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Abstract. For time-dependent PDEs, the numerical schemes can be rendered bound-preserving5
without losing conservation and accuracy, by a post processing procedure of solving a constrained6
minimization in each time step. Such a constrained optimization can be formulated as a nonsmooth7
convex minimization, which can be efficiently solved by first order optimization methods, if using the8
optimal algorithm parameters. By analyzing the asymptotic linear convergence rate of the generalized9
Douglas–Rachford splitting method, optimal algorithm parameters can be approximately expressed10
as a simple function of the number of out-of-bounds cells. We demonstrate the efficiency of this simple11
choice of algorithm parameters by applying such a limiter to cell averages of a discontinuous Galerkin12
scheme solving phase field equations for 3D demanding problems. Numerical tests on a sophisticated13
3D Cahn–Hilliard–Navier–Stokes system indicate that the limiter is high order accurate, very efficient,14
and well-suited for large-scale simulations. For each time step, it takes at most 20 iterations for the15
Douglas–Rachford splitting to enforce bounds and conservation up to the round-off error, for which16
the computational cost is at most 80𝑁 with 𝑁 being the total number of cells.17
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1. Introduction.21

1.1. Objective and motivation. We are interested in a simple approach to22

enforce bound-preserving property of a high order accurate scheme for phase field23

models, without destroying conservation and accuracy. Many numerical methods,24

especially high order accurate schemes, do not preserve bounds. For the sake of both25

physical meaningfulness and robustness of numerical computation, it is critical to26

enforce both conservation and bounds.27

Bound-preserving schemes have been well studied in the literature for equations28

like hyperbolic and parabolic PDEs. One popular approach of constructing a bound-29

preserving high order scheme was introduced in [44, 45] for conservation laws, which30

can be extended to parabolic equations [40, 39] and Navier–Stokes equations [12, 43],31

as well as implicit or semi-implicit time discretizations [35, 31]. However, this method,32

and most of other popular bound-preserving schemes for conservation laws and para-33

bolic equations such as exponential time differencing [10], are based on the fact that34

the simplest low order scheme is bound-preserving, which is no longer true for a fourth35

order PDE like the Cahn–Hilliard equation, unless a very special implementation is36

used such as implicit treatment of a logarithmic potential [6].37

A simple cut-off without enforcing conservation does not destroy accuracy but38

it is of little interest, because convergence might be lost due to loss of conservation.39

A meaningful objective is to enforce bounds without destroying conservation. For40

the Cahn–Hilliard equation, an exponential function transform approach was used in41
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[23], with conservation achieved up to some small time error. If the logarithmic energy42

potential is used and treated implicitly, bounds can also be ensured [6]. A Lagrange43

multiplier approach in [7, 8] provides a new interpretation for the cut-off method, and44

can preserve mass by solving a nonlinear algebraic equation for the additional space45

independent Lagrange multiplier. Even though the flux limiting [25, 42, 22, 11] can46

be formally extended to Cahn–Hilliard equation [17, 30], it is not clear whether flux47

limiters can preserve high order accuracy for a fourth order PDE. Recently a bound-48

preserving finite volume scheme, which is first order accurate in time and second order49

accurate in space, has been constructed for the Cahn–Hilliard equation [1].50

In practice, the logarithmic potential causes additional difficulty in nonlinear51

system solvers in many schemes, thus the double well polynomial potential with a52

degenerate mobility is often used as an easier surrogate. With the double well poten-53

tial, numerical schemes might violate the bounds much more since it does not enforce54

bounds 𝜙 ∈ [−1, 1] like the log potential. In this paper, we will explore a simple55

and efficient high order accurate post processing procedure for preserving bounds and56

conservation up to round-off errors, such that it can be easily applied to any numerical57

method solving the Cahn–Hillard equation, especially for the polynomial potential.58

1.2. A bound-preserving limiter via convex minimization. Consider a59

scalar PDE as an example. Assume its solution 𝑢 satisfies 𝑚 ≤ 𝑢 ≤ 𝑀 for all time60

and location, where 𝑚 and 𝑀 are constant bounds. For simplicity, we only consider61

enforcing cell averages in a high order accurate discontinuous Galerkin (DG) scheme62

by the convex minimization, then using the simple Zhang–Shu limiter in [44, 45] to63

enforce bounds of point values of the DG solution. But this convex minimization64

approach can be easily extended to enforcing bounds of point values for any other65

numerical scheme such as finite difference and continuous finite element methods.66

Let 𝑢̄𝑖 (𝑖 = 1, · · · , 𝑁) be all the DG solution cell averages at time step 𝑛 on a67

uniform mesh. Given 𝒖 =
[
𝑢̄1 𝑢̄2 · · · 𝑢̄𝑁

]T ∈ R𝑁 , we would like to post process68

it to 𝒙 =
[
𝑥1 𝑥2 · · · 𝑥𝑁

]T ∈ R𝑁 such that it is bound preserving 𝑥𝑖 ∈ [𝑚, 𝑀],69

conservative
∑
𝑖 𝑥𝑖 =

∑
𝑖 𝑢̄𝑖 , and accurate in the sense that ∥𝒙 − 𝒖∥ should be small.70

Namely, we consider minimize ∥𝒙 − 𝒖∥ under constraints 𝑥𝑖 ∈ [𝑚, 𝑀] and ∑𝑁
𝑖=1 𝑥𝑖 =71 ∑𝑁

𝑖=1 𝑢̄𝑖 . To change as few cell averages as possible, the convex ℓ1-norm is often used72

to approximate the NP-hard ℓ0-norm. The ℓ1-norm is nonsmooth without any strong73

convexity, thus the minimization might still be too expensive to solve. For the sake74

of efficiency, we propose the ℓ2-norm instead:75

(1.1) min
𝒙

∥𝒙 − 𝒖∥22 s.t. 𝑥𝑖 ∈ [𝑚, 𝑀] and

𝑁∑
𝑖=1

𝑥𝑖 =

𝑁∑
𝑖=1

𝑢̄𝑖 .76

Obviously, the minimizer to (1.1) is conservative and bound-preserving. The77

justification of accuracy is also straightforward, as long as 𝒖 is an accurate numerical78

solution, which is a reasonable assumption and has been proved to hold for many DG79

schemes of a variety of PDEs, e.g., see [29] for Cahn–Hilliard–Navier–Stokes (CHNS)80

equations. Let 𝑢̄∗
𝑖
and 𝑢̄0

𝑖
be the cell averages of the exact solution at time 𝑡𝑛 and81

initial condition, respectively. Then
∑
𝑖 𝑢̄

∗
𝑖
=

∑
𝑖 𝑢̄

0
𝑖
=

∑
𝑖 𝑢̄𝑖 and 𝑢̄∗

𝑖
∈ [𝑚, 𝑀] imply82

that 𝒖∗ is a feasible point satisfying the constraints of (1.1). The minimizer 𝒙∗ to (1.1)83

then satisfies ∥𝒙∗−𝒖∥2 ≤ ∥𝒖∗−𝒖∥2, thus ∥𝒙∗−𝒖∗∥2 ≤ ∥𝒙∗−𝒖∥2+∥𝒖−𝒖∗∥2 ≤ 2∥𝒖∗−𝒖∥2.84

Therefore, the limiter (1.1) does not lose the order of accuracy.85
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1.3. Efficient convex optimization algorithms. The main catch of using86

(1.1) in a large scale computation, is the possible huge cost of solving (1.1) to machine87

accuracy, unless proven or shown otherwise, which is our main focus. It is a convention88

use the indicator function 𝜄Ω(𝒙) =
{
0, 𝒙 ∈ Ω

+∞, 𝒙 ∉ Ω
for any set Ω, to rewrite (1.1) as:89

(1.2) min
𝒙

𝛼
2
∥𝒙 − 𝒖∥22 + 𝜄Λ1

(𝒙) + 𝜄Λ2
(𝒙),90

where 𝛼 > 0 is a parameter and the sets Λ1 and Λ2 are Λ1 = {𝒙 :
∑
𝑖 𝑥𝑖 =91 ∑

𝑖 𝑢̄𝑖}, Λ2 = {𝒙 : 𝑥𝑖 ∈ [𝑚, 𝑀]}. The two indicator functions in (1.2) are convex92

but nonsmooth, and the ℓ2 term is strongly convex, thus (1.2) has a unique minimizer93

𝒙∗. Many optimization algorithms, e.g., fast proximal gradient (FISTA) [34, 3] ap-94

plied to (1.2), can be proven to converge linearly. But a provable global linear rate is95

usually quite pessimistic, much slower than the actual convergence rate. It is possible96

to obtain sharp asymptotic rate for methods like the generalized Douglas–Rachford97

splitting solving ℓ1 minimization [9], which can be used for designing best parameters.98

So we consider the generalized Douglas–Rachford splitting [26], which is equivalent99

to some other popular methods such as PDHG [5], ADMM [13], dual split Bregman100

[20], see also [9] and references therein for the equivalence.101

1.4. The generalized Douglas–Rachford splitting method. Splitting al-102

gorithms naturally arise for composite optimization of the form103

(1.3a) min
𝒙

𝑓 (𝒙) + 𝑔(𝒙),104

where functions 𝑓 and 𝑔 are convex and have simple subdifferentials and resolvents.
Let 𝜕 𝑓 and 𝜕𝑔 denote the subdifferentials of 𝑓 and 𝑔. Their resolvents are defined as

J𝛾𝜕 𝑓 = (I + 𝛾𝜕 𝑓 )−1 = argmin𝒛𝛾 𝑓 (𝒛) +
1

2
∥𝒛 − 𝒙∥22 , 𝛾 > 0,

J𝛾𝜕𝑔 = (I + 𝛾𝜕𝑔)−1 = argmin𝒛𝛾𝑔(𝒛) +
1

2
∥𝒛 − 𝒙∥22 , 𝛾 > 0.

We rewrite (1.2) into min𝒙 𝑓 (𝒙) + 𝑔(𝒙) by defining105

(1.3b) 𝑓 (𝒙) = 𝛼
2
∥𝒙 − 𝒖∥22 + 𝜄Λ1

(𝒙) and 𝑔(𝒙) = 𝜄Λ2
(𝒙),106

where two sets are Λ1 = {𝒙 : A𝒙 = 𝑏} and Λ2 = {𝒙 : 𝑚 ≤ 𝒙 ≤ 𝑀}, with107

A =
[
1 · · · 1

]
, 𝑏 =

∑
𝑖 𝑢̄𝑖 , and 𝑚 ≤ 𝒙 ≤ 𝑀 denoting entrywise inequality. The108

subdifferentials and resolvents can be explicitly given as109

(1.4) 𝜕 𝑓 (𝒙) = 𝛼(𝒙 − 𝒖) + ℛ(AT), J𝛾𝜕 𝑓 (𝒙) =
1

𝛾𝛼 + 1

(
A+(𝑏 − A𝒙) + 𝒙

)
+ 𝛾𝛼

𝛾𝛼 + 1
𝒖 ,110

111

[𝜕𝑔(𝒙)]𝑖 =


[0,+∞], if 𝑥𝑖 = 𝑀,

0, if 𝑥𝑖 ∈ (𝑚, 𝑀),
[−∞, 0], if 𝑥𝑖 = 𝑚.

[J𝛾𝜕𝑔(𝒙)]𝑖 = min (max (𝑥𝑖 , 𝑚), 𝑀),(1.5)112

113

where ℛ(AT) denotes the range of the matrix AT and A+ = AT(AAT)−1.114
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Define reflection operators as R𝛾𝜕 𝑓 = 2J𝛾𝜕 𝑓 − I and R𝛾𝜕𝑔 = 2J𝛾𝜕𝑔 − I, where I115

denotes the identity operator. The generalized Douglas–Rachford splitting for (1.3a)116

can be written as:117

(1.6)

𝒚
𝑘+1 = 𝜆

R𝛾𝜕 𝑓R𝛾𝜕𝑔 + I

2
𝒚𝑘 + (1 − 𝜆)𝒚𝑘 = 𝜆J𝛾𝜕 𝑓 ◦ (2J𝛾𝜕𝑔 − I)𝒚𝑘 + (I − 𝜆J𝛾𝜕𝑔)𝒚𝑘

𝒙𝑘+1 = J𝛾𝜕𝑔(𝒚𝑘+1)
.118

where 𝒚 is an auxiliary variable, 𝛾 > 0 is step size, and 𝜆 ∈ (0, 2) is a parameter.119

For two convex functions 𝑓 (𝒙) and 𝑔(𝒙), (1.6) converges for any 𝛾 > 0 and any fixed120

𝜆 ∈ (0, 2), see [26]. If one function is strongly convex, then 𝜆 = 2 also converges.121

1.5. The bound-preserving post processing procedure for DG schemes.122

At time step 𝑛, let 𝑢𝑖(𝑥, 𝑦, 𝑧) be the DG polynomial on a uniform mesh in the 𝑖-th123

cell with cell average 𝑢̄𝑖 . We define the following bound-preserving limiter:124

Step I: Solve (1.2) to post process the cell averages. Let 𝑐 = 1
𝛼𝛾+1 , then the125

iteration (1.6) on (1.3) can be explicitly written as:126

(1.7a)


𝒙𝑘 = min (max (𝒚𝑘 , 𝑚), 𝑀)
𝒛𝑘 = 2𝒙𝑘 − 𝒚𝑘

𝒚𝑘+1 = 𝜆𝑐(𝒛𝑘 − 1[ 1
𝑁 (∑𝑖 𝑧

𝑘
𝑖
− 𝑏)]) + 𝜆(1 − 𝑐)𝒖 + 𝒚𝑘 − 𝜆𝒙𝑘

,127

where 1 is the constant one vector of size 𝑁 and 𝑏 =
∑
𝑖 𝑢̄𝑖 is a constant, 𝜆 ∈ (0, 2]128

is the fixed relaxation parameter. Each iterate 𝒙𝑘 is bound-preserving but is not129

conservative until converging to the minimizer 𝒙∗. We iterate (1.7a) until relative130

change is small enough ∥𝒚𝑘+1 − 𝒚𝑘 ∥2 ≤ 𝜖, to get an approximated minimizer 𝒙∗ to131

(1.2), for which the conservation would be satisfied up to round-off errors. We then132

modify DG polynomials by modifying the cell averages, i.e., shift them by a constant:133

(1.7b) 𝑢̃𝑖(𝑥, 𝑦, 𝑧) = 𝑢𝑖(𝑥, 𝑦, 𝑧) − 𝑢̄𝑖 + 𝑥∗𝑖 , 𝑖 = 1, · · · , 𝑁.134

Step II: Cell averages of modified DG polynomials 𝑢̃𝑖(𝑥, 𝑦, 𝑧) are in the range135

[𝑚, 𝑀], so we can apply the simple scaling limiter by Zhang and Shu in [44, 45] to136

further enforce bounds at quadrature points, without losing conservation and accu-137

racy. Let 𝑆𝑖 be the set of interested points in each cell, then the Zhang–Shu limiter138

for the polynomial 𝑢̃𝑖(𝑥, 𝑦, 𝑧) with cell average 𝑥∗
𝑖
∈ [𝑚, 𝑀] is given as139

(1.8) 𝑢̂𝑖(𝑥, 𝑦, 𝑧) = 𝜃(𝑢̃𝑖(𝑥, 𝑦, 𝑧) − 𝑥∗𝑖 ) + 𝑥
∗
𝑖 , 𝜃 = min

{
1,

|𝑚 − 𝑥∗
𝑖
|

|𝑚𝑖 − 𝑥∗𝑖 |
,
|𝑀 − 𝑥∗

𝑖
|

|𝑀𝑖 − 𝑥∗𝑖 |

}
,140

where 𝑚𝑖 = min
(𝑥,𝑦,𝑧)∈𝑆𝑖

𝑢̃𝑖(𝑥, 𝑦, 𝑧) and 𝑀𝑖 = max
(𝑥,𝑦,𝑧)∈𝑆𝑖

𝑢̃𝑖(𝑥, 𝑦, 𝑧). See the appendix in [43]141

for a rigorous proof of the high order accuracy of (1.8).142

We emphasize that the Zhang-Shu limiter (1.8) can preserve bounds or positiv-143

ity provided that the cell averages are within bounds or are positive, which can be144

proven for DG methods coupled with the limiter (1.8) for hyperbolic problems in-145

cluding scalar conservation laws, compressible Euler and compressible Navier-Stokes146

equations [44, 45, 43], because DG methods with suitable numerical fluxes satisfy a147

weak monotonicity property for these problems [43]. However, such a weak mono-148

tonicity property is simply not true for high order DG schemes solving fourth order149

PDEs. Thus, if using only the limiter (1.8), the high order DG methods will not be150

bound-preserving for Cahn-Hilliard equations. For all the numerical tests shown in151

this paper, DG methods with only the Zhang-Shu limiter will produce cell averages152

outside of the range [−1, 1].153
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1.6. The main results. We will analyze asymptotic convergence rate of itera-154

tion (1.7a) and give a sharp convergence rate formula, by which it is possible to pick155

up nearly optimal combination of parameters 𝑐 = 1
𝛼𝛾+1 and 𝜆 to achieve fast conver-156

gence for the iteration (1.7a). The asymptotic linear convergence rate we derive for157

(1.2) is similar to the one for ℓ1 minimization in [9]. These rate formulae depend on158

the unknown 𝒙∗, so usually it is impossible to use the formulae for tuning algorithm159

parameters, unless 𝒙∗ can be easily estimated. For (1.2), it is possible to pick up a160

nearly optimal combination of optimization algorithm parameters by only calculating161

number of bad cells 𝑢̄𝑖 ∉ [𝑚, 𝑀], which is the first main result of this paper.162

Let 𝑟 be the number of bad cells 𝑢̄𝑖 ∉ [𝑚, 𝑀], and let 𝜃̂ = cos−1
√

𝑟
𝑁 , then our163

analysis suggests the following simple choice of nearly optimal parameters:164

(1.9)


𝑐 = 1

2 ,𝜆 = 4

2−cos (2𝜃̂) , if 𝜃̂ ∈ ( 38𝜋, 12𝜋],
𝑐 = 1

(cos 𝜃̂+sin 𝜃̂)2 ,𝜆 = 2
1+ 1

1+cot 𝜃̂−
1

(cos 𝜃̂+sin 𝜃̂)2
, if 𝜃̂ ∈ ( 14𝜋, 38𝜋],

𝑐 = 1

(cos 𝜃̂+sin 𝜃̂)2 ,𝜆 = 2, if 𝜃̂ ∈ (0, 14𝜋].
165

We emphasize that both 𝑐 and 𝜆 should be the constants w.r.t. iteration index 𝑘 in166

(1.7a), once they are chosen by (1.9). Notice that 𝜆(1− 𝑐)𝒖 is a constant for the itera-167

tion (1.7a) and each entry of 𝒛𝑘−1[ 1
𝑁 (∑𝑖 𝑧

𝑘
𝑖
−𝑏)] can be computed by 𝑧𝑘

𝑖
−[ 1

𝑁 (∑𝑖 𝑧
𝑘
𝑖
−𝑏)],168

thus if only counting number of computing multiplications, min, and max, the compu-169

tational complexity of each iteration in (1.7a) is 4𝑁 . By using the parameters (1.9),170

it takes at most 20 iterations of (1.7a) to converge in all our numerical tests, thus171

the cost of iterating (1.7a) until convergence would be at most 80𝑁 , which is highly172

efficient and well-suited for large-scale simulations.173

The numerical observation of at most 20 iterations can also be explained by the174

asymptotic convergence rate analysis, which is another main result. Assuming the175

number of bad cells 𝑢̄𝑖 ∉ [𝑚, 𝑀] is much smaller than the number of total cells 𝑁 , we176

will show that the asymptotic convergence rate of (1.7a) using (1.9) is given by177

(1.10) − cos (2𝜃)
2 − cos (2𝜃) ≈ − cos (2𝜃̂)

2 − cos (2𝜃̂)
=

1 − 2 cos 𝜃̂2

3 − 2 cos 𝜃̂2
=

1 − 2 𝑟
𝑁

3 − 2 𝑟
𝑁

≈ 1

3
, if 𝑟 ≪ 𝑁,178

with 𝜃(𝒙∗) being an unknown angle, which can be approximated by 𝜃̂. If the ratio of179

bad cells is very small, (1.7a) will have a local convergence rate almost like ∥𝒚𝑘−𝒚∗∥ ≤180

𝐶
(
1
3

) 𝑘
, which would take around 30 iterations to reach around 1E-15 if 𝐶 = 1.181

1.7. Organization of the paper. The rest of the paper is organized as follows.182

In Section 2, we analyze the asymptotic linear convergence rate of the Douglas–183

Rachford splitting (1.6) and (1.7a), and derive the parameter guideline (1.9). In184

Section 3, we discuss an application of our bound-preserving limiting strategy to an185

important phase-field model, the CHNS system. The numerical tests are given in186

Section 4. Section 5 are concluding remarks.187

2. Asymptotic linear convergence rate analysis. In this section, we de-188

rive the asymptotic linear convergence rate of generalized Douglas–Rachford splitting189

(1.6) for solving the minimization problem (1.3). The discussion in this section fol-190

lows closely the analysis for ℓ1 minimization in [9]. Even though ℓ1 minimization is191

harder than ℓ2 minimization, the analysis for (1.3) is not necessarily a straightforward192

extension of those in [9] because (1.4) and (1.5) are different from operators in [9].193
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For convenience, let 𝐹 = 𝜕 𝑓 and 𝐺 = 𝜕𝑔 denote the subdifferential operators. Let194

S(𝒙) be the cut-off operator, i.e., [J𝛾𝐺(𝒙)]𝑖 = [S(𝒙)]𝑖 = min (max (𝑥𝑖 , 𝑚), 𝑀).195

We keep the discussion a bit more general by considering a general linear con-196

straint A𝒙 = 𝑏 = A𝒖 in the function 𝑓 (𝒙) in (1.3b), and assume A has less number of197

rows than the number of columns, with full row rank such that A+ = AT(AAT)−1 is198

well defined. When needed, we will plug in the special case A =
[
1 1 · · · 1

]
.199

2.1. The fixed point set. Let P(𝒙) = A+(𝑏 − A𝒙) + 𝒙 denote the projection200

operator. Then, the resolvents can be written as J𝛾𝐹(𝒙) = 1
𝛾𝛼+1P(𝒙) +

𝛾𝛼
𝛾𝛼+1𝒖 and201

J𝛾𝐺(𝒙) = S(𝒙). Let T𝛾 denote the iteration operator for 𝒚 in (1.6), then it becomes:202

(2.1) T𝛾 =
𝜆

𝛾𝛼 + 1
P ◦ (2S − I) + (I − 𝜆S) + 𝜆𝛾𝛼

𝛾𝛼 + 1
𝒖.203

The fixed point 𝒚∗ of T𝛾 is not the minimizer of (1.3), while 𝒙∗ = J𝛾𝐺(𝒚∗) = S(𝒚∗) is204

the minimizer. The fixed point set of the operator T𝛾 has the following structure.205

Theorem 2.1. The set of fixed point of operator T𝛾 is

Π = {𝒚∗ : 𝒚∗ = 𝒙∗ + 𝛾𝜼, 𝜼 ∈ −𝜕 𝑓 (𝒙∗) ∩ 𝜕𝑔(𝒙∗)}.

Proof. We first show any 𝒚∗ ∈ Π is a fixed point of the operator T𝛾. ∀𝜼 ∈ 𝜕𝑔(𝒙∗)206

in (1.5), we have S(𝒚∗) = 𝒙∗, since the 𝑖-th entry of the vector 𝒚∗ = 𝒙∗ + 𝛾𝜼 satisfies207

[𝒚∗]𝑖


∈ [𝑀,+∞], if 𝑥∗

𝑖
= 𝑀,

= 𝑥∗
𝑖
, if 𝑥∗

𝑖
∈ (𝑚, 𝑀),

∈ [−∞, 𝑚], if 𝑥∗
𝑖
= 𝑚.

208

Thus, we have P ◦ (2S − I)𝒚∗ = P(2𝒙∗ − 𝒚∗) = P(𝒙∗ − 𝛾𝜼) = 𝒙∗ − 𝛾𝜼 + 𝛾A+A𝜼, where209

A𝒙∗ = 𝑏 is used. And 𝜼 ∈ −𝜕 𝑓 (𝒙∗) in (1.4) implies that there exists 𝝃 such that210

𝜼 = −𝛼(𝒙∗ − 𝒖) + AT𝝃. Multiplying both sides by A, with A𝒙∗ = 𝑏 = A𝒖 we get211

A𝜼 = AAT𝝃, thus 𝝃 = (AAT)−1A𝜼 and 𝛾𝜼 = −𝛾𝛼(𝒙∗ − 𝒖) + 𝛾A+A𝜼. Then, we have212

P ◦ (2S − I)𝒚∗ = (𝛾𝛼 + 1)𝒙∗ − 𝛾𝛼𝒖. Therefore213

T𝛾(𝒚∗) = 𝜆
𝛾𝛼 + 1

(
(𝛾𝛼 + 1)𝒙∗ − 𝛾𝛼𝒖

)
+ 𝒚∗ − 𝜆𝒙∗ + 𝜆𝛾𝛼

𝛾𝛼 + 1
𝒖 = 𝒚∗.214

Next, we show any fixed point 𝒚∗ belongs to set Π. Let 𝜼 = (𝒚∗ − 𝒙∗)/𝛾. Then, 𝒚∗215

being a fixed point implies J𝛾𝐺(𝒚∗) = 𝒙∗. Recall that J𝛾𝐺 = S, we have216

i. if 𝑥∗
𝑖
+ 𝛾𝜂𝑖 ≥ 𝑀, then 𝑥∗

𝑖
= S(𝑥∗

𝑖
+ 𝛾𝜂𝑖) = 𝑀, thus 𝜂𝑖 ∈ [0,+∞];217

ii. if 𝑥∗
𝑖
+ 𝛾𝜂𝑖 ∈ (𝑚, 𝑀), then 𝑥∗

𝑖
= S(𝑥∗

𝑖
+ 𝛾𝜂𝑖) = 𝑥∗

𝑖
+ 𝛾𝜂𝑖 , thus 𝜂𝑖 = 0;218

iii. if 𝑥∗
𝑖
+ 𝛾𝜂𝑖 ≤ 𝑚, then 𝑥∗

𝑖
= S(𝑥∗

𝑖
+ 𝛾𝜂𝑖) = 𝑚, thus 𝜂𝑖 ∈ [−∞, 0].219

So 𝜼 ∈ 𝜕𝑔(𝒙∗). And 𝒚∗ = T𝛾(𝒚∗) is equivalent to 𝒚∗ = 𝜆
2 (R𝛾𝐹R𝛾𝐺 + I)𝒚∗ + (1 − 𝜆)𝒚∗,220

which implies 𝒚∗ = R𝛾𝐹R𝛾𝐺(𝒚∗). Recall J𝛾𝐺(𝒚∗) = 𝒙∗ and 𝒚∗ = 𝒙∗ + 𝛾𝜼, we have221

𝒚∗ = R𝛾𝐹(2J𝛾𝐺(𝒚∗) − 𝒚∗) = R𝛾𝐹(𝒙∗ − 𝛾𝜼) = 2J𝛾𝐹(𝒙∗ − 𝛾𝜼) − (𝒙∗ − 𝛾𝜼).222

So 𝒙∗ = J𝛾𝐹(𝒙∗ − 𝛾𝜼), which implies 𝒙∗ = argmin𝒛𝛾 𝑓 (𝒛) + 1
2 ∥𝒛 − (𝒙∗ − 𝛾𝜼)∥22. By the223

critical point equation, we have 0 ∈ 𝛾𝜕 𝑓 (𝒙∗) + 𝛾𝜼 thus 𝜼 ∈ −𝜕 𝑓 (𝒙∗).224
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Let ℬ𝑟(𝒛) denote a closed ball in ℓ2-norm centered at 𝒛 with radius 𝑟. Define set 𝒬:225

𝒬 = 𝑄1 ⊗ 𝑄2 ⊗ · · · ⊗ 𝑄𝑛 , where 𝑄𝑖 =


[𝑀,+∞], if 𝑥∗

𝑖
= 𝑀,

(𝑚, 𝑀), if 𝑥∗
𝑖
∈ (𝑚, 𝑀),

[−∞, 𝑚], if 𝑥∗
𝑖
= 𝑚.

226

For any fixed point 𝒚∗, the Theorem 2.1 implies there exists an 𝜼 = 1
𝛾 (𝒚∗−𝒙∗) ∈ 𝜕𝑔(𝒙∗)227

and by (1.5) we have 𝒙∗ + 𝛾𝜼 ∈ 𝒬 for any 𝛾 > 0, which gives 𝒚∗ ∈ 𝒬. Let 𝜖 ≥ 0 be the228

least upper bound such that ℬ𝜖(𝒚∗) ⊂ 𝒬. If 𝜖 > 0, then 𝒚∗ is an interior fixed point229

and we call this the standard case; otherwise, 𝒚∗ is a boundary fixed point and we230

call this the non-standard case. In the standard case that the sequence 𝒚𝑘 converges231

to an interior fixed point 𝒚∗. There exists a large enough integer 𝐾 > 0 such that232

∥𝒚𝐾 − 𝒚∗∥2 < 𝜖 holds. For any 𝑘 ≥ 𝐾, the operator T𝛾 is nonexpansive [26], so233

∥𝒚𝑘 − 𝒚∗∥2 = ∥T𝛾(𝒚𝑘−1) − T𝛾(𝒚∗)∥2 ≤ ∥𝒚𝑘−1 − 𝒚∗∥2 ≤ · · · ≤ ∥𝒚𝐾 − 𝒚∗∥2 < 𝜖.234

Thus, after taking the generalized Douglas–Rachford iteration (1.6) sufficiently many235

times, the iterates will always belong to the ball ℬ𝜖(𝒚∗) ⊂ 𝒬, namely the iteration236

enters the asymptotic convergence regime and the cut-off location does not change.237

In the rest of this paper, we only focus on the standard case. The non-standard238

case can be analyzed by utilizing the same technique as in [9]. The non-standard case239

has not been observed in our numerical experiments.240

2.2. The characterization of the operator T𝛾. Assume the unique solution241

𝒙∗ of the minimization problem (1.3) has 𝑟 components equal to 𝑚 or 𝑀. We further242

assume 𝑟 < 𝑁 , e.g., not all the cell averages will touch the boundary 𝑚 or 𝑀, which243

is a quite reasonable assumption. We emphasize that 𝑟 is unknown, unless 𝒙∗ is given.244

Let 𝒆𝑖 (𝑖 = 1, · · · , 𝑁) be the standard basis of R𝑁 . Let 𝒆 𝑗 (𝑗 = 𝑖1 , · · · , 𝑖𝑟) de-245

note the basis vectors corresponding to entries 𝒙∗ of being 𝑚 or 𝑀. Let B be the246

corresponding 𝑟 × 𝑁 selector matrix, i. e., B = [𝒆𝑖1 , · · · , 𝒆𝑖𝑟 ]T.247

Recall that we only discuss the standard case, i.e., 𝒚∗ is in the interior of 𝒬.248

Then, in the asymptotic convergence regime, i.e., after sufficiently many iterations,249

the iterate 𝒚𝑘 will stay in the interior of 𝒬, thus the operator S has an expression250

(2.2) S(𝒚) = 𝒚 − B+B𝒚 +
∑

𝑗∈{𝑖1 ,··· ,𝑖𝑟 }
𝑥∗𝑗𝒆 𝑗 .251

Note, the 𝑗-th component of 𝒙∗, namely the 𝑥∗
𝑗
in (2.2), takes value 𝑚 or 𝑀 for any252

𝑗 ∈ {𝑖1 , · · · , 𝑖𝑟}. Let I𝑁 denote an 𝑁 × 𝑁 identity matrix.253

Lemma 2.2. For any 𝒚 in the interior of 𝒬, and a standard fixed point 𝒚∗ in the254

interior of 𝒬, we have T𝛾(𝒚) − T𝛾(𝒚∗) = T𝑐,𝜆(𝒚 − 𝒚∗), where the matrix T𝑐,𝜆 is given255

by256

T𝑐,𝜆 = 𝜆
(
𝑐(I𝑁 − A+A)(I𝑁 − B+B) + 𝑐A+AB+B + (1 − 𝑐)B+B

)
+ (1 − 𝜆)I𝑁 .257

Here, 𝑐 = 1
𝛾𝛼+1 is a constant in (0, 1).258
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Proof. By (2.2), S(𝒚) − S(𝒚∗) = (I𝑁 − B+B)(𝒚 − 𝒚∗). So by (2.1),259

T𝛾(𝒚) −T𝛾(𝒚∗) = 𝜆
𝛾𝛼 + 1

(
P(2S(𝒚) − 𝒚) − P(2S(𝒚∗) − 𝒚∗)

)
+ (𝒚 − 𝒚∗) − 𝜆(S(𝒚) − S(𝒚∗))260

=
𝜆

𝛾𝛼 + 1
(I𝑁 − A+A)(I𝑁 − 2B+B)(𝒚 − 𝒚∗) + (𝒚 − 𝒚∗) − 𝜆(I𝑁 − B+B)(𝒚 − 𝒚∗)261

=
𝜆

𝛾𝛼 + 1
(I𝑁 − A+A)(I𝑁 − B+B)(𝒚 − 𝒚∗) + 𝜆

𝛾𝛼 + 1
A+AB+B(𝒚 − 𝒚∗)262

+ 𝜆𝛾𝛼

𝛾𝛼 + 1
B+B(𝒚 − 𝒚∗) + (1 − 𝜆)(𝒚 − 𝒚∗).263

264

Therefore, the matrix T𝑐,𝜆 can be expressed as follows:265

T𝑐,𝜆 =
𝜆

𝛾𝛼 + 1

(
(I𝑁 − A+A)(I𝑁 − B+B) + A+AB+B

)
+ 𝜆𝛾𝛼

𝛾𝛼 + 1
B+B + (1 − 𝜆)I𝑁 .266

Definition 2.3. Let 𝒰 and 𝒱 be two subspaces of R𝑁 with dim(𝒰) = 𝑝 ≤267

dim(𝒱). The principal angles 𝜃𝑘 ∈ [0, 𝜋2 ] (𝑘 = 1, · · · , 𝑝) between 𝒰 and 𝒱 are268

recursively defined by269

cos𝜃𝑘 = 𝒖T
𝑘 𝒗𝑘 = max

𝒖∈𝒰
max
𝒗∈𝒱

𝒖T𝒗 ,270

such that ∥𝒖∥2 = ∥𝒗∥2 = 1, 𝒖T
𝑗 𝒖 = 0, 𝒗T

𝑗 𝒗 = 0, 𝑗 = 1, 2, · · · , 𝑘 − 1.271
272

The vectors (𝒖1 , · · · , 𝒖𝑝) and (𝒗1 , · · · , 𝒗𝑝) are principal vectors.273

Our next goal is to decompose the matrix T𝑐,𝜆 with principal angles between subspaces274

𝒩(A) and 𝒩(B). To simplify the writeup, we define matrix T = (I𝑁 − A+A)(I𝑁 −275

B+B) + A+AB+B. Thus, we rewrite T𝑐,𝜆 = 𝜆(𝑐T + (1 − 𝑐)B+B) + (1 − 𝜆)I𝑁 . Let A0276

be an 𝑁 × (𝑁 − 1) matrix whose columns are orthogonal basis of 𝒩(A) and A1 be an277

𝑁 × 1 matrix whose columns are orthogonal basis of ℛ(AT). Similarly, let B0 be an278

𝑁 × (𝑁 − 𝑟) matrix whose columns are orthogonal basis of 𝒩(B) and B1 be an 𝑁 × 𝑟279

matrix whose columns are orthogonal basis of ℛ(BT).280

Since both A+A and A1A
T
1 represent the projection to ℛ(AT), we have A+A =281

A1A
T
1 . Similarly, I𝑁 − A+A = A0A

T
0 . Thus we have T = A0A

T
0 B0B

T
0 + A1A

T
1 B1B

T
1 .282

Define matrix E0 = AT
0 B0 and matrix E1 = AT

1 B0. Since A0A
T
0 + A1A

T
1 = I𝑁 , we283

have B0 = (A0A
T
0 + A1A

T
1 )B0 = A0E0 + A1E1. Therefore, we rewrite284

B0B
T
0 = (A0E0 + A1E1)(ET

0 A
T
0 + ET

1 A
T
1 ) =

[
A0 A1

] [E0E
T
0 E0E

T
1

E1E
T
0 E1E

T
1

] [
AT

0

AT
1

]
.(2.3)285

286

The singular value decomposition (SVD) of the (𝑁 − 1) × (𝑁 − 𝑟) matrix E0 is E0 =287

U0 cosΘVT with singular values cos𝜃1, · · · , cos𝜃𝑁−𝑟 in nonincreasing order. We288

know that 𝜃𝑖 (𝑖 = 1, · · · , 𝑁 − 𝑟) are the principal angles between 𝒩(A) and 𝒩(B).289

Notice ET
1 E1 = BT

0 A1A
T
1 B0 and A1A

T
1 = I𝑁 − A0A

T
0 , we have ET

1 E1 = BT
0 B0 −290

BT
0 A0A

T
0 B0 = I𝑁−𝑟 −ET

0 E0. Recall the SVD of E0, we have E
T
1 E1 = V sin2 ΘVT. Thus291

E1 can be expressed as U1 sinΘVT, which is however not the SVD of E1. To this end,292

let matrix Ã = [A0U0 A1U1], then (2.3) becomes293

(2.4) B0B
T
0 = Ã

[
cos2 Θ sinΘ cosΘ

sinΘ cosΘ sin2 Θ

]
ÃT.294
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Because of B1B
T
1 = I𝑁 − B0B

T
0 and ÃÃT = I𝑁 , we have the decomposition295

(2.5) B1B
T
1 = Ã

[
sin2 Θ − sinΘ cosΘ

− sinΘ cosΘ cos2 Θ

]
ÃT.296

Notice A0A
T
0 Ã = [A0U0 O𝑁×(𝑁−𝑟)] and A1A

T
1 Ã = [O𝑁×(𝑁−𝑟) A1U1], by (2.4) and297

(2.5), we obtain298

(2.6) T = Ã

[
cos2 Θ sinΘ cosΘ

− sinΘ cosΘ cos2 Θ

]
ÃT.299

Therefore, use (2.6) and consider B+B = B1B
T
1 , the matrix T𝑐,𝜆 becomes300

(2.7) T𝑐,𝜆 = Ã

[
𝜆𝑐 cos2 Θ + 𝜆(1 − 𝑐) sin2 Θ + (1 − 𝜆)I𝑁−𝑟 𝜆(2𝑐 − 1) sinΘ cosΘ

−𝜆 sinΘ cosΘ 𝜆 cos2 Θ + (1 − 𝜆)I𝑁−𝑟

]
ÃT.301

2.3. Asymptotic convergence rate. With the assumption 𝑟 < 𝑁 , there exists302

a nonzero principal angle between subspaces 𝒩(A) and 𝒩(B). The following lemma303

gives values of all the principal angles.304

Lemma 2.4. The principal angles 𝜃𝑖, 𝑖 = 1, · · · , 𝑁 − 𝑟, between subspaces 𝒩(A)305

and 𝒩(B) satisfy306

(2.8) cos𝜃1 = · · · = cos𝜃𝑁−𝑟−1 = 1 and cos𝜃𝑁−𝑟 =

√
𝑟

𝑁
.307

Proof. Let 𝒩(A)⊥ denote the orthogonal complement of space 𝒩(A). Since A =308 [
1 1 · · · 1

]
∈ R1×𝑁 , we have 𝒩(A)⊥ = span{1}. Recall the columns of B0 are309

the orthogonal basis of 𝒩(B). The principal angles between 𝒩(A)⊥ and 𝒩(B) can be310

computed via the SVD of 1√
𝑁
1TB0. Each column of B0 is a standard basis 𝒆 𝑗 , where311

𝑗 ≠ 𝑖1 , · · · , 𝑖𝑟 . Thus312

( 1√
𝑁
1TB0

)T ( 1√
𝑁
1TB0

)
=

1

𝑁


1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

 (𝑁−𝑟)×(𝑁−𝑟)

.313

The eigenvalues of the (𝑁 − 𝑟) × (𝑁 − 𝑟) matrix consisting of all ones, are 𝑁 − 𝑟 and314

0, · · · , 0. So the singular values of 1√
𝑁
1TB0 are

√
𝑁−𝑟
𝑁 and 0, · · · , 0. We conclude315

cos𝜃𝑁−𝑟 =
√

𝑟
𝑁 , since the non-trivial principal angles between 𝒩(A) and 𝒩(B) and316

the corresponding non-trivial principal angles between 𝒩(A)⊥ and 𝒩(B) sum up to317
𝜋
2 , see the Theorem 2.7 in [24]. In addition, since the dimension of 𝒩(A) is 𝑁 − 1318

and the dimension of 𝒩(B) is 𝑁 − 𝑟, then as long as 𝑁 − 𝑟 > 1, from the definition of319

principal angles, it is straightforward to see cos𝜃1 = · · · = cos𝜃𝑁−𝑟−1 = 1.320

By Lemma 2.4, there exists only one nonzero principal angle 𝜃𝑁−𝑟 . By eliminating321
zero columns in (2.7), (2.7) can be simplified as322

T𝑐,𝜆 = [A0U0 A1]

0𝑟−1

(1 − 𝜆 + 𝜆𝑐)I𝑁−𝑟−1
𝜆𝑐 cos2 𝜃𝑁−𝑟 + 𝜆(1 − 𝑐) sin2 𝜃𝑁−𝑟 + (1 − 𝜆) 𝜆(2𝑐 − 1) sin𝜃𝑁−𝑟 cos𝜃𝑁−𝑟

−𝜆 sin𝜃𝑁−𝑟 cos𝜃𝑁−𝑟 𝜆 cos2 𝜃𝑁−𝑟 + (1 − 𝜆)


[
UT

0 A
T
0

AT
1

]
.323

324
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From (2.7) we know the matrix T𝑐,𝜆 is a nonnormal matrix, thus ∥T𝑘
𝑐,𝜆∥2 is sig-325

nificantly smaller than ∥T𝑐,𝜆∥𝑘2 for sufficiently large 𝑘. Therefore, the asymptotic326

convergence rate is governed by lim𝑘→∞ ∥T𝑘
𝑐,𝜆∥

1
𝑘

2 , which is equal to the norm of the327

eigenvalue of T𝑐,𝜆 with the largest magnitude. We have328

329

det(T𝑐,𝜆 − 𝜌I) = (𝜌 − 1 + 𝜆 − 𝜆𝑐)𝑁−𝑟−1(𝜌 − 1 + 𝜆𝑐)𝑟−1330

×
[
𝜌2 − (𝜆(𝑐 cos 2𝜃𝑁−𝑟 − 1) + 2)𝜌 + 𝜆2𝑐 sin2 𝜃𝑁−𝑟 + 𝜆(𝑐 cos 2𝜃𝑁−𝑟 − 1) + 1

]
.331332

By Lemma 2.4, the matrix T𝑐,𝜆 has eigenvalues 𝜌0 = 1 − 𝜆𝑐 and 𝜌1 = 1 − 𝜆(1 − 𝑐)333

corresponding to the principle angles 𝜃1 , · · · , 𝜃𝑁−𝑟−1, Corresponding to the principle334

angle 𝜃𝑁−𝑟 , the matrix T𝑐,𝜆 has another two eigenvalues, 𝜌2 and 𝜌3, satisfying the335

following quadratic equation:336

(2.9) 𝜌2 − (𝜆(𝑐 cos 2𝜃𝑁−𝑟 − 1) + 2)𝜌 + 𝜆2𝑐 sin2 𝜃𝑁−𝑟 + 𝜆(𝑐 cos 2𝜃𝑁−𝑟 − 1) + 1 = 0.337

The discriminant of above equation is Δ = 𝜆2(𝑐2 cos2 2𝜃𝑁−𝑟−2𝑐+1). The two solutions338

of Δ = 0 are [1 ± sin(2𝜃𝑁−𝑟)]/cos2(2𝜃𝑁−𝑟). Notice that [1 + sin(2𝜃)]/cos2(2𝜃) ≥ 1339

for any 𝜃 ∈ [0, 𝜋2 ] and 𝑐 ∈ (0, 1). Let 𝑐∗ = [1 − sin(2𝜃𝑁−𝑟)]/cos2(2𝜃𝑁−𝑟), then the340

magnitudes of 𝜌2 and 𝜌3 are:341

if 𝑐 ≤ 𝑐∗ , then |𝜌2 | =
1

2
|𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2 + 𝜆

√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1 |,342

|𝜌3 | =
1

2
|𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2 − 𝜆

√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1 |,343

if 𝑐 > 𝑐∗ , then |𝜌2 | = |𝜌3 | =
√
𝑐𝜆2 sin2 𝜃𝑁−𝑟 − (1 − 𝑐 cos(2𝜃𝑁−𝑟))𝜆 + 1 .344

345

Recall the generalized Douglas–Rachford splitting (1.6) and (1.7a) converges due to346

convexity [26]. When the iterations enter the asymptotic regime (after the cut-off347

location of the operator S does not change), the convergence rate is governed by the348

largest magnitude of eigenvalues 𝜌0, 𝜌1, 𝜌2, and 𝜌3:349

Theorem 2.5. For a standard fixed point of generalized Douglas–Rachford split-350

ting iteration as defined in Section 2.1, the asymptotic convergence rate of (1.6) solv-351

ing (1.3) is linear. There exists a sufficiently large 𝐾 > 0, such that for any integer352

𝑘 ≥ 𝐾, we have353

∥𝒚𝑘 − 𝒚∗∥2 ≤ 𝐶
(
min
𝑐,𝜆

max{|𝜌0 |,|𝜌1 |, |𝜌2 |, |𝜌3 |}
) 𝑘
,354

where 𝐾 and 𝐶 may depend on A, 𝑏, and 𝒚0.355

2.4. A simple strategy of choosing nearly optimal parameters. For solv-356

ing problem (1.3), after the iteration of algorithm (1.6) enters the asymptotic linear357

convergence regime, the rate of convergence is governed by the largest magnitude of358

𝜌0, 𝜌1, 𝜌2, and 𝜌3. For seeking optimal parameters, we can safely ignore 𝜌0 because it359

is straightforward to verify that 𝜌0 ≤ 𝜌1 with the optimal parameters derived below.360

It is highly preferred to construct a guideline for selecting parameters 𝑐 and 𝜆 such361

that for max{|𝜌1 |, |𝜌2 |, |𝜌3 |} is reasonably small.362

We first consider the case 𝜃𝑁−𝑟 ∈ (𝜋4 , 𝜋2 ]. It is easy to check 𝑐∗= 1
(cos𝜃𝑁−𝑟+sin𝜃𝑁−𝑟 )2 ∈363

( 12 , 1]. Define surfaces Γ𝑖 = {(𝑐,𝜆, 𝑧) : 0 < 𝑐 < 𝑐∗ , 0 < 𝜆 ≤ 2, 𝑧 = |𝜌𝑖 |}, where364
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𝑖 ∈ {1, 2, 3}. For any point (𝑐,𝜆, 𝑧) ∈ Γ2 ∩ Γ3, due to the fact that |𝑎 + 𝑏 | = |𝑎 − 𝑏 |365

implies 𝑎𝑏 = 0 for any 𝑎, 𝑏 ∈ R, we have (𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2)
√
Δ = 0. When 𝑐 < 𝑐∗366

the discriminant Δ > 0, we get 𝜆𝑐 cos(2𝜃𝑁−𝑟) −𝜆+ 2 = 0. Thus, if there exists a point367

belongs to Γ1 ∩ Γ2 ∩ Γ3, then it satisfies368 {
|1 − 𝜆(1 − 𝑐)| = 𝜆

2

√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1 ,

𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2 = 0.
369

370

On surfaces Γ𝑖 , 𝑖 ∈ {1, 2, 3}, the parameters 𝑐 ∈ (0, 𝑐∗) and 𝜆 ∈ (0, 2] implies above371

equations only have one solution 𝑐 = 1
2 and 𝜆 = 4

2−cos (2𝜃𝑁−𝑟 ) . Thus, we have372

(2.10) Γ1 ∩ Γ2 ∩ Γ3 =

{(1
2
,

4

2 − cos (2𝜃𝑁−𝑟)
,− cos (2𝜃𝑁−𝑟)

2 − cos (2𝜃𝑁−𝑟)
)}
.373

Therefore, we know when 𝜃𝑁−𝑟 ∈ (𝜋4 , 𝜋2 ], the minimum of max{|𝜌1 |, |𝜌2 |, |𝜌3 |} for374

𝑐 ∈ (0, 𝑐∗) and 𝜆 ∈ (0, 2] is not greater than − cos (2𝜃𝑁−𝑟 )
2−cos (2𝜃𝑁−𝑟 ) . To deal with 𝑐 ∈ [𝑐∗ , 1), we375

need the following lemma.376

Lemma 2.6. Assume 𝜌1 and 𝜌2 are functions of 𝑐 and 𝜆, for which the minimum377

can be attained. Then, the following inequality holds.378

min
𝑐,𝜆

max{|𝜌1 |, |𝜌2 |} ≥ max{min
𝑐,𝜆

|𝜌1 |,min
𝑐,𝜆

|𝜌2 |}.379

Proof. Assume the minimum of max{|𝜌1 |, |𝜌2 |} is achieved at (𝑐0 ,𝜆0). We have380

i. If |𝜌1(𝑐0 ,𝜆0)| ≥ |𝜌2(𝑐0 ,𝜆0)|, then min𝑐,𝜆 max{|𝜌1 |, |𝜌2 |} = |𝜌1(𝑐0 ,𝜆0)| ≥381

min𝑐,𝜆 |𝜌1 |.382

ii. If |𝜌1(𝑐0 ,𝜆0)| < |𝜌2(𝑐0 ,𝜆0)|, then min𝑐,𝜆 max{|𝜌1 |, |𝜌2 |} = |𝜌2(𝑐0 ,𝜆0)| >383

|𝜌1(𝑐0 ,𝜆0)|. Proof by contradiction: assume min
𝑐,𝜆

max{|𝜌1 |, |𝜌2 |} < min
𝑐,𝜆

|𝜌1 |,384

then it implies |𝜌1(𝑐0 ,𝜆0)| < min
𝑐,𝜆

|𝜌1 |, which is impossible.385

Thus, min
𝑐,𝜆

max{|𝜌1 |, |𝜌2 |} ≥ min
𝑐,𝜆

|𝜌1 |. Similarly, min
𝑐,𝜆

max{|𝜌1 |, |𝜌2 |} ≥ min
𝑐,𝜆

|𝜌2 |.386

When 𝑐 ∈ [𝑐∗ , 1), the magnitude of 𝜌2 and 𝜌3 are equal, namely we only need to find387

suitable parameters 𝑐 and 𝜆 such that the max{|𝜌1 |, |𝜌2 |} is reasonably small. It is388

easy to verify that, when 𝑐 ∈ [𝑐∗ , 1) and 𝜆 ∈ (0, 2], the function 𝜌1 is monotonically389

increasing with respect to 𝑐 and monotonically decreasing with respect to 𝜆. Thus,390

𝜌1(𝑐∗ , 2) = 2𝑐∗ − 1 > 0 gives |𝜌1 | = 𝜌1. Associated with 𝜆 greater or less than391

− cos (2𝜃𝑁−𝑟 )
sin2 𝜃𝑁−𝑟

, we have two cases.392

1. When 𝜆 ∈ (0,− cos (2𝜃𝑁−𝑟 )
sin2 𝜃𝑁−𝑟

], recall the monotonicity of 𝜌1, we have393

394

min
𝑐∈[𝑐∗ ,1), 𝜆∈(0,− cos (2𝜃𝑁−𝑟 )

sin2 𝜃𝑁−𝑟
]
|𝜌1 | = 𝜌1

(
𝑐∗ ,−cos (2𝜃𝑁−𝑟)

sin2 𝜃𝑁−𝑟

)
395

= 1 + cos (2𝜃𝑁−𝑟)
sin2 𝜃𝑁−𝑟

(
1 − 1

(cos𝜃𝑁−𝑟 + sin𝜃𝑁−𝑟)2
)
>

1

2
> − cos (2𝜃𝑁−𝑟)

2 − cos (2𝜃𝑁−𝑟)
.396

397

By Lemma 2.6, when the principal angle 𝜃𝑁−𝑟 ∈ (𝜋4 , 𝜋2 ], we know398

min
𝑐∈[𝑐∗ ,1), 𝜆∈(0,− cos (2𝜃𝑁−𝑟 )

sin2 𝜃𝑁−𝑟
]
max{|𝜌1 |, |𝜌2 |} > − cos (2𝜃𝑁−𝑟)

2 − cos (2𝜃𝑁−𝑟)
.399
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Therefore, the common point of the three surfaces Γ1, Γ2, and Γ3 in (2.10) is400

still a good choice.401

2. When 𝜆 ∈ (− cos (2𝜃𝑁−𝑟 )
sin2 𝜃𝑁−𝑟

, 2], define 𝜅 = 𝑐𝜆2 sin2 𝜃𝑁−𝑟−(1−𝑐 cos(2𝜃𝑁−𝑟))𝜆+1.We402

have 𝜕𝜅
𝜕𝑐 = 𝜆(𝜆 sin2 𝜃𝑁−𝑟 + cos (2𝜃𝑁−𝑟)) > 0, which implies 𝜅 is monotonically403

increasing with respect to 𝑐 in the interval [𝑐∗ , 1). Thus, for any 𝑐 ≥ 𝑐∗, the404

|𝜌2(𝑐,𝜆)| ≥ |𝜌2(𝑐∗ ,𝜆)| holds. Again, recall the monotonicity of 𝜌1, we obtain405

min
𝑐∈[𝑐∗ ,1), 𝜆∈(− cos (2𝜃𝑁−𝑟 )

sin2 𝜃𝑁−𝑟
,2]
max{|𝜌1 |, |𝜌2 |} = min

𝜆∈(− cos (2𝜃𝑁−𝑟 )
sin2 𝜃𝑁−𝑟

,2]
max{|𝜌1(𝑐∗ ,𝜆)|, |𝜌2(𝑐∗ ,𝜆)|}.406

Since |𝜌1(𝑐∗ ,𝜆)| = 1 − 𝜆(1 − 𝑐∗) and |𝜌2(𝑐∗ ,𝜆)| = |1 − 𝜆
1+cot𝜃𝑁−𝑟

|, when 𝜃𝑁−𝑟 ∈407

(𝜋4 , 𝜋2 ], 1
1+cot𝜃𝑁−𝑟

> 1 − 𝑐∗, then the equation |𝜌1(𝑐∗ ,𝜆)| = |𝜌2(𝑐∗ ,𝜆)| has one408

and only one root409

𝜆∗ =
2

1 + 1
1+cot𝜃𝑁−𝑟

− 1
(cos𝜃𝑁−𝑟+sin𝜃𝑁−𝑟 )2

.410

Therefore, we know when 𝜃𝑁−𝑟 ∈ (𝜋4 , 𝜋2 ], the minimum of max{|𝜌1 |, |𝜌2 |, |𝜌3 |}411

for 𝑐 ∈ [𝑐∗ , 1) and 𝜆 ∈ (− cos (2𝜃𝑁−𝑟 )
sin2 𝜃𝑁−𝑟

, 2] is not larger than 1 − 𝜆∗(1 − 𝑐∗).412

Next, let us consider the case 𝜃𝑁−𝑟 ∈ (0, 𝜋4 ]. When 𝑐 ∈ (0, 𝑐∗) and 𝜆 ∈ (0, 2], the413

discriminant Δ > 0, namely the quadratic equation (2.9) has two real roots. Moreover,414

|𝜌2 | > |𝜌3 | obviously. Thus, we only need to minimize the max{|𝜌1 |, |𝜌2 |}. Define415

𝜅̃ = 𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2 + 𝜆
√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1.416

Since for any 𝜃𝑁−𝑟 ∈ (0, 𝜋4 ], 𝑐 ∈ (0, 𝑐∗), and 𝜆 ∈ (0, 2] the 𝜆𝑐 cos(2𝜃𝑁−𝑟) − 𝜆 + 2 > 0,417

we have |𝜌2 | = 1
2 𝜅̃. From418

𝜕𝜅̃

𝜕𝑐
= 𝜆

(
cos(2𝜃𝑁−𝑟) +

𝑐 cos2(2𝜃𝑁−𝑟) − 1√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1

)
≤ 0,419

𝜕𝜅̃

𝜕𝜆
= 𝑐 cos(2𝜃𝑁−𝑟) − 1 +

√
cos2(2𝜃𝑁−𝑟)𝑐2 − 2𝑐 + 1 ≤ 0,420

421

we know the 𝜅̃ is monotonically decreasing with respect to both 𝑐 and 𝜆. Thus 𝜅̃ take422

minimum at 𝑐 = 𝑐∗ and 𝜆 = 2. By Lemma 2.6, when the principal angle 𝜃𝑁−𝑟 ∈ (0, 𝜋4 ],423

we know424

(2.11) min
𝑐∈(0,𝑐∗), 𝜆∈(0,2]

max{|𝜌1 |, |𝜌2 |} ≥ min
𝑐∈(0,𝑐∗), 𝜆∈(0,2]

|𝜌2 | =
1

2
𝜅̃(𝑐∗ , 2) = 𝑐∗ cos 2𝜃𝑁−𝑟 .425

Notice, when 𝑐 = 𝑐∗ and 𝜆 = 2, the magnitude of 𝜌1 and 𝜌2 can be simplified as426

|𝜌1 | = |2𝑐∗ − 1| and |𝜌2 | = 𝑐∗ cos 2𝜃𝑁−𝑟 , where 𝑐∗ = 1
(cos𝜃𝑁−𝑟+sin𝜃𝑁−𝑟 )2 . It is easy to427

check that |𝜌2 | > |𝜌1 | holds for any 𝜃𝑁−𝑟 ∈ (0, 𝜋4 ]. We have428

min
𝑐∈(0,𝑐∗), 𝜆∈(0,2]

max{|𝜌1 |, |𝜌2 |} ≤ max{|𝜌1(𝑐∗ , 2)|, |𝜌2(𝑐∗ , 2)|} = |𝜌2(𝑐∗ , 2)| = 𝑐∗ cos 2𝜃𝑁−𝑟 .
(2.12)

429
430

From above (2.11) and (2.12), we obtain the minimum of max{|𝜌1 |, |𝜌2 |, |𝜌3 |} equals431

𝑐∗ cos 2𝜃𝑁−𝑟 , which is achieved at 𝑐 = 𝑐∗ and 𝜆 = 2. When 𝑐 ∈ [𝑐∗ , 2), following the432

similar argument as above, we can show |𝜌1 | = 1 − 𝜆(1 − 𝑐), which is monotonically433
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increasing with respect to 𝑐 and monotonically decreasing with respect to 𝜆. In434

addition, we also have |𝜌2 | = |𝜌3 | which is monotonically increasing with respect to435

𝑐. Thus, we have436

min
𝑐∈[𝑐∗ ,1), 𝜆∈(0,2]

max{|𝜌1 |, |𝜌2 |, |𝜌3 |} = min
𝜆∈(0,2]

max{|𝜌1(𝑐∗ ,𝜆)|, |𝜌2(𝑐∗ ,𝜆)|}437

= min
𝜆∈(0,2]

1

2
𝜆𝑐∗ cos(2𝜃𝑁−𝑟) −

1

2
𝜆 + 1.438

439

The last equality above is due to the fact the |𝜌1(𝑐∗ ,𝜆)| ≤ |𝜌2(𝑐∗ ,𝜆)| holds for any440

𝜃𝑁−𝑟 ∈ (0, 𝜋4 ]. From 𝜆𝑐∗ cos(2𝜃𝑁−𝑟) − 𝜆 is monotonically decreasing with respect to441

𝜆, we know, in this case, the minimum equals 𝑐∗ cos(2𝜃𝑁−𝑟), which is taken at 𝑐 = 𝑐∗442

and 𝜆 = 2.443

To this end, let us make a summary of the parameter selection principle as follows.444

1. When 𝜃𝑁−𝑟 ∈ ( 38𝜋, 12𝜋], a suitable choice of parameters are: 𝑐 = 1
2 , 𝜆 = 4

2−cos (2𝜃𝑁−𝑟 ) .445

The associated asymptotic linear convergence rate is governed by − cos (2𝜃𝑁−𝑟 )
2−cos (2𝜃𝑁−𝑟 ) .446

2. When 𝜃𝑁−𝑟 ∈ ( 14𝜋, 38𝜋], a suitable choice of parameters are: 𝑐 = 𝑐∗, 𝜆 = 𝜆∗. The447

associated asymptotic linear convergence rate is governed by 1 − 𝜆∗(1 − 𝑐∗).448

3. When 𝜃𝑁−𝑟 ∈ (0, 14𝜋], a suitable choice of parameters are: 𝑐 = 𝑐∗, 𝜆 = 2. The449

associated asymptotic linear convergence rate is governed by 𝑐∗ cos(2𝜃𝑁−𝑟).450

Remark 2.7. The exact value of the principal angle 𝜃𝑁−𝑟 in (2.8) is unknown.451

But it is simple to estimate 𝜃𝑁−𝑟 by counting the number of bad cells, e.g., let 𝑟 be452

the number of 𝑢𝑖 ∉ [𝑚, 𝑀] and use 𝑟 instead of 𝑟 in (2.8) to compute 𝜃𝑁−𝑟 . This gives453

a simple guideline (1.9) for choosing nearly optimal parameters, which is efficient in454

all our numerical tests as shown in Section 4.455

Remark 2.8. In a large scale 3D problem, usually the ratio of bad cells with cell456

averages out of bound in the DG scheme is quite small. In such a case, we expect457

𝑟 ≪ 𝑁 , with which 𝜃𝑁−𝑟 is very close to zero. In this case, by the discussions458

above, the convergence rate in Theorem 2.5 becomes − cos (2𝜃𝑁−𝑟 )
2−cos (2𝜃𝑁−𝑟 ) . If 𝑟 is also a good459

approximation to 𝑟, which is usually true in this context, then we get the rate (1.10).460

With the guideline (1.9) for choosing nearly optimal parameters in (1.7a), we can461

use the two-step limiter as explained in Section 1.5 to enforce bounds of DG solutions.462

3. Application to phase-field equations. One of the popular approaches for463

modeling multi-phase fluid flow in micro-to-millimeter pore structures is to use phase-464

field equations [15]. Efficient and accurate pore-scale fluid dynamics simulators have465

important applications in digital rock physics (DRP), which has been extensively used466

in the petroleum industry for optimizing enhanced oil recovery schemes.467

3.1. Mathematical model. In an open bounded domain Ω ⊂ R𝑑 over a time468

interval (0, 𝑇], the dimensionless CHNS equations are given by:469

𝜕𝑡𝜙 − 1

Pe
∇ · (ℳ(𝜙)∇𝜇) + ∇ · (𝜙𝒗) = 0 in (0, 𝑇] ×Ω,(3.1a)470

𝜇 + Cn2Δ𝜙 −Φ′(𝜙) = 0 in (0, 𝑇] ×Ω,(3.1b)471

𝜕𝑡𝒗 + 𝒗 · ∇𝒗 − 2

Re
∇ · 𝜺(𝒗) + 1

ReCa
∇𝑝 − 3

2
√
2ReCaCn

𝜇∇𝜙 = 0 in (0, 𝑇] ×Ω,(3.1c)472

∇ · 𝒗 = 0 in (0, 𝑇] ×Ω,(3.1d)473474
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where 𝜙, 𝜇, 𝒗, and 𝑝 are order parameter, chemical potential, velocity, and pressure.475

The non-dimensional quantities Pe, Cn, Re, and Ca denote the Péclet number, Cahn476

number, Reynolds number, and capillary number, respectively. The strain tensor is477

given by 𝜺(𝒗) = 1
2 (∇𝒗 + (∇𝒗)T). The function ℳ denotes mobility. Typical choices of478

ℳ include the constant mobility ℳ(𝜙) = ℳ0 > 0, where ℳ0 can be set to 1 after479

nondimensionalization, and the degenerate mobility ℳ(𝜙) = 1 − 𝜙2. The function480

Φ is a scalar potential, which is also called chemical energy density. Classical and481

widely used forms are the polynomial Ginzburg–Landau (GL) double well potential:482

Φ(𝜙) = 1
4 (1 − 𝜙)2(1 + 𝜙)2 and the Flory–Huggins (FH) logarithmic potential with483

parameters 𝛼 and 𝛽: Φ(𝜙) = 𝛼
2

(
(1 + 𝜙) ln

( 1+𝜙
2

)
+ (1 − 𝜙) ln

( 1−𝜙
2

) )
+ 𝛽

2 (1 − 𝜙2).484

We supplement (3.1) with initials 𝜙 = 𝜙0 and 𝒗 = 𝒗0 on {0} ×Ω. Let 𝒏 denote485

the unit outward normal to domain Ω. We decompose the boundary 𝜕Ω into three486

disjoint subsets 𝜕Ω = 𝜕Ωwall∪𝜕Ωin∪𝜕Ωout, where 𝜕Ωwall denotes fluid–solid interface487

and 𝜕Ωin and 𝜕Ωout are inflow boundary and outflow boundary488

𝜕Ωin = {𝒙 ∈ 𝜕Ω : 𝒗 · 𝒏 < 0} and 𝜕Ωout = 𝜕Ω \ (𝜕Ωwall ∪ 𝜕Ωin).489

We prescribe Dirichlet boundary conditions 𝜙 = 𝜙D and 𝒗 = 𝒗D on (0, 𝑇] × 𝜕Ωin.490

For velocity, the no-slip boundary condition 𝒗 = 0 is used on (0, 𝑇] × 𝜕Ωwall and “do491

nothing” boundary condition (2𝜺(𝒗) − 1
Ca𝑝I)𝒏 = 0 is applied on (0, 𝑇] × 𝜕Ωout. Wet-492

tability is modeled by a contact angle 𝜗 that is enforced by: ∇𝜙 · 𝒏 = − 2
√
2 cos(𝜗)
3Cn g′(𝜙)493

on (0, 𝑇] × (𝜕Ωwall ∪ 𝜕Ωout), where the function g is a blending function. The closed-494

form expression of g depends on the choice of chemical energy density [4]. For the495

Ginzburg–Landau potential, we have g(𝜙) = 1
4 (𝜙3 − 3𝜙 + 2). In addition, we employ496

the homogeneous Neumann boundary condition ℳ(𝜙)∇𝜇 · 𝒏 = 0 on (0, 𝑇] × 𝜕Ω to497

ensure the global mass conservation.498

The order parameter 𝜙 is the difference between the mass fraction 𝜙A and 𝜙B of499

the phase A and phase B. With constraint 𝜙A+𝜙B = 1 for a two-component mixture500

as well as mass fractions belonging to [0, 1], a physically meaningful range of the order501

parameter field is [−1, 1]. The Cahn–Hilliard equation with the degenerate mobility502

or with the logarithmic potential enjoys bound-preserving property [41]. However,503

for constant mobility with GL polynomial potential, the analytical solution of Cahn–504

Hilliard equation is not bound-preserving [2]. For a given initial data 𝜙0 ∈ [−1, 1], it is505

an open question whether the solution of a fully coupled CHNS system should have a506

bounded order parameter in [−1, 1]. On the other hand, empirically we would expect507

a reasonable solution, e.g., the discrete order parameter field, should be bounded by508

−1 and 1 for any time 𝑡 > 0.509

3.2. Time discretization. The CHNS equations form a highly nonlinear cou-510

pled system. One of the popular approaches of constructing efficient numerical algo-511

rithms for large-scale simulations in complex computational domains is to use splitting512

methods, e.g., to decouple the mass and momentum equations and to further split513

the convection from the incompressibility constraint [37]. Also, see [21, 19] for an514

overview of the splitting methods for time-dependent incompressible flows.515

We uniformly partition the interval [0, 𝑇] into 𝑁st subintervals. Let 𝜏 denote the516

time step size. For the chemical energy density, we adopt a convex–concave decom-517

position of the form Φ = Φ++Φ−, where the convex part Φ+ is treated time implicitly518

and the concave part Φ− is treated time explicitly. For the nonlinear convection519

𝒗 · ∇𝒗, the form 𝒞(·, ·) is a semi-discretization that satisfies a positivity property, see520

the equation (12) in [27]. For any 1 ≤ 𝑛 ≤ 𝑁st, our first-order time discretization521
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algorithm consists of the following steps:522

Step 1. Given (𝜙𝑛−1 ,𝒘𝑛−1), compute (𝜙𝑛 , 𝜇𝑛) such that523

𝜙𝑛 − 𝜏
Pe

∇ · (ℳ(𝜙𝑛−1)∇𝜇𝑛) + 𝜏∇ · (𝜙𝑛𝒘𝑛−1) = 𝜙𝑛−1 in Ω,524

−𝜇𝑛 − Cn2Δ𝜙𝑛 +Φ+
′(𝜙𝑛) = −Φ−

′(𝜙𝑛−1) in Ω.525526

Step 2. Given (𝜙𝑛 , 𝜇𝑛 , 𝒗𝑛−1 , 𝑝𝑛−1 ,𝜓𝑛−1), compute 𝒗𝑛 such that527

𝒗𝑛 + 𝜏𝒞(𝒗𝑛−1 , 𝒗𝑛) − 2𝜏
Re

∇ · 𝜺(𝒗𝑛) = 𝒗𝑛−1528

− 𝜏
ReCa

∇(𝑝𝑛−1 + 𝜓𝑛−1) + 3𝜏

2
√
2ReCaCn

𝜇𝑛∇𝜙𝑛 in Ω.529

530

Step 3. Given 𝒗𝑛 , compute 𝜓𝑛 such that531

−Δ𝜓𝑛 = −ReCa

𝜏
∇ · 𝒗𝑛 in Ω.532

533

Step 4. Given (𝒗𝑛 , 𝑝𝑛−1 ,𝜓𝑛), compute (𝒘𝑛 , 𝑝𝑛) such that534

𝒘𝑛 = 𝒗𝑛 − 𝜏
ReCa

∇𝜓𝑛 ,535

𝑝𝑛 = 𝑝𝑛−1 + 𝜓𝑛 − 𝜎𝜒Ca∇ · 𝒗𝑛 .536537

The parameter 𝜎𝜒 is equal to 2
𝑑
, namely, we use 𝜎𝜒 = 2

3 for our numerical simulations538

in three dimensions. To start time marching, we set 𝑝0 = 0 and 𝜓0 = 0. The functions539

𝜙0 and 𝒘0 = 𝒗0 are given initial data.540

Remark 3.1. The above scheme is a combination of the convex splitting approach541

for the Cahn–Hilliard equation with the classical rotational pressure-correction algo-542

rithm (see Section 3.4 in [21]) for the Navier–Stokes equations. More precisely, Step 2543

to Step 4 can be rewritten as follows:544

1

𝜏
(𝒗𝑛 −𝒘𝑛−1) + 𝒞(𝒗𝑛−1 , 𝒗𝑛) − 2

Re
∇ · 𝜺(𝒗𝑛) = − 1

ReCa
∇𝑝𝑛−1 + 3

2
√
2ReCaCn

𝜇𝑛∇𝜙𝑛 ,545 { 1
𝜏
(𝒘𝑛 − 𝒗𝑛) + 1

ReCa
∇𝜓𝑛 = 0,

∇ ·𝒘𝑛 = 0,
𝜓𝑛 = 𝑝𝑛 − 𝑝𝑛−1 + 𝜎𝜒Ca∇ · 𝒗𝑛 .546

547

We use 𝒘𝑛−1, instead of 𝒗𝑛−1, in the advection term in Step 1, since ∇ ·𝒘𝑛−1 = 0.548

For the sake of simplicity, we only presented a first-order version of the scheme,549

although high-order version can be constructed accordingly. On the other hand, it550

is also possible to construct energy dissipating schemes as in [38]. Since our focus in551

this paper is in preserving bounds for a DG spacial discretization, we employ a simple552

time-marching strategy.553

3.3. Space discretization. Decoupled splitting algorithms combined with inte-554

rior penalty DG spatial formations have been constructed to solve various CHNS mod-555

els in large-scale complex-domain DRP simulations [15, 28, 30]. Also, see [29, 32, 33]556

for solvability, stability, and optimal error estimates on using DG with decoupled split-557

ting schemes for CHNS equations and viscous incompressible flow. Here, we briefly558

review the fully discrete scheme.559
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Let 𝒯ℎ = {𝐸𝑖} be a family of conforming nondegenerate (regular) meshes of the560

domain Ω with maximum element diameter ℎ. Let Γℎ be the set of interior faces. For561

each interior face 𝑒 ∈ Γℎ shared by elements 𝐸𝑖− and 𝐸𝑖+ , with 𝑖− < 𝑖+, we define a562

unit normal vector 𝒏𝑒 that points from 𝐸𝑖− into 𝐸𝑖+ . For a boundary face, 𝑒 ⊂ 𝜕Ω,563

the normal vector 𝒏𝑒 is taken to be the unit outward vector to 𝜕Ω. Let P𝑘(𝐸𝑖) denote564

the set of all polynomials of degree at most 𝑘 on an element 𝐸𝑖 . Define the broken565

polynomial spaces 𝑋ℎ and Xℎ , for any 𝑘 ≥ 1,566

𝑋ℎ = {𝜒ℎ ∈ 𝐿2(Ω) : 𝜒ℎ |𝐸𝑖 ∈ P𝑘(𝐸𝑖), ∀𝐸𝑖 ∈ 𝒯ℎ},567

Xℎ = {𝜽ℎ ∈ 𝐿2(Ω)𝑑 : 𝜽ℎ |𝐸𝑖 ∈ P𝑘(𝐸𝑖)𝑑 , ∀𝐸𝑖 ∈ 𝒯ℎ}.568569

The average and jump for any scalar quantity 𝜒 on a boundary face coincide with its570

trace; and on interior faces they are defined by571

{|𝜒 |}|𝑒 =
1

2
𝜒 |𝐸𝑖− + 1

2
𝜒 |𝐸𝑖+ , ⟦𝜒⟧ |𝑒 = 𝜒 |𝐸𝑖− − 𝜒 |𝐸𝑖+ , ∀𝑒 = 𝜕𝐸𝑖− ∩ 𝜕𝐸𝑖+ .572

The related definitions for any vector quantity are similar. For more details see [36].573

Let (·, ·)𝒪 denote the 𝐿2 inner product over 𝒪. For instance, on any face 𝑒 the 𝐿2574

inner product is denoted by (·, ·)𝑒 . We make use of the following compact notation575

for the 𝐿2 inner product on the interior and boundary faces576

(·, ·)𝒪 =
∑
𝑒∈𝒪

(·, ·)𝑒 , where 𝒪 = Γℎ , 𝜕Ω, 𝜕Ω
in , 𝜕Ωout , · · · .577

For convenience, we omit the subscript when 𝒪 = Ω, namely denote (·, ·) = (·, ·)Ω. We578

still use ∇ and ∇ · to denote the broken gradient and broken divergence.579

For completeness, let us recall the DG forms below and we skip their derivation.580

Associated with the advection term ∇ · (𝜙𝒘) and the convection term 𝒗 ·∇𝒛, we define581

𝑎adv(𝜙,𝒘 , 𝜒) = −(𝜙,𝒘 · ∇𝜒) + (𝜙↑{|𝒘 · 𝒏𝑒 |}, ⟦𝜒⟧)Γℎ ,582

𝑎conv(𝒗; 𝒛, 𝜽) = (𝒗 · ∇𝒛, 𝜽) + 1

2
(∇ · 𝒗 , 𝒛 · 𝜽)583

− 1

2
(⟦𝒗 · 𝒏𝑒⟧ , {|𝒛 · 𝜽 |})Γℎ∪𝜕Ωin +

∑
𝐸∈𝒯ℎ

(|{|𝒗 |} · 𝒏𝐸 |, (𝒛int − 𝒛ext) · 𝜽int)𝜕𝐸𝒗− .584

585

The superscript int (resp. ext) refers to the trace of a function on a face of 𝐸 coming586

from the interior (resp. exterior). The set 𝜕𝐸𝒗
− is the upwind part of 𝜕𝐸, defined by587

𝜕𝐸𝒗
− = {𝒙 ∈ 𝜕𝐸 : {|𝒗 |} · 𝒏𝐸 < 0}, where 𝒏𝐸 is the unit outward normal vector to 𝐸 [18].588

The upwind quantity 𝜙↑ on an interior face 𝑒 is evaluated by589

𝜙↑
���
𝑒∈Γℎ

=

{
𝜙
��
𝐸𝑖−

if {|𝒘 |} · 𝒏𝑒 ≥ 0,

𝜙
��
𝐸𝑖+

if {|𝒘 |} · 𝒏𝑒 < 0.
590

Associated with the operator −∇ · (𝑧∇𝜉), we define591

𝑎diff (𝑧; 𝜉, 𝜒) = (𝑧∇𝜉,∇𝜒) − ({|𝑧∇𝜉 · 𝒏𝑒 |}, ⟦𝜒⟧)Γℎ592

− ({|𝑧∇𝜒 · 𝒏𝑒 |}, ⟦𝜉⟧)Γℎ +
𝜎
ℎ
(⟦𝜉⟧ , ⟦𝜒⟧)Γℎ .593

594
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Associated with the Laplace operator −Δ𝜉 (for terms −Δ𝜙 and −Δ𝜓), we define595

−Δ𝜉 +Dirichlet on 𝜕Ωin { 𝑎diff ,in(𝜉, 𝜒) = 𝑎diff (1; 𝜉, 𝜒) − (∇𝜉 · 𝒏𝑒 , 𝜒)𝜕Ωin596

− (∇𝜒 · 𝒏𝑒 , 𝜉)𝜕Ωin + 𝜎
ℎ
(𝜉, 𝜒)𝜕Ωin ,597

−Δ𝜉 +Dirichlet on 𝜕Ωout { 𝑎diff ,out(𝜉, 𝜒) = 𝑎diff (1; 𝜉, 𝜒) − (∇𝜉 · 𝒏𝑒 , 𝜒)𝜕Ωout598

− (∇𝜒 · 𝒏𝑒 , 𝜉)𝜕Ωout + 𝜎
ℎ
(𝜉, 𝜒)𝜕Ωout .599

600

Associated with the diffusion term −2∇ · 𝜺(𝒗), we define601

602

𝑎ellip(𝒗 , 𝜽) = 2(𝜺(𝒗), 𝜺(𝜽)) − 2({|𝜺(𝒗)𝒏𝑒 |}, ⟦𝜽⟧)Γℎ − 2({|𝜺(𝜽)𝒏𝑒 |}, ⟦𝒗⟧)Γℎ603

+ 𝜎
ℎ
(⟦𝒗⟧ , ⟦𝜽⟧)Γℎ − 2(𝜺(𝒗)𝒏𝑒 , 𝜽)𝜕Ωin − 2(𝜺(𝜽)𝒏𝑒 , 𝒗)𝜕Ωin + 𝜎

ℎ
(𝒗 , 𝜽)𝜕Ωin .604

605

The remaining forms in the right-hand sides of the discrete equations account for the606

boundary conditions (see 𝑏diff and 𝑏vel) and the pressure and potential (see 𝑏pres):607

𝑏diff (𝜉, 𝜒) = −(𝜙D ,∇𝜒 · 𝒏𝑒)𝜕Ωin + 𝜎
ℎ
(𝜙D , 𝜒)𝜕Ωin− 2

√
2𝛿 cos(𝜗)
3Cn

(g′(𝜉), 𝜒)𝜕Ωwall∪𝜕Ωout ,608

𝑏pres(𝑝,𝜓, 𝜽) = −(𝑝,∇ · 𝜽) + ({|𝑝 |}, ⟦𝜽 · 𝒏𝑒⟧)Γℎ∪𝜕Ω + (∇𝜓, 𝜽),609

𝑏vel(𝜽) = −3

2
(𝒗D · 𝒏 , 𝒗D · 𝜽)𝜕Ωin − 2

Re
(𝜺(𝜽)𝒏𝑒 , 𝒗D)𝜕Ωin + 𝜎

ℎRe
(𝒗D , 𝜽)𝜕Ωin .610

611

In 𝑏diff , the parameter 𝛿 is a scalar field that equals the constant one for smooth solid612

boundaries only and that otherwise corrects the numerical impact of the jaggedness613

of the solid boundaries obtained from micro-CT scanning. The derivation of this614

boundary condition and the wettability model can be found in [16].615

For any 1 ≤ 𝑛 ≤ 𝑁st, our fully discrete scheme for solving the CHNS equations616

(3.1) is as follows.617

Algorithm CHNS. At time 𝑡𝑛 , given scalar functions 𝜙𝑛−1
ℎ

, 𝑝𝑛−1
ℎ

,𝜓𝑛−1
ℎ

in 𝑋ℎ and618

vector functions 𝒗𝑛−1
ℎ

,𝒘𝑛−1
ℎ

in Xℎ .619

Step 1. Compute 𝜙𝑛
ℎ
, 𝜇𝑛

ℎ
∈ 𝑋ℎ , such that for all 𝜒ℎ ∈ 𝑋ℎ ,620

(𝜙𝑛
ℎ
, 𝜒ℎ) +

𝜏
Pe
𝑎diff (ℳ(𝜙𝑛−1

ℎ
);𝜇𝑛

ℎ
, 𝜒ℎ) + 𝜏𝑎adv(𝜙𝑛ℎ ,𝒘

𝑛−1
ℎ

, 𝜒ℎ)621

= (𝜙𝑛−1
ℎ

, 𝜒ℎ) + 𝜏(𝜙D𝒘𝑛−1
ℎ

· 𝒏𝑒 , 𝜒ℎ)𝜕Ωin ,622

−(𝜇𝑛
ℎ
, 𝜒ℎ) + Cn2𝑎diff ,in(𝜙𝑛ℎ , 𝜒ℎ) + (Φ+

′(𝜙𝑛
ℎ
), 𝜒ℎ)623

= Cn2𝑏diff (𝜙𝑛−1ℎ
, 𝜒ℎ) − (Φ−

′(𝜙𝑛−1
ℎ

), 𝜒ℎ).624625

Step 2. Compute 𝒗𝑛
ℎ
∈ Xℎ , such that for all 𝜽ℎ ∈ Xℎ ,626

627

(𝒗𝑛
ℎ
, 𝜽ℎ) + 𝜏𝑎conv(𝒗𝑛−1ℎ

, 𝒗𝑛
ℎ
, 𝜽ℎ) +

𝜏
Re

𝑎ellip(𝒗𝑛ℎ , 𝜽ℎ) = (𝒗𝑛−1
ℎ

, 𝜽ℎ)628

− 𝜏
ReCa

𝑏pres(𝑝𝑛−1ℎ
,𝜓𝑛−1

ℎ
, 𝜽ℎ) +

3𝜏

2
√
2ReCaCn

(𝜇𝑛
ℎ
∇𝜙𝑛

ℎ
, 𝜽ℎ) + 𝜏𝑏vel(𝜽ℎ).629

630

Step 3. Compute 𝜓𝑛
ℎ
∈ 𝑋ℎ , such that for all 𝜒ℎ ∈ 𝑋ℎ ,631

𝑎diff ,out(𝜓𝑛
ℎ
, 𝜒ℎ) = −ReCa

𝜏
(∇ · 𝒗𝑛

ℎ
, 𝜒ℎ).632
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Step 4. Compute 𝒘𝑛
ℎ
∈ Xℎ and 𝑝𝑛

ℎ
∈ 𝑋ℎ , such that for all 𝜽 ∈ Xℎ and 𝜒ℎ ∈ 𝑋ℎ ,633

(𝒘𝑛
ℎ
, 𝜽ℎ) + 𝜎div(∇ ·𝒘𝑛

ℎ
,∇ · 𝜽ℎ) = (𝒗𝑛

ℎ
, 𝜽ℎ) −

𝜏
ReCa

(∇𝜓𝑛
ℎ
, 𝜽ℎ),634

(𝑝𝑛
ℎ
, 𝜒ℎ) = (𝑝𝑛−1

ℎ
, 𝜒ℎ) + (𝜓𝑛

ℎ
, 𝜒ℎ) − 𝜎𝜒Ca(∇ · 𝒗𝑛

ℎ
, 𝜒ℎ).635636

For the initial conditions, we set 𝑝0
ℎ
= 𝜓0

ℎ
= 0, 𝒘0

ℎ
= 𝒗0

ℎ
; we compute 𝜙0

ℎ
from the637

𝐿2 projection of 𝜙0 followed with Zhang–Shu limiter and we obtain 𝒗0
ℎ
from the 𝐿2638

projection of 𝒗0.639

To obtain a bound-preserving discrete order parameter field, at each time step640

after finishing computing Step 1 in the Algorithm CHNS, we apply the two-stage641

limiting strategy, see Section 1.5, to postprocess discrete order parameter 𝜙𝑛
ℎ
. For the642

simulations in Section 4, we choose 𝑚 = −1 and 𝑀 = 1.643

4. Numerical experiments. In this section, we first verify the high order ac-644

curacy of our cell average limiter (1.7) for a manufactured smooth solution. Then645

we verify the efficiency of the limiter (1.7) when using the parameters (1.9) on some646

representative physical simulations including spinodal decomposition, flows in micro647

structure, and merging droplets.648

We use P2 scheme, e.g., discontinuous piecewise quadratic polynomials for space649

approximation, on cubic partitions of 3D domains. More details can be found in [14].650

The penalty parameters for all tests are as follows. We use 𝜎 = 8 on Γℎ for 𝑎diff ;651

𝜎 = 16 on 𝜕Ω for 𝑎diff ,in and 𝑎diff ,out; 𝜎 = 32 on Γℎ and 𝜎 = 64 on 𝜕Ωin for 𝑎ellip. In652

addition, we set tolerance 𝜖 = 10−13 to terminate Douglas–Rachford iterations.653

4.1. Accuracy test. We use the manufactured solution method on domain Ω =654

(0, 1)3 with end time 𝑇 = 0.1 to test the spatial order of convergence for our cell average655

limiter (1.7).656

To trigger the cell average limiter (1.7), e.g., produce a fully discrete solution657

with cell average out of [−1, 1] at each time step, we use constant mobility with GL658

polynomial potential and choose the prescribed order parameter field as an expres-659

sion of a cosine function to power eight, as follows: 𝜙 = 1− 2 cos8
(
𝑡 + 2𝜋

3 (𝑥 + 𝑦 + 𝑧)
)
.660

The chemical potential 𝜇 is an intermediate variable, which value is derived by the661

order parameter 𝜙. The prescribed velocity and pressure fields are taken from the662

Beltrami flow [32], which enjoys the property that the nonlinear convection is bal-663

anced by the pressure gradient and the velocity is parallel to vorticity. We have664

𝒗 =


−𝑒−𝑡+𝑥 sin (𝑦 + 𝑧) − 𝑒−𝑡+𝑧 cos (𝑥 + 𝑦)
−𝑒−𝑡+𝑦 sin (𝑥 + 𝑧) − 𝑒−𝑡+𝑥 cos (𝑦 + 𝑧)
−𝑒−𝑡+𝑧 sin (𝑥 + 𝑦) − 𝑒−𝑡+𝑦 cos (𝑥 + 𝑧)

 and 𝑝 = −𝑒−2𝑡(𝑒𝑥+𝑧 sin (𝑦 + 𝑧) cos (𝑥 + 𝑦) +665

𝑒𝑥+𝑦 sin (𝑥 + 𝑧) cos (𝑦 + 𝑧)+ 𝑒𝑦+𝑧 sin (𝑥 + 𝑦) cos (𝑥 + 𝑧)+ 1
2 𝑒

2𝑥 + 1
2 𝑒

2𝑦 + 1
2 𝑒

2𝑧 − 𝑝0), where666

𝑝0 = 7.63958172715414 guarantees zero average pressure over Ω for any 𝑡 > 0 up to667

round-off error. The initial conditions and Dirichlet boundary condition for velocity668

are imposed by above manufactured solutions. For order parameter and chemical669

potential, we apply Neumann boundary condition. In addition, the right-hand side670

terms is evaluated by the prescribed solution.671

Let us estimate the spatial rates of convergence by computing solutions on a672

sequence of uniformly refined meshes with fixed time step size 𝜏 = 10−4. In our673

experiments, the time step size is small enough such that the spatial error dominates.674

We choose Re = 1, Ca = 1, Pe = 1, Cn = 1, and the contact angle 𝜗 = 90◦ on675

𝜕Ω. If errℎ denotes the error on a mesh with resolution ℎ, then the rate is given by676

ln(errℎ/errℎ/2)/ln 2.677
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We compare the 𝐿2
ℎ
rate and the 𝐿∞

ℎ
rate of order parameter in three scenarios: not678

applying any limiter, only applying the cell average limiter (1.7), and applying both679

limiters (1.7) and (1.8). In those applied cell average limiter (1.7) cases, the limiter680

is triggered at each time step, see Figure 1 for the ratio of the number of trouble cells681

to the number of total elements. The convergence of our original DG scheme without682

applying any limiter is optimal, see the top rows in Table 1. The middle and bottom683

rows in Table 1 show optimal convergence of the cases that only apply cell average684

limiter (1.7) and apply both cell average limiter (1.7) and Zhang–Shu limiter (1.8).685

Our limiting strategy preserves high order accuracy. We emphasize that DG methods686

with only the Zhang-Shu limiter will produce cell averages outside of the range [−1, 1]687

for this particular test.688

Fig. 1. The performance of limiting strategy in the accuracy test of applying both limiters (1.7)
and (1.8) with mesh resolution ℎ = 1/25. Left: the percentage of trouble cells at each time step for
the cell average limiter (1.7). Right: the number of Douglas–Rachford iterations at each time step.
For each time step, at most 15 iterations are needed for (1.7a)

.

ℎ ∥𝜙𝑁st

ℎ
− 𝜙(𝑇)∥𝐿2

ℎ
rate ∥𝜙𝑁st

ℎ
− 𝜙(𝑇)∥𝐿∞

ℎ
rate

n
o
li
m
it
er 1/22 2.034E−1 — 5.636E−1 —

1/23 4.903E−2 2.053 1.400E−1 2.009
1/24 5.714E−3 3.101 2.731E−2 2.358
1/25 4.833E−4 3.564 4.699E−3 2.548

D
R

1/22 2.053E−1 — 5.826E−1 —
1/23 4.954E−2 2.051 1.485E−1 1.972
1/24 5.720E−3 3.115 2.799E−2 2.408
1/25 4.834E−4 3.565 4.734E−3 2.564

D
R
+Z

S 1/22 2.872E−1 — 7.631E−1 —
1/23 5.970E−2 2.266 2.561E−1 1.575
1/24 7.181E−3 3.057 3.926E−2 2.706
1/25 4.833E−4 3.893 4.734E−3 3.052

Table 1
Errors and spatial convergence rates of order parameter. Top: the original DG scheme without

applying any limiters. Middle: only apply the cell average limiter (1.7) (DR). Bottom: apply both
of the cell average limiter (1.7) and Zhang–Shu limiter (1.8).

4.2. Spinodal decomposition. Spinodal decomposition is a phase separation689

mechanism, by which an initially thermodynamically unstable homogeneous mixture690

spontaneously decomposes into two separated phases that are more thermodynam-691

ically favorable. The spinodal decomposition test is a widely used benchmark for692
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validating CHNS simulators. In this part, we employ the degenerate mobility with693

GL polynomial potential.694

We define a trefoil-shaped pipe, which is a set of points whose distance away695

from the following parametric curve is less than 0.09. A trefoil knot: 𝑥(𝑡) = 1
8 (cos 𝑡 +696

2 cos 2𝑡)+ 1
2 , 𝑦(𝑡) = 1

8 (sin 𝑡−2 sin 2𝑡)+ 1
2 , and 𝑧(𝑧) = 1

4 sin 3𝑡+ 1
2 , where 𝑡 ∈ [0, 2𝜋]. Let697

us uniformly partition the unit cube (0, 1)3 into cubic cells with the mesh resolution698

ℎ = 1/100. A cell is marked as fluid if its center is in the above pipe, otherwise is699

marked as solid. The computational domain Ω is defined as the union of all fluid cells.700

We consider a closed system, i.e., 𝜕Ω = 𝜕Ωwall. The initial order parameter field is701

generated by sampling numbers from a discrete uniform distribution, 𝑐0 |𝐸𝑖 ∼ U{−1, 1},702

and the initial velocity field is taken to be zero. We take the time step size 𝜏 = 1×10−3.703

For physical parameters, we choose Re = 1, Ca = 0.1, Pe = 1, Cn = ℎ, and the contact704

angle 𝜗 = 90◦ on 𝜕Ω.705

Figure 2 shows snapshots of the order parameter field. We employ a rainbow color706

scale that maps the values in [−1, 1] from transparent blue to non-transparent red707

for plotting the order parameter field. The center of the diffusive interface is colored708

green. We observe that the homogeneous mixture decomposes into two separate709

phases. With a neutral wall, i.e., the contact angle 𝜗 = 90◦, in the final stage of the710

simulation, each of the two phases occupies several disjoint sections of the domain.711

The interfaces are perpendicular to the solid surface. Our limiters remove overshoots712

and undershoots. The global mass is conserved, see the left subfigure of Figure 3.713

The middle subfigure of Figure 3 records the number of iterations of the Douglas–714

Rachford algorithm on each time step. To measure the convergence rate, we run715

the Douglas–Rachