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Abstract
We propose a one-dimensional (1D) model for the three-dimensional (3D) incom-
pressible ideal magnetohydrodynamics. For this 1D model, local well-posedness is
established, and a regularity criterion of theBeale–Kato–Majda type is obtained.With-
out the stretching effect, the model with only transport effect is shown to have global
in time strong solution. Some numerical simulations suggest that solutions of the
model with certain smooth periodic initial data are not likely to develop singularities
in finite time, while solutions starting from other initial data have the tendency to form
singularities.
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1 Introduction

The ideal incompressible magnetohydrodynamics (MHD) governed by the set of
partial differential equations

ut + (u · ∇)u − (B · ∇)B + ∇� = 0,

Bt + (u · ∇)B − (B · ∇)u = 0,

∇ · u = 0, ∇ · B = 0,

(1.1)

is an important model in geophysics and astrophysics. In the system, the vector fields
u and B denote the fluid velocity and magnetic field respectively; the scalar function
� is the pressure. We notice that (1.1) reduces to the incompressible Euler equation
if B ≡ 0,

ut + (u · ∇)u + ∇� = 0,

∇ · u = 0.
(1.2)

The mathematical question of whether or not a solution of the 3D Euler (1.2) develops
singularity at finite time remains open. So does it for the 3D MHD (1.1).

Denote the vorticity by ω = ∇ × u. Taking a curl on (1.2) gives

ωt + (u · ∇)ω + (ω · ∇)u = 0, (1.3a)

u = ∇ × (−�)−1ω. (1.3b)

We note that u can be recovered from ω through the Biot–Savart law (1.3b) which
involves a nonlocal operator. In (1.3a), the quadratic term (u · ∇)ω is regarded as the
transport term, while (ω · ∇)u represents the stretching effect. The general belief is
that the stretching effect is responsible for dramatic wild behaviours of solutions, for
instance, the appearance of finite-time singularity.

1.1 1DModels for Euler Equation and Related Equations

To gain insights towards understanding the properties of solutions to the Euler equation
(1.2), approximating models and toy models have been proposed and studied in the
literature. One type of 1Dmodels for the vorticity form of Euler equation has attracted
a great deal of attention, which can be traced back to the work of Constantin et al.
(1985). The authors of Constantin et al. (1985) proposed the following 1D model for
system (1.3a)–(1.3b),

ωt = ωHω, (1.4a)

ux = Hω, (1.4b)
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with ω = ω(t, x) and u = u(t, x) for t ≥ 0 and x ∈ R. In the system, H denotes the
Hilbert transform defined by

H f = 1

π
P.V .

∫ ∞

−∞
f (y)

x − y
dy. (1.5)

We note that equation (1.4b) is a 1D analogue of the Biot–Savart law (1.3b). With only
stretching effect in equation (1.4a), the authors solved system (1.4a)–(1.4b) exactly
and showed the formation of finite-time singularities for a class of initial data. Since
then, various generalisations of (1.4a)–(1.4b) have been studied both analytically and
numerically. The De Gregorio model (De Gregorio 1996, 1990)

ωt + uωx − ωHω = 0, (1.6a)

ux = Hω, (1.6b)

includes both transport and stretching effects. Numerical results of DeGregorio (1996,
1990) provide evidence that finite-timeblow-upmaynot occur for system (1.6a)–(1.6b)
with some smooth periodic initial data. It indicates that the convection (transport)
term has a regularization effect. Later on, in order to understand the competing effects
of convection and stretching terms, Okamoto et al. (2008) suggested to study the
following family of models

ωt + auωx − ωHω = 0, (1.7a)

ux = Hω, (1.7b)

with a parameter a ∈ R. The authors also conjectured global in time existence of
solutions to (1.7a)–(1.7b) with a = 1 which is the De Gregorio model (1.6a)–(1.6b).
Indeed, Jia et al. (2019) proved that solutions of (1.6a)–(1.6b) with initial data near
a steady state are global and converge to this steady state. Lei et al. (2020) showed
that the De Gregorio model with non-negative vorticity initial data is globally well-
posed. In contrast, Elgindi and Jeong (2020) showed singularity formation for (1.6a)–
(1.6b) in classes of Hölder continuous solutions. Moreover, the authors of Elgindi and
Jeong (2020) established that, there exists smooth initial data such that solution of the
Okamoto–Sakajo–Wunsch model (1.7a)–(1.7b) with small |a| develops self-similar
type of blow-up at finite time. Later on, Elgindi et al. (2021) further showed that such
self-similar blow-up is stable. In Chen et al. (2021), Chen, Hou and Huang provided
a novel method of analysis and established self-similar blowup for the De Gregorio
model with certain initial data on both R and S

1. For (1.7a)–(1.7b), Chen (2021b)
showed finite time singularity from some smooth initial data when a < 1 and close
to 1, and global well-posedness with the same initial data when a > 1. When a = 1,
Chen (2021a) proved finite time blowup for (1.7a)–(1.7b) on S1 with Cα data for any
α < 1. The model (1.7a)–(1.7b) with a viscosity term was also studied in Chen (2020)
for a ∈ R. Recently, Lushnikov et al. (2021) performed an extensive numerical and
analytical study of (1.7a)–(1.7b) on the topic of global existence versus finite time
singularity formation for different values of a. They identified a new critical value
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ac = 0.6890665337007457... below which self-similar type of singularity develops
in finite time. Moreover, for a = 0 and a = 1

2 , the authors constructed exact analytical
solutions with pole singularity.

In the literature, many other 1D simplified models for fluid equations have been
studied. A notable model is the nonlocal transport equation

θt − (Hθ)θx = 0 (1.8)

which has a connection with the integrodifferential Birkhoff-Rott equation modeling
vortex sheets, see (Baker et al. 1996; Morlet 1998). It has an analogy with (1.7a)–
(1.7b) as well. Indeed, taking derivative ∂x on (1.8), the resulted equation is equivalent
to (1.7a)–(1.7b) with a = −1. Moreover, it serves as a 1D simplified model for the
surface quasi-geostrophic equation. Córdoba et al. (2005, 2006) showed finite-time
singularity formation for (1.8) with a general class of initial data. For axisymmetric
3D incompressible Navier–Stokes equation with swirl, Hou et al. (2011) proposed a
1D nonlocal model for a simplified 3D nonlocal system (Hou and Lei 2009). For this
1Dmodel, the authors proved finite-time singularity formation rigorously and showed
numerical evidences.

1.2 1DModels for MHD

Inspired by the works discussed above, we will propose a family of nonlocal nonlinear
models for the MHD system (1.1) as an attempt to understand the intricate structures
involved in this system. In the context of MHD, besides the convection and stretching
effects, the coupling and interaction between the fluid velocity and magnetic field also
play crucial roles, which naturally introduce additional challenges.

Denote the Elsässer variables by

p = u + B, m = u − B.

Equivalent to (1.1), (p,m) satisfies the system

pt + (m · ∇)p + ∇� = 0,

mt + (p · ∇)m + ∇� = 0,

∇ · p = 0, ∇ · m = 0.

(1.9)

The structure of system (1.9) indicates that p and m are transported by each other. We
also note that (1.9) appears in a rather symmetric form. Denote the vorticity of p and
m by

	 = ∇ × p, ω = ∇ × m.

