity
3.2.2 Age at infection
3.2.3 The inter-epidemic period
3.2.4 “Epidemic” approach to endemic equilibrium

3.3 Temporary Immunity

3.3.1 *Delay in an SIRS model

3.4 A Simple Model with Multiple Endemic Equilibria

3.5 A Vaccination Model: Backward Bifurcations

3.6 *An SEIR Model with General Disease Stage Distributions

3.6.1 *Incorporation of quarantine and isolation
3.6.2 *The reduced model of (3.42) under GDA
3.6.3 *Comparison of EDM and GDM

3.7 Diseases in Exponentially Growing Populations

3.8 Project: Population Growth and Epidemics

3.9 *Project: An Environmentally Driven Infectious Disease
3.10 *Project: A Two-Strain Model with Cross Immunity
3.11 Exercises

References

4 Epidemic Models

4.1 A Branching Process Disease Outbreak Model

4.1.1 Transmissibility

4.2 Network and Compartmental Epidemic Models

4.3 More Complicated Epidemic Models

4.3.1 Exposed periods
4.3.2 A treatment model
4.3.3 An influenza model
4.3.4 A quarantine-isolation model

4.4 An SIR model with a General Infectious Period Distribution

4.5 The Age of Infection Epidemic Model

4.5.1 A general SEIR model
4.5.2 A general treatment model
4.5.3 A general quarantine/isolation epidemic model

4.6 The Gamma Distribution

4.7 Interpretation of Data and Parametrization

4.7.1 Models of SIR Type
5 Models with Heterogeneous Mixing

5.1 A Vaccination Model .. 173
5.2 The Next Generation Matrix and the Basic Reproduction Number .. 175
 5.2.1 Some More Complicated Examples 181
5.3 Heterogeneous Mixing ... 181
 5.3.1 *Optimal vaccine allocation in heterogeneous populations . 195
5.4 A Heterogeneous Mixing Age of Infection Model 201
 5.4.1 The final size of a heterogeneous mixing epidemic 203
5.5 Some Warnings ... 207
5.6 *Projects: Reproduction Numbers for Discrete Models 208
5.7 *Project: Modeling the Synergy between HIV and HSV-2 211
5.8 Project: Effect of Heterogeneities on Reproduction Numbers 214
References ... 215

6 Models for Diseases Transmitted by Vectors

6.1 Introduction ... 219
6.2 A Basic Vector Transmission Models 220
 6.2.1 The basic reproduction number 222
 6.2.2 The initial exponential growth rate 223
6.3 Fast and Slow Dynamics 224
 6.3.1 Singular perturbations 226
6.4 A Vector-borne Epidemic model 228
 6.4.1 A final size relation 229
6.5 *Project: An SEIR/SEI Model 230
6.6 *Project: Models for Onchocerciasis 231
6.7 Exercises ... 233
References ... 234

Part II Models for Specific Diseases

7 Models for Tuberculosis .. 239
7.1 A One-strain Model with Treatment 241
7.2 A Two-strain TB Model 242
7.3 Optimal Treatment Strategies 246
7.4 Modeling of the Long and Variable Latency of TB 251
7.5 Backward Bifurcation in a TB Model with Reinfection 253
8 Models for HIV/AIDS
8.1 Introduction ... 265
8.2 A Model with Exponential Waiting Times 267
8.3 An HIV Model with Arbitrary Incubation Period Distributions 270
8.4 An Age of Infection Model 273
8.5 *HIV and Tuberculosis: Dynamics of Co-infections 275
8.6 *Modeling the Synergy between HIV and HSV-2 283
 8.6.1 Reproduction numbers for individual diseases 286
 8.6.2 Invasion reproduction numbers 288
 8.6.3 Influence of HSV-2 on the dynamics of HIV 289
8.7 An HIV Model with Vaccination 290
8.8 A Model with Antiretroviral Therapy (ART) 291
8.9 Project: What If Not All Infectives Progress to AIDS? 293
References ... 295

9 Models for Influenza 303
9.1 Introduction to Influenza Models 303
9.2 A Basic Influenza Model 304
 9.2.1 Vaccination .. 307
9.3 Antiviral Treatment 310
9.4 Seasonal Influenza Epidemics 315
 9.4.1 Season to Season Transition 317
9.5 Pandemic Influenza 318
 9.5.1 A pandemic outbreak 318
 9.5.2 Seasonal outbreaks following a pandemic 319
9.6 The Influenza Pandemic of 2009 321
 9.6.1 A tactical influenza model 322
 9.6.2 Multiple epidemic waves 323
 9.6.3 Parameter estimation and forecast of the fall wave 325
9.7 *An SIQR model with Multiple Strains with Cross Immunity 328
 9.7.1 *An SIQR Model with a Single Infectious Class 330
 9.7.2 *The case of two strains with cross Immunity 334
9.8 Exercises ... 338
References ... 339

10 Models for Ebola 343
10.1 Estimation of initial growth and reproduction numbers 343
 10.1.1 Early detection 349
10.2 Evaluations of control measures 352
Contents

10.3 The Legrand model and underlying assumptions 353
10.3.1 The Legrand model .. 354
10.3.2 A simpler system equivalent to the Legrand model 355
10.4 *Models with various assumptions on stage transition times 356
10.5 Slower than Exponential Growth 372
10.5.1 The generalized Richards model 373
10.5.2 The generalized growth model 373
10.5.3 The IDEA model .. 374
10.5.4 Models with decreasing contact rates 375
10.6 Project: Slower than Exponential Growth 375
10.7 Project: Movement Restrictions as a Control Strategy 376
10.8 Project: Effect of Early Detection 377
References ... 378

11 Models for Malaria .. 381
11.1 A Malaria Model .. 381
11.2 Some Model Refinements 385
11.2.1 Mosquito incubation periods 385
11.2.2 Boosting of immunity 386
11.2.3 Alternative forms for the force of infection 387
11.3 *Coupling Malaria Epidemiology and Sickle Cell Genetics ... 387
References ... 396

12 Dengue Fever and the Zika Virus 399
12.1 Dengue Fever ... 399
12.1.1 Calculation of the basic reproduction number 401
12.2 A Model with Asymptomatic Infectives 402
12.2.1 Calculation of the basic reproduction number 402
12.3 The Zika Virus .. 403
12.4 A Model with Vector and Direct Transmission 404
12.4.1 The initial exponential growth rate 407
12.5 A Second Zika Virus Model 409
12.6 Project: A Dengue Model with Two Patches 410
References ... 412

Part III More Advanced Concepts

13 Disease Transmission Models with Age Structure 419
13.1 Introduction ... 419
13.2 Linear Age Structured Models 420
13.3 The Method of Characteristics 422
13.4 Equivalent Formulation as an Integral Equation Model 422
13.5 Equilibria and the characteristic equation 424
13.6 The Demographic Model with Discrete Age Groups 425
13.7 Nonlinear Age Structured Models 426
13.8 Age Structured Epidemic Models 428
16 Challenges, Opportunities and Theoretical Epidemiology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Disease and the Global Commons</td>
<td>496</td>
</tr>
<tr>
<td>16.1.1 Contagion and tipping points</td>
<td>496</td>
</tr>
<tr>
<td>16.1.2 Geographic and spatial disease spread</td>
<td>497</td>
</tr>
<tr>
<td>16.2 Heterogeneity of Mixing, Cross Immunity, and Co-infection</td>
<td>498</td>
</tr>
<tr>
<td>16.3 Antibiotic Resistance</td>
<td>498</td>
</tr>
<tr>
<td>16.4 Mobility</td>
<td>500</td>
</tr>
<tr>
<td>16.4.1 A Lagrangian approach to modeling mobility and infectious disease dynamics</td>
<td>501</td>
</tr>
<tr>
<td>16.5 Behavior, Economic Epidemiology and Mobility</td>
<td>508</td>
</tr>
<tr>
<td>16.5.1 Economic epidemiology</td>
<td>509</td>
</tr>
<tr>
<td>16.5.2 Lagrangian and economic epidemiology models</td>
<td>511</td>
</tr>
</tbody>
</table>

References

- Epilogue: 521
- References: 525

Part V Appendix

Appendix

- Vectors and Matrices: 531
 - A.1 Introduction: 531
 - A.2 Vectors and Matrices: 531
 - A.3 Systems of Linear Equations: 535
 - A.4 The Inverse Matrix: 536
 - A.5 Determinants: 537
 - A.6 Eigenvalues and Eigenvectors: 540

- First Order Equations: 545
 - B.1 Exponential Growth and Decay: 545
 - B.2 Radioactive decay: 547
 - B.3 Solutions and Direction Fields: 549
 - B.4 Equations with Variables Separable: 555
 - B.5 Qualitative Properties: 560

- Systems of Differential Equations: 569
 - C.1 The Phase Plane: 569
 - C.2 Linearization at an Equilibrium: 571
 - C.3 Linear Systems with Constant Coefficients: 574
 - C.4 Stability of Equilibria: 582
 - C.5 Qualitative Behavior of Solutions of Linear Systems: 586

Index

- 595