It follows from the Biot–Savart law that

p = ∇ × (−�)−1	, m = ∇ × (−�)−1ω.
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Taking the curl ∇× on the equations of (1.9) gives

	t + (m · ∇)	 − (	 · ∇)m + ∇ × (m∇ p) = 0,

ωt + (p · ∇)ω − (ω · ∇)p + ∇ × (p∇m) = 0,

p = ∇ × (−�)−1	,

m = ∇ × (−�)−1ω,

(1.10)

where (m∇ p) j = mi∂ j pi and (p∇m) j = pi∂ jmi for 1 ≤ j ≤ 3. Note

∇ × (m∇ p) = (∂2mi ∂3 pi − ∂3mi ∂2 pi , ∂3mi ∂1 pi − ∂1mi ∂3 pi , ∂1mi ∂2 pi − ∂2mi ∂1 pi ) ,

∇ × (p∇m) = (∂2 pi ∂3mi − ∂3 pi ∂2mi , ∂3 pi ∂1mi − ∂1 pi ∂3mi , ∂1 pi ∂2mi − ∂2 pi ∂1mi )

and∇×(m∇ p) = −∇×(p∇m). To reveal the anti-symmetry feature, we can rewrite

∇ × (m∇ p) = 1

2
∇ × (m∇ p) − 1

2
∇ × (p∇m),

∇ × (p∇m) = 1

2
∇ × (p∇m) − 1

2
∇ × (m∇ p).

Superficially we view ∇ × (m∇ p) and ∇ × (p∇m) in analogy with (∇ ×m)∇ p and
(∇ × p)∇m, respectively. Thus we propose the following 1D model to mimic system
(1.10),

	t + m	x − 	mx + 1

2
ωpx − 1

2
	mx = 0,

ωt + pωx − ωpx + 1

2
	mx − 1

2
ωpx = 0,

px = H	, mx = Hω.

(1.11)

In this paper,wewillworkwith a simplified version of (1.11) by dropping the stretching
effects 	mx from the first equation and ωpx from the second equation, and focusing
on the transport effects and the nonlocal coupling, namely

	t + ãm	x + ωpx = 0,

ωt + ã pωx + 	mx = 0,

px = H	, mx = Hω,

with a parameter ã ∈ R. Applying the transform (	,ω) → (−	,−ω), the system
above is equivalent to the form

	t + am	x − ωpx = 0,

ωt + apωx − 	mx = 0,

px = H	, mx = Hω,

(1.12)
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with a = −ã ∈ R. We will investigate (1.12) on the periodic interval S1 = [−π, π ].
Correspondingly, the Hilbert transform for periodic functions on S1 can be defined as

H f (x) = 1

2π
P.V .

∫ π

−π

f (y) cot

(
x − y

2

)
dy. (1.13)

Indeed, the Cauchy kernel 1
x in definition (1.5) can be made periodic using the

following identity

1

2
cot

(
x − y

2

)
= 1

x
+

∞∑
n=1

(
1

x + 2nπ
+ 1

x − 2nπ

)
.

To uniquely determine p from 	 and m from ω, we make the choice of Gauge by
taking zero-mean value

∫ π

−π

p(t, x) dx =
∫ π

−π

m(t, x) dx = 0. (1.14)

We note that the mean value of 	 and ω is invariant for system (1.12) with a = 1.
Indeed, we have for a smooth solution (	,ω) that

d

dt

∫ π

−π

	(t, x) dx =
∫ π

−π

(−am	x + ωpx ) dx

=
∫ π

−π

(amx	 + ωpx ) dx

=
∫ π

−π

(a	Hω + ωH	) dx

=(1 − a)

∫ π

−π

ωH	 dx

wherewe have used integration by parts and the skew symmetry property of theHilbert
transform. Similarly, we have

d

dt

∫ π

−π

ω(t, x) dx =
∫ π

−π

(−apωx + 	mx ) dx = (1 − a)

∫ π

−π

	Hω dx .

Obviously when a = 1, it follows

d

dt

∫ π

−π

	(t, x) dx = d

dt

∫ π

−π

ω(t, x) dx = 0,

and this is not true in general for a 	= 1. However, we observe that for odd initial data
(	0, ω0), the solution (	,ω) of (1.12) remains odd. While for odd functions 	 and

123



Journal of Nonlinear Science            (2023) 33:87 Page 7 of 38    87 

ω, the Hilbert transform H	 and Hω are even, and hence

∫ π

−π

ωH	 dx =
∫ π

−π

	Hω dx = 0.

Therefore it is appropriate to consider solutions of (1.12) in spaces of functions with
zero mean for general value of a, since at least odd solutions of (1.12) automatically
have zero mean.

Regarding the parameter a, for the Euler model (1.7a)–(1.7b), it is believed that
a = 1 is the most relevant case. In contrast, it is not clear for which value a, model
(1.12) is more relevant for the original MHD system. A speculation is that a = −2
may be more relevant by comparing (1.11) and (1.12). This indicates the difference
of the ideal MHD from the Euler equation due to the interaction of the velocity and
magnetic field. It is an interesting question to be further investigated in future work.

Consider the rescaled variables

	̃ = a	, ω̃ = aω

with corresponding p̃ and m̃ such that

p̃x = H	̃, m̃x = H ω̃.

We can verify that p̃ = ap and m̃ = am. In view of (1.12), (	̃, ω̃) satisfies the system

	̃t + m̃	̃x − a−1ω̃ p̃x = 0,

ω̃t + p̃ω̃x − a−1	̃m̃x = 0.
(1.15)

Formally, taking a → ∞, (1.15) turns to the system with only convection effect (with
the tilde sign suppressed),

	t + m	x = 0,

ωt + pωx = 0,

px = H	, mx = Hω.

(1.16)

We will investigate both systems (1.12) and (1.16) in the paper. We point out that
formulating the problem in Elsässer variables does not give us essential advantage;
rather it has the benefit of dealing with less nonlinear terms.

1.3 Main Results

For general a ∈ R, we show the existence of local in time solutions to (1.12) in the
space H1(S1).

Theorem 1.1 Let a ∈ R and 	0, ω0 ∈ H1(S1). There exists a time T > 0 which
depends on ‖	0,x‖L2 and ‖ω0,x‖L2 such that there exists a unique solution (	(t, x),
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ω(t, x)) to (1.12) with initial data 	(0, x) = 	0 and ω(0, x) = ω0 on [0, T ), which
satisfies

	,ω ∈ C0
(
[0, T );H1(S1)

)
∩ C1

(
[0, T ); L2(S1)

)
.

The following theorem provides a Beale–Kato–Majda type of regularity criterion.

Theorem 1.2 Let (	(t, x), ω(t, x)) be the solution of (1.12) on [0, T ) obtained in
Theorem 1.1. If

∫ T

0
(‖H	(t)‖L∞ + ‖Hω(t)‖L∞) dt < ∞, (1.17)

the solution can be extended beyond T in the space H1(S1) × H1(S1).

Furthermore, if the initial data is in a space with higher regularity, the solution
obtained in Theorem 1.1 also has higher regularity. Specifically, we will show:

Theorem 1.3 Assume	0, ω0 ∈ Hn(S1) with n ≥ 2. Let (	,ω) be a solution of (1.12)
with initial data (	0, ω0) on [0, T ), satisfying 	,ω ∈ C([0, T );H1). Then, we have

sup
0≤t<T

(‖	(t)‖Hn + ‖ω(t)‖Hn ) < ∞.

With only transport effect, the solution of (1.16) can be shown to exist in the space
H1(S1) for all the time. Namely, we have

Theorem 1.4 Assume 	0, ω0 ∈ H1(S1). Then there exists a unique solution
(	(t), ω(t)) of (1.16) with initial data (	0, ω0) on [0,∞).

Remark 1.5 If p = m and 	 = ω, system (1.12) reduces to the 1D Euler model
(1.7a)–(1.7b). Therefore, in this special situation, the aforementioned solutions with
finite time singularity for the Euler model with various values of the parameter a are
also (trivial) solutions of (1.12).

Remark 1.6 For the original ideal MHD (1.1) in 2D or 3D, it is known that the Beale–
Kato–Majda type regularity criterion with condition imposed only on the velocity is
valid. The main reason is that the magnetic field equation in (1.1) is linear in B. A
common interpretation of the BKM criterion with only velocity dependence is that
the velocity field plays a more dominant role for incompressible MHD. In the 1D
situation, the criterion of Theorem 1.2 relies on both the velocity and magnetic field.
The additional dependence ofmagnetic field is essentially due to the loss of divergence
free condition in 1D, that is, ∇ · u = ∇ · B = 0 is not valid any more. In general, the
loss of divergence free is an artefact for 1D simplified models, which causes deviation
for the simplifiedmodels from the original PDE systems in some aspects. For instance,
the 1D model (1.8) does not conserve the L2 norm of smooth solution θ , while the 2D
SQG does conserve the L2 norm. Back to the 1D model of MHD, such artefact brings
forth more influence of the magnetic field on the entire system.
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Numerical study is presented in Sect. 6. The numerical results suggest that starting
from some smooth periodic initial data, solutions of themodel (1.12) with some values
ofa are unlikely to develop singularities infinite time;while solutions of themodelwith
some initial data and certain a have the tendency to form singularities. In particular,
one of the observations agrees with the numerical results done by De Gregorio (1996,
1990) and Okamoto et al. (2008) for the De Gregorio model (1.6a)–(1.6b). Another
interesting observation is that the solution of (1.12) with an initial data and a = −1
seems regular. It is worth to point out that the numerical indication of no singularity
for (1.12) with a = −1 does not contradict the finite time singularity formation result
of Córdoba et al. (2005). Our numerical simulation is performed for some particular
initial data on the periodic domain S

1, while the singular solution of Córdoba et al.
(2005) is constructed onR for a specific class of initial data. In addition, we note finite
time blowup for (1.12) with a = −1 was also established on S

1 for a class of initial
data by Chen et al. (2021). Therefore it seems that the choice of initial data plays an
important role for the phenomena of finite time singularity formation when a = −1.

To conclude, we mention that the analytical results established in Theorems 1.1,
1.2, 1.3 and 1.4 hold on the space R as well, with slight modifications of the proofs.
We present the results on the periodic domain S

1 such that, as a consistent followup
in Sect. 6, numerical study in periodic settings is performed. We would like to add
that, we learned an interesting approach to transform 1D models between periodic
domain and R from Lushnikov et al. (2021) after the completion of the first version
of our manuscript. With the transform given by arctan function, one can study these
1D models numerically on R as well.

2 Notations and Preliminaries

2.1 Functional Setting

Denote

L2(S1) =
{
f | f ∈ L2(−π, π), f is periodic on[−π, π ]

}
,

Hk(S1) =
{
f | f (s) ∈ L2(−π, π), f (s) is periodic on[−π, π ], for all 0 ≤ s ≤ k

}
.

In particular, we consider the triplet of spaces

V =
{
f

∣∣∣∣ f ∈ H2(S1),

∫ π

−π

f (x) dx = 0

}

W = H1(S1), X = L2(S1),

with the obvious embedding V ⊂ W ⊂ X .
We denote (, ) by

( f , g) =
∫ π

−π

f g dx .
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The space Hk(S1) is a Hilbert space endowed with the natural inner product

( f , g)Hk =
k∑

s=0

(
f (s), g(s)

)
for functions f , g ∈ Hk(S1),

and norm ( f , f )
1
2
Hk .

A bilinear form 〈, 〉 : V × X → R is defined as

〈 f , g〉 = −
∫ π

−π

fxx g dx .

Applying the integration by parts, we have for all f ∈ V and g ∈ W

〈 f , g〉 = ( fx , gx ).

For a space Z , we denote Z2 = Z ×Z by convention. In the context of a coupled
system, for instance (1.12), it is convenient to introduce the triplet {V2,W2,X 2}.
Naturally, the Hilbert space W2 is endowed with the inner product

( f , g)W2 = ( f1, g1)W + ( f2, g2)W ∀ f = ( f1, f2) ∈ W2, g = (g1, g2) ∈ W2.

In an analogous way, inner product can be defined for V2 and X 2. A bilinear form
〈, 〉 : V2 × X 2 → R is defined as

〈 f , g〉 = −
∫ π

−π

f1,xx g1 dx −
∫ π

−π

f2,xx g2 dx . (2.1)

For all f = ( f1, f2) ∈ V2 and g = (g1, g2) ∈ W2, we also have

〈 f , g〉 = ( f1,x , g1,x ) + ( f2,x , g2,x ).

Definition 2.1 A family {Z,H,Y} of three real separable Banach spaces is called an
admissible triplet if the following conditions hold:

(i) The inclusions Z ⊂ H ⊂ Y are continuous and dense.

(ii) H is a Hilbert space endowed with inner product (, )H and norm ‖‖H = (, )
1
2
H.

(iii) There is a continuous non-degenerate bilinear form on Z × Y , denoted by 〈, 〉,
such that

〈v, u〉 = (v, u)H, for v ∈ Z and u ∈ H. (2.2)

Denote Cw by the space of functions with weak continuity and C1
w the space of

functions with weak differentiability.
An abstract theorem of existence of Kato and Lai (1984) is stated as follows.
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Theorem 2.2 Let {Z,H,Y} be an admissible triplet. Let A : H → Y be a weakly
continuous map such that

〈v, A(v)〉 ≥ −β(‖v‖2H), ∀ v ∈ Z (2.3)

where β(r) ≥ 0 is a monotone increasing function of r ≥ 0. Then for any u0 ∈ H,
there exists a time T > 0 such that the Cauchy problem

ut + A(u) = 0, u(0, x) = u0

has a solution u(t, x) on [0, T ] satisfying

u ∈ Cw([0, T ];H) ∩ C1
w([0, T ];Y).

Moreover, sup0<t<T ‖u(t)‖H depends only on T , β and ‖u0‖H.

In order to prove the existence part of Theorem 1.1, the Kato–Lai theorem will be
applied to system (1.12) with the admissible triplet {V2,W2,X 2}.

2.2 Properties of Hilbert Transform

The Hilbert transform has the following simple properties

H(c f ) = cH f , for a constant c,

H sin(kx) = − cos(kx), H cos(kx) = sin(kx).

And more generally, we have

H sin(kx + θ) = − cos(kx + θ), H cos(kx + θ) = sin(kx + θ).

For any periodic function f , the mean value of its Hilbert transform is zero, that is

∫ π

−π

H f dx = 0. (2.4)

Lemma 2.3 (Zygmund 2002) The Hilbert transform H is a bounded linear operator
from space L p to L p with 1 < p < ∞ and

‖H f ‖L p ≤ Cp‖ f ‖L p (2.5)

for a constant Cp > 0 depending on p.
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3 Local Existence

This section is devoted to a proof of Theorem 1.1. The proof includes three steps: (i)
establishing the local existence of a solution by employing Theorem 2.2; (ii) showing
the uniqueness of solution by a rather standard argument; (iii) justifying the strong
continuity which is a consequence of the uniqueness and the time-reversible property
of system (1.12).

Proof of Theorem 1.1 Denote u = (	,ω), q = (p,m), and naturally qx = Hu =
(H	, Hω). Denote A(u) = (A1(u), A2(u)) with

A1(u) = am	x − ωpx , A2(u) = apωx − 	mx .

Thus, system (1.12) can be written as

ut + A(u) = 0.

It is obvious that the family {V2,W2,X 2} is an admissible triplet associated with the
bilinear form 〈, 〉 defined in (2.1). To apply Theorem 2.2, we will need to show that
the operator A maps W2 into X 2 continuously and it satisfies (2.3). Indeed, for any
u = (	,ω) ∈ W2 with q = (p,m) ∈ V2, we have

‖A(u)‖X 2 =
(
‖am	x − ωpx‖2L2 + ‖apωx − 	mx‖2L2

) 1
2

≤ ‖am	x − ωpx‖L2 + ‖apωx − 	mx‖L2

≤ |a|‖m‖L∞‖	x‖L2 + ‖ω‖L∞‖px‖L2

+ |a|‖p‖L∞‖ωx‖L2 + ‖	‖L∞‖mx‖L2

≤ c0
(|a|‖mx‖L2‖	x‖L2 + ‖ω‖H1‖px‖L2

+|a|‖px‖L2‖ωx‖L2 + ‖	‖H1‖mx‖L2
)

≤ c0 (|a| + 1)
(‖Hω‖L2‖	‖H1 + ‖ω‖H1‖H	‖L2

)
≤ c0 (|a| + 1)

(‖ω‖L2‖	‖H1 + ‖ω‖H1‖	‖L2
)

where we have used the Hölder inequality, Sobolev inequality, the fact that p and
m have zero mean, and the property (2.5). It follows that A maps W2 into X 2. On
the other hand, for any u1 = (	1, ω1) ∈ W2 with q1 = (p1,m1) ∈ V2 and u2 =
(	2, ω2) ∈ W2 with q2 = (p2,m2) ∈ V2, we deduce

‖A(u1) − A(u2)‖X 2 =
(
‖(am1	1,x − ω1 p1,x ) − (am2	2,x − ω2 p2,x )‖2L2

+‖(ap1ω1,x − 	1m1,x ) − (ap2ω2,x − 	2m2,x )‖2L2

) 1
2

≤ ‖(am1	1,x − ω1 p1,x ) − (am2	2,x − ω2 p2,x )‖L2

+‖(ap1ω1,x − 	1m1,x ) − (ap2ω2,x − 	2m2,x )‖L2 . (3.1)
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Applying the Hölder inequality, Sobolev inequality, and (2.5) leads to

‖(am1	1,x − ω1 p1,x ) − (am2	2,x − ω2 p2,x )‖L2

≤ |a|‖	1,x‖L2‖m1 − m2‖L∞ + |a|‖	1,x − 	2,x‖L2‖m2‖L∞

+ ‖ω2‖L∞‖p2,x − p1,x‖L2 + |a|‖ω2 − ω1‖L∞‖p1,x‖L2

≤ c0|a|‖	1,x‖L2‖m1,x − m2,x‖L2 + c0|a|‖	1,x − 	2,x‖L2‖m2,x‖L2

+ c0‖ω2‖H1‖p2,x − p1,x‖L2 + c0|a|‖ω2 − ω1‖H1‖p1,x‖L2

≤ c0(|a| + 1)
(‖	1‖H1 + ‖ω2‖H1

) (‖	1 − 	2‖H1 + ‖ω1 − ω2‖H1
)
,

(3.2)

and similarly

‖(ap1ω1,x − 	1m1,x ) − (ap2ω2,x − 	2m2,x )‖L2

≤ c0(|a| + 1)
(‖	1‖H1 + ‖ω2‖H1

) (‖	1 − 	2‖H1 + ‖ω1 − ω2‖H1
)
.
(3.3)

The estimates (3.1)–(3.3) together indicate that A : W2 → X 2 is strongly continuous.
By the definition of the bilinear form in (2.1), we have for any u = (	,ω) ∈ V2

〈u, A(u)〉 = − (uxx , A(u)) = (ux , (A(u))x )

= (	x , (am	x − ωpx )x ) + (ωx , (apωx − 	mx )x )

=
∫ π

−π

	x (amx	x + am	xx − ωx px − ωpxx ) dx

+
∫ π

−π

ωx (apxωx + apωxx − 	xmx − 	mxx ) dx .

(3.4)

Note that A(u) ∈ X 2 and (3.4) can bemade rigorous through a standard approximating
procedure. Applying integration by parts to the right hand side of (3.4), it has

a
∫ π

−π

m	x	xx dx = −a
∫ π

−π

mx	x	x dx − a
∫ π

−π

m	xx	x dx .

Hence we conclude

a
∫ π

−π

m	x	xx dx = −a

2

∫ π

−π

mx	
2
x dx, (3.5)

and similarly

a
∫ π

−π

pωxωxx dx = −a

2

∫ π

−π

pxω
2
x dx . (3.6)
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Since px = H	 and mx = Hω, combining (3.4)–(3.6) gives

〈u, A(u)〉 = (ux , (A(u))x )

= a

2

∫ π

−π

(Hω)	2
x dx + a

2

∫ π

−π

(H	)ω2
x dx

−
∫ π

−π

	xωx H	 dx −
∫ π

−π

ω	x H	x dx

−
∫ π

−π

	xωx Hω dx −
∫ π

−π

	ωx Hωx dx .

(3.7)

Applying Hölder’s inequality, Sobolev’s inequality, (2.4) and (2.5), we have

∣∣∣∣
∫ π

−π

Hω	2
x dx

∣∣∣∣ ≤ ‖Hω‖L∞‖	x‖2L2

≤ c0‖Hωx‖L2‖	x‖2L2

≤ c0‖ωx‖L2‖	x‖2L2 ,

(3.8)

and similarly

∣∣∣∣
∫ π

−π

	xωx H	 dx

∣∣∣∣ +
∣∣∣∣
∫ π

−π

ω	x H	x dx

∣∣∣∣ ≤ c0‖ω‖H1‖	x‖2L2 ,

∣∣∣∣
∫ π

−π

(H	)ω2
x dx

∣∣∣∣ ≤ c0‖ωx‖2L2‖	x‖L2 ,

∣∣∣∣
∫ π

−π

ωx	x Hω dx

∣∣∣∣ +
∣∣∣∣
∫ π

−π

ωx	Hωx dx

∣∣∣∣ ≤ c0‖ωx‖2L2‖	‖H1 .

(3.9)

Therefore, putting together (3.7)–(3.9), we deduce

|〈u, A(u)〉| ≤ c0(|a| + 1)
(
‖ω‖H1‖	x‖2L2 + ‖ωx‖2L2‖	‖H1

)

≤ c0(|a| + 1)
(‖ω‖H1 + ‖	‖H1

)3
.

(3.10)

Hence, the operator A satisfies (2.3) with β(r) = c0(|a| + 1)r
3
2 . As a consequence,

applying Theorem 2.2, we conclude that there exists a time T > 0 such that system
(1.12) has a solution (	(t, x), ω(t, x)) on [0, T ] satisfying

	,ω ∈ Cw([0, T ];W) ∩ C1
w([0, T ];X ).

Next we show the uniqueness of solution to (1.12). Let u1 = (	1, ω1) be a solution
to (1.12) with initial data u0 = (	0, ω0). Let q1 = (p1,m1) such that p1,x = H	1
and m1,x = Hω1. Let u2 = (	2, ω2) be another solution to (1.12) with the same
initial data (	0, ω0) and associated with q2 = (p2,m2). Since both (	1, ω1) and
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(	2, ω2) satisfy (1.12), we are able to show that (details omitted)

1

2

d

dt

(
‖	1(t) − 	2(t)‖2L2 + ‖ω1(t) − ω2(t)‖2L2

)

≤ c0(|a| + 1) max
0≤t≤T

(‖	1‖H1 + ‖	2‖H1 + ‖ω1‖H1 + ‖ω2‖H1
)

·
(
‖	1(t) − 	2(t)‖2L2 + ‖ω1(t) − ω2(t)‖2L2

)
.

(3.11)

Thus, uniqueness follows from (3.11) and Grönwall’s inequality.
Strong continuity in time follows from the uniqueness and the fact that system

(1.12) is time-reversible. Indeed, it follows from (3.10) that

‖	x (t)‖L2 + ‖ωx (t)‖L2 → ‖	0,x‖L2 + ‖ω0,x‖L2 as t → 0.

Hence, we know

	(t) → 	0, ω(t) → ω0 strongly in H1 as t → 0.

As a consequence of uniqueness, 	 and ω are strongly right-continuous. In addition,
the property of time-reversibility implies that 	 and ω are strongly left-continuous as
well. ��

4 Regularity Criterion

In this section, we prove Theorem 1.2 and the higher regularity result in Theorem 1.3.

Proof of Theorem 1.2 In view of the local existence theorem, we just need to show that
theH1 norm of 	(t) and ω(t) remains bounded as t → T under condition (1.17).

Assume (	,ω) is a solution of (1.12) on [0, T ). We note that

1

2

d

dt

(
‖	x‖2L2 + ‖ωx‖2L2

)

= (	x ,	t x ) + (ωx , ωt x )

= (	x ,−(am	x − ωpx )x ) + (ωx ,−(apωx − 	mx )x )

= −a

2

∫ π

−π

(Hω)	2
x dx − a

2

∫ π

−π

(H	)ω2
x dx

+
∫ π

−π

	xωx H	 dx +
∫ π

−π

ω	x H	x dx

+
∫ π

−π

	xωx Hω dx +
∫ π

−π

	ωx Hωx dx

(4.1)

where we used (3.7) in the last step. Applying the identities

(v, u) = (Hv, Hu), H(vHv) = 1

2

(
(Hv)2 − v2

)
,
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we infer

∫ π

−π

ω	x H	x dx =
∫ π

−π

(Hω)H(	x H	x ) dx

= 1

2

∫ π

−π

(Hω)
(
(H	x )

2 − (	x )
2
)
dx,

(4.2)

∫ π

−π

	ωx Hωx dx =
∫ π

−π

(H	)H(ωx Hωx ) dx

= 1

2

∫ π

−π

(H	)
(
(Hωx )

2 − (ωx )
2
)
dx .

(4.3)

Combining (4.1)–(4.3), we have

1

2

d

dt

(
‖	x‖2L2 + ‖ωx‖2L2

)

= −a + 1

2

∫ π

−π

(Hω)	2
x dx − a + 1

2

∫ π

−π

(H	)ω2
x dx

+ 1

2

∫ π

−π

(Hω)(H	x )
2 dx + 1

2

∫ π

−π

(H	)(Hωx )
2 dx

+
∫ π

−π

	xωx (H	 + Hω) dx

≤ |a + 1|
2

‖Hω‖L∞‖	x‖2L2 + |a + 1|
2

‖H	‖L∞‖ωx‖2L2

+ 1

2
‖Hω‖L∞‖	x‖2L2 + 1

2
‖H	‖L∞‖ωx‖2L2

+ ‖H	 + Hω‖L∞‖	x‖L2‖ωx‖L2

≤ c0(|a| + 1) (‖H	‖L∞ + ‖Hω‖L∞)
(
‖	x‖2L2 + ‖ωx‖2L2

)

(4.4)

for a constant c0 > 0. It follows from Grönwall’s inequality that

(
‖	x (t)‖2L2 + ‖ωx (t)‖2L2

)

≤
(
‖	x (0)‖2L2 + ‖ωx (0)‖2L2

)

exp

{
2c0(|a| + 1)

∫ t

0
(‖H	(τ)‖L∞ + ‖Hω(τ)‖L∞) dτ

}
.

Thus, the statement of the theorem is justified. ��
Proof of Theorem 1.3 The statement can be established through standard energy
method. We only deal with the case of n = 2 and obtain the a priori estimate for
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‖	(t)‖H2 and ‖ω(t)‖H2 . Formally, differentiating the equations of (1.12) twice in
space yields

	t xx = − 2amx	xx + 2ωx pxx − amxx	x

+ ωxx px − am	xxx + ωpxxx ,

ωt xx = − 2apxωxx + 2	xmxx − apxxωx

+ 	xxmx − apωxxx + 	mxxx .

(4.5)

Taking the inner product of the first equation with 	xx and the second one with ωxx ,
we have

1

2

d

dt

(
‖	xx‖2L2 + ‖ωxx‖2L2

)

= −2a(	xx ,mx	xx ) + 2(	xx , ωx pxx ) − a(	xx ,mxx	x )

+ (	xx , ωxx px ) − a(	xx ,m	xxx ) + (	xx , ωpxxx )

− 2a(ωxx , pxωxx ) + (ωxx ,	xmxx ) − a(ωxx , pxxωx )

+ (ωxx ,	xxmx ) − a(ωxx , pωxxx ) + (ωxx ,	mxxx ).

(4.6)

Notice that, by integration by parts,

−a(	xx ,m	xxx ) = a(	xxx ,m	xx ) + a(	xx ,mx	xx )

which implies

−a(	xx ,m	xxx ) = a

2
(	xx ,mx	xx ).

Similarly, we have

−a(ωxx , pωxxx ) = a

2
(ωxx , pxωxx ).

Applying Hölder’s inequality, the Hilbert transform boundedness on L p, it follows

|(	xx ,mx	xx )| = |(	xx , (Hω)	xx )|
≤ c0‖Hω‖L∞‖	xx‖2L2

≤ c0‖ωx‖L2‖	xx‖2L2 ,

and similarly

|(ωxx , pxωxx )| = |(	xx , (Hω)	xx )| ≤ c0‖	x‖L2‖ωxx‖2L2 .
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We estimate (	xx , ωx pxx ) as

|(	xx , ωx pxx )| = |(	xx , ωx H	x )|
≤ c0‖	xx‖L2‖ωx‖L4‖H	x‖L4

≤ c0‖	xx‖L2‖ωx‖
3
4
L2‖ωxx‖

1
4
L2‖H	x‖

3
4
L2‖H	xx‖

1
4
L2

≤ c0‖	xx‖
5
4
L2‖H	x‖

3
4
L2‖ωx‖

3
4
L2‖ωxx‖

1
4
L2

≤ c0‖	xx‖
15
8
L2‖H	x‖

9
8
L2 + c0‖ωx‖

9
4
L2‖ωxx‖

3
4
L2

≤ c0‖	x‖L2‖	xx‖2L2 + c0‖ωx‖L2‖ωxx‖2L2 ,

where we used the inequalities of Hölder, Galiardo-Nirenberg and Young, and the
facts that ‖ωx‖L2 ≤ ‖ωxx‖L2 and ‖	x‖L2 ≤ ‖	xx‖L2 . Other terms on the right hand
side of (4.6) can be handled similarly as above. We conclude

1

2

d

dt

(
‖	xx‖2L2 + ‖ωxx‖2L2

)

≤ c0(1 + |a|) (‖	x‖L2 + ‖ωx‖L2
) (

‖	xx‖2L2 + ‖ωxx‖2L2

)
,

which immediately gives, by Grönwall’s inequality

(
‖	xx (t)‖2L2 + ‖ωxx (t)‖2L2

)

≤
(
‖	xx (0)‖2L2 + ‖ωxx (0)‖2L2

)
e
∫ t
0 2c0(1+|a|)(‖	x (τ )‖L2+‖ωx (τ )‖L2

)
dτ .

(4.7)

Combining (4.7) with the assumption that 	,ω ∈ C([0, T ]; H1), it follows that

sup
0≤t≤T

(‖	(t)‖H2 + ‖ω(t)‖H2
)

< ∞.

��

5 Pure Transport Case

In this section we prove Theorem 1.4. According to Theorem 1.1, there exists a unique
solution (	(t), ω(t)) of (1.16) on [0, T ] for some T > 0. In view of Theorem 1.2, in
order to show the global existence, it is sufficient to prove

∫ T

0
(‖H	(t)‖L∞ + ‖Hω(t)‖L∞) dt < ∞ for all T > 0.

On the other hand, due to the boundedness of Hilbert transform, we have
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‖H	(t)‖L∞ ≤ c0‖H	(t)‖Cβ ≤ c0‖	(t)‖Cβ ,

‖Hω(t)‖L∞ ≤ c0‖Hω(t)‖Cβ ≤ c0‖ω(t)‖Cβ

for β ∈ (0, 1). As a consequence, we only need to prove:

Proposition 5.1 Assume 	0, ω0 ∈ H1(S1). Let (	(t), ω(t)) be the solution of (1.16)
with initial data (	0, ω0) on [0, T ]. Then there exists β1, β2 ∈ (0, 1) such that

sup
0≤t≤T

(‖ω(t)‖Cβ1 + ‖	(t)‖Cβ2

)
< ∞. (5.1)

Proof Recall the equations satisfied by (	,ω),

	t + m	x = 0,

ωt + pωx = 0.

Consider the characteristics Xt (x) and Yt (x) satisfying

d

dt
Xt = p(t, Xt (ξ)), X0(ξ) = ξ, (5.2)

d

dt
Yt = m(t,Yt (ξ)), Y0(ξ) = ξ, (5.3)

such that

	(t,Yt (x)) = 	0(x), ω(t, Xt (x)) = ω0(x). (5.4)

We notice that there exists a unique solution Xt (x) to the Cauchy problem (5.2) and

a unique solution Yt (x) to (5.3). Indeed, since 	(t), ω(t) ∈ H1(S1) ⊂ C
1
2 (S1) and

the Hilbert transform is bounded on Cβ , we have

‖p(t)‖
C1, 12

≤ c0‖	(t)‖
C1, 12

< ∞,

‖m(t)‖
C1, 12

≤ c0‖ω(t)‖
C1, 12

< ∞.

Hence, p andm are Lipschitz in time. Thus, the standard ordinary differential equation
theory implies existence and uniqueness of solution to (5.2) and (5.3).

Denote the inverse (backward) trajectory of Xt (x) and Yt (x) by q1(t, x) =
X−1
t (x) and q2(t, x) = Y−1

t (x), respectively. Note that q1(t, x) and q2(t, x) satisfy
respectively,

∂t q1 = −p(t, q1(t, x)), q1(0, x) = x, (5.5)

∂t q2 = −m(t, q2(t, x)), q2(0, x) = x . (5.6)

We claim that p and m satisfy the estimate

|p(t, x) − p(t, y)| ≤ F(|x − y|), x, y ∈ [−π, π ],
|m(t, x) − m(t, y)| ≤ G(|x − y|), x, y ∈ [−π, π ], (5.7)
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with

F(s) =
{
c0‖	0‖L∞s(1 − log s), 0 ≤ s ≤ 1,

c0‖	0‖L∞ , s > 1,
(5.8)

and

G(s) =
{
c0‖ω0‖L∞s(1 − log s), 0 ≤ s ≤ 1,

c0‖ω0‖L∞ , s > 1,
(5.9)

for a universal constant c0 > 0. We only need to show one of them, for instance, the
estimate for p. Recall that, by (1.13)

px (t, x) = H	 = 1

2π
P.V .

∫ π

−π

	(t, y) cot

(
x − y

2

)
dy.

Hence, we have

p(t, x) = 1

π
P.V .

∫ π

−π

	(t, y) log

∣∣∣∣sin
(
x − y

2

)∣∣∣∣ dy.

Without loss of generality, we take x, y ∈ (−π, π) such that −π < x < y < π and
δ = y − x . We split the interval [−π, π ] into subintervals

I1 =
[
−π, x − δ

2

)
, I2 =

[
x − δ

2
, x + δ

2

)
,

I3 =
[
x + δ

2
, y + δ

2

)
, I4 =

[
y + δ

2
, π

]
.

In the case of x − δ
2 ≤ −π or y + δ

2 > π , we treat I1 or I4 as an empty set. In order
to prove the estimate on p in (5.7), we proceed as

|p(t, x) − p(t, y)| =
∣∣∣∣ 1π P.V .

∫ π

−π

	(t, z)

(
log

∣∣∣∣sin
(
x − z

2

)∣∣∣∣ − log

∣∣∣∣sin
(
y − z

2

)∣∣∣∣
)

dz

∣∣∣∣
≤

∣∣∣∣ 1π P.V .

∫
I1

	(t, z)

(
log

∣∣∣∣sin
(
x − z

2

)∣∣∣∣ − log

∣∣∣∣sin
(
y − z

2

)∣∣∣∣
)

dz

∣∣∣∣
+

∣∣∣∣ 1π P.V .

∫
I2

· · · dz
∣∣∣∣ +

∣∣∣∣ 1π P.V .

∫
I3

· · · dz
∣∣∣∣ +

∣∣∣∣ 1π P.V .

∫
I4

· · · dz
∣∣∣∣ .
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The second term on the right hand side can be estimated as

∣∣∣∣ 1π P.V .

∫
I2

	(t, z)

(
log

∣∣∣∣sin
(
x − z

2

)∣∣∣∣ − log

∣∣∣∣sin
(
y − z

2

)∣∣∣∣
)

dz

∣∣∣∣

≤ c0‖	(t)‖L∞ P.V .

∫ x− δ
2

x− δ
2

|log |x − z|| + |log |y − z|| dz

≤ c0‖	(t)‖L∞δ (1 + | log δ|)

≤
{
c0‖	0‖L∞δ (1 − log δ) , 0 < δ < 1

c0‖	0‖L∞ , δ ≥ 1.

The integrals on I1, I3 and I4 can be estimated similarly. The estimate for m in (5.7)
can be established in an analogous way.

In view of (5.2)–(5.3) and (5.7), we have

∂t |q1(t, x) − q1(t, y)| ≤ F(|q1(t, x) − q1(t, y)|),
∂t |q2(t, x) − q2(t, y)| ≤ G(|q2(t, x) − q2(t, y)|). (5.10)

Denoteβ1(t) = e−c0‖	0‖L∞ t andβ2(t) = e−c0‖ω0‖L∞ t . For fixed x and ywith |x−y| <

1, define

z1(t) =
{

|x − y|β1(t)e1−β1(t), 0 ≤ t < t0,

1 + c0‖	0‖L∞(t − t0), t ≥ t0,

where t0 is such that |x − y|β1(t0)e1−β1(t0) = 1. Note that β1(0) = 1 and z1(0) =
|x − y| < 1. Hence, z1(t) is well-defined on [0,∞). One can verify that z1(t) is the
solution of the differential equation

∂t z = F(z), z(0) = |x − y|.

Combining with the first inequality of (5.10), we conclude

|q1(t, x) − q1(t, y)| ≤ z1(t). (5.11)

Similarly, we define

z2(t) =
{

|x − y|β2(t)e1−β2(t), 0 ≤ t < t0,

1 + c0‖ω0‖L∞(t − t0), t ≥ t0,

with t0 such that |x − y|β2(t0)e1−β2(t0) = 1. Analogously, using the second inequality
of (5.10), we infer

|q2(t, x) − q2(t, y)| ≤ z2(t). (5.12)

123



   87 Page 22 of 38 Journal of Nonlinear Science            (2023) 33:87 

We are ready to show (5.1). Noticing that ω(t, x) = ω(0, X−1
t (x)), we deduce

|ω(t, x) − ω(t, y)| =
∣∣∣ω(0, X−1

t (x)) − ω(0, X−1
t (y))

∣∣∣

=
∣∣∣∣∣
∫ X−1

t (x)

X−1
t (y)

ω0,x (ζ ) dζ

∣∣∣∣∣
≤ c0‖ω0,x‖L2

∣∣∣X−1
t (x) − X−1

t (y)
∣∣∣
1
2

≤ c0‖ω0,x‖L2 |q1(t, x) − q1(t, y)| 12

where mean value theorem and Hölder’s inequality were applied. As a consequence,
we conclude

sup
0≤t≤T

‖ω(t)‖Cβ1 < ∞.

thanks to (5.11). Analogously, we can show

sup
0≤t≤T

‖	(t)‖Cβ2 < ∞.

It completes the proof of the proposition. ��

6 Numerical Simulations

In this section, we perform some numerical study for the 1D model (1.12) of MHD.
For convenience, we recall (1.12) here,

	t + am	x − ωpx = 0,

ωt + apωx − 	mx = 0,

px = H	, mx = Hω,

x ∈ [−π, π ] (6.1)

and the Hilbert transform for a periodic function

H f = 1

2π
P.V .

∫ π

−π

f (y) cot

(
x − y

2

)
dy.

As mentioned earlier, in order for p and m to be uniquely defined, we can choose the
gauge and set them to have either zero mean over the interval [−π, π ] or zero point
value at a fixed point, e.g., p(x0, t) = m(x0, t) = 0 for some x0, see (Jia et al. 2019).

We use a Fourier-collocation spectral method for the spatial approximation and a
five stage fourth order low storage Runge–Kutta method for time discretization. An
exponential type filter is used for stabilization of the spectral method, see (Hesthaven
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et al. 2007). For a periodic function f (x), its Hilbert transform can be approximated
in spectral method via the following formula:

Ĥ f (k) = −isgn(k) f̂ (k),

where f̂ (k) are coefficients in Fourier series of f (x), see (Hou et al. 2011; Okamoto
et al. 2008). Similarly, for periodic functions p(x) and 	(x), the equation px = H	

can be approximated in spectral method through the relation

ik p̂(k) = −isgn(k)	̂(k).

6.1 Numerical Results for the 1DModel of MHD

One can check that, for arbitrary constants A1, A2, θ1, θ2 and k

	(x) = A1 sin(kx + θ1), ω(x) = A2 sin(kx + θ2)

and

	(x) = A1 cos(kx + θ1), ω(x) = A2 cos(kx + θ2)

are steady states of system (6.1). Thus, we choose to consider the following initial
conditions composed of steady states with possible perturbations

	0 = sin(x) + cos(4x) + 5, ω0 = sin(2x) + 2, (6.2)

	0 = sin(x) + sin(4x) + 0.05, ω0 = sin(2x) + 0.02, (6.3)

	0 = ω0 = −4

3

(
sin x + 1

2
sin(2x)

)
. (6.4)

We conduct simulations for (6.1) with initial data (6.2)–(6.4) and various values of a:
a = 1, a = 1

2 , a = 0, a = −1 and a = −2. In the computation, we take N = 12800
points in the Fourier-collocation spectral method. The outcome indicates that for some
data and value of a, solutions are likely regular, while for some data and a we observe
the tendency of singularity formation. In particular, (i) the numerical solutions of (6.1)
with data (6.2) and the values of a = 1, a = 0, a = −1 and a = −2 look regular;
(ii) solutions of (6.1) with data (6.3) and a = 1, a = 0 tend to develop singularities;
with the same data and a = −1, a = −2, solutions seem regular; (iii) solutions of
(6.1) with data (6.4) and a = 0.5, a = 0 are likely to develop singularities. Rigorous
analysis on the possible singularity formation scenarios is forthcoming in a follow-up
work. More details on the numerical study are provided below.

6.1.1 Solutions of (6.1) with the Initial Data (6.2)

Figure1 shows the numerical results for the solution to (6.1) with data (6.2) and a = 1.
The time evolution of 	(t, x) and ω(t, x) are plotted in Fig. 1a, b, respectively. One
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Fig. 1 a = 1 in (6.1) with initial data (6.2)
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can see that	(t, x) andω(t, x) are rather smooth. The first order derivative	x shown
in Fig. 1c seems smooth as well, while ωx illustrated in Fig. 1d develops some mild
spines at time t = 4. However, we observe spines for the second derivatives 	xx and
ωxx at larger time in Fig. 1e, f. In particular, there is a notable spine near x = 0 at
t = 4. Notice that

u = 1

2
(p + m), B = 1

2
(p − m),

and hence

ux =1

2
(px + mx ) = 1

2
H(	 + ω), Bx = 1

2
(px − mx ) = 1

2
H(	 − ω),

H	 = ux + Bx , Hω = ux − Bx .

(6.5)

Figure1g shows the time evolution of ‖H	‖L∞ + ‖Hω‖L∞ , while Fig. 1h shows
‖ux (t)‖L∞ and ‖Bx (t)‖L∞ .We observe oscillations in these graphs and the amplitudes
grow slowly in a linear manner. Combined with the regularity criterion (1.17), it seems
that the solution starting with data (6.2) may not develop singularities in finite time.

The evolution of numerical solution to (6.1) with data (6.2) and a = 0 is illustrated
in Fig. 2. It is easy to notice that the behavior of the solution is similar to that in Fig. 1.
The solution of (6.1) with data (6.2) and a = −1 is plotted in Fig. 3 . One can see
from Fig. 3a, b that the solution is less regular compared to the solutions in Figs. 1a,
b and 2a, b. This suggests that the convection term with a negative sign causes the
solution to behave more singularly. Nevertheless, Fig. 3c, d show that the amplitudes
of ‖H	‖L∞ + ‖Hω‖L∞ , ‖ux (t)‖L∞ and ‖Bx (t)‖L∞ grow faster than that in Fig. 1c,
d, but remain in a linear growth. Thus one may speculate that the solution of system
(6.1) with a = −1 starting from the initial data (6.2) do not develop singularity in
finite time. We also note that the solution of (6.1) with data (6.2) and a = −2 shown
in Fig. 4 behaves similarly as the solution in Fig. 3.

6.1.2 Solutions of (6.1) with the Initial Data (6.3)

The behavior of the numerical solution of (6.1) with the initial data (6.3) and a = 1 is
shown in Fig. 5. We observe dramatic oscillations of 	 and ω near x = 0 in (a) and
(b), and spines of derivatives near x = 0 in (c), (d), (e) and (f) with large amplitudes.
Moreover, the norms ‖H	(t)‖∞ + ‖Hω(t)‖∞ and ‖H(	 − ω)(t)‖∞ tend to grow
fast as seen in (g) and (h). In the situation of a = 0 with the same initial data, the
solution is more singular, see Fig. 6. Spines with large amplitudes appear for 	 and ω

shown in (a) and (b), and for their derivatives shown in (c), (d), (e) and (f). We also
notice that the amplitudes are of much higher orders compared to (c), (d), (e) and (f) in
Fig. 5. In the end, the exponential like growth of the norms ‖H	(t)‖∞ + ‖Hω(t)‖∞
and ‖H(	 + ω)(t)‖∞ as shown in Fig. 6g, h indicates the formation of singularity.
The singularity seems to develop after the time t = 1.8 and near t = 2. Indeed,
the evolution of the solution before time t = 1.8 is shown in Fig. 7 . Comparing
the amplitudes of 	, ω and their derivatives between Figs. 6 and 7, it seems that the
dramatic behavior of the solution occurs after time t = 1.8.
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Fig. 2 a = 0 in (6.1) with initial data (6.2)
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Fig. 3 a = −1 in (6.1) with initial data (6.2)

In contrast, no evidence of singularity is observed for the solutions of (6.1) with
data (6.3) in the cases of a = −1,−2, see Figs. 8and 9. Although high concentrations
and spines are noted for	 andω and their derivatives near x = −π , x = 0 and x = π ,
the norms of ‖H	(t)‖∞ + ‖Hω(t)‖∞ and ‖H(	 ± ω)(t)‖∞ shown in Figs. 8g, h
and 9g, h, grow mildly in the beginning and then become stabilized. Thus according
to the Beale–Kato–Majda type of regularity criterion established in Theorem 1.2, we
speculate that no singularity is to occur in the situations of a = −1,−2.

6.1.3 Solutions of (6.1) with the Initial Data (6.4)

Data (6.4) was used in Lushnikov et al. (2021) to produce solutions with potential
singularities for the generalized Constantin-Lax-Majda model. Recall that if 	 =
ω, system (6.1) reduces to the generalized Constantin-Lax-Majda model. Hence we
investigate the solutions of (6.1) with the initial data (6.4). When a = 0.5 and a = 0,
rapid growth of the solutions 	 and ω and their derivatives are observed near x = 0
after certain time, as shown in Figs. 10 and 11. However, these solutions appear regular
in the early time, seeFig. 12. It looks like that the fast growth starts after the time t = 1.4
in the case of a = 0.5 from Fig. 10, and the fast growth starts after t = 0.8 when a = 0
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Fig. 4 a = −2 in (6.1) with initial data (6.2)

from Fig. 11. In particular, the exponential like growth of ‖H	(t)‖∞ + ‖Hω(t)‖∞
and ‖H(	 + ω)(t)‖∞ seen in Figs. 10g, h and 11g, h suggests that singularities are
likely to develop in finite time. In fact the data (6.4) falls in the class of the initial
data used in Constantin et al. (1985); hence the numerical result here reproduces the
numeric evidence of blowup discussed in Constantin et al. (1985).

6.2 Numerical Results for the De Gregorio Model Revisited

Numerical simulations for the De Gregorio model (1.6a)–(1.6b) have been performed
in De Gregorio (1996, 1990); Lushnikov et al. (2021); Okamoto et al. (2008) among
others. One outcome is that singularity formation for this model with certain smooth
initial data is unlikely to happen in the periodic case.

We apply our numerical scheme to (1.6a)–(1.6b) with the initial data (Fig. 12)

ω0(x) = sin x + 0.1 sin(2x)
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Fig. 5 a = 1 in (6.1) with initial data (6.3)
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Fig. 6 a = 0 in (6.1) with initial data (6.3)
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Fig. 7 The smooth solutions in early time in (6.1) using a = 0 with initial data (6.3)

by taking N = 12,800 points in the Fourier-collocation spectral method. The
obtained simulations are shown in Fig. 13, which recover the numerical results done
by Okamoto et al. (2008).

We note that ux = Hω for the DeGregoriomodel (1.6a)–(1.6b) and ux = 1
2H(	+

ω) for our 1D MHD model (6.1), see (6.5). Comparing Figs. 1h and 13e, we observe
oscillations of ‖ux‖L∞ for the 1DMHDmodel and absence of such oscillations for the
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Fig. 8 a = −1 in (6.1) with initial data (6.3)

123



Journal of Nonlinear Science            (2023) 33:87 Page 33 of 38    87 

Fig. 9 a = −2 in (6.1) with initial data (6.3)
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Fig. 10 a = 0.5 in (6.1) with initial data (6.4)
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Fig. 11 a = 0 in (6.1) with initial data (6.4)
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Fig. 12 The smooth solutions in early time in (6.1) with initial data (6.4)

pure fluid model. It is reasonable to infer that the interactions between fluid velocity
and magnetic field cause such oscillations and more complicated dynamics.
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Fig. 13 The De Gregorio model
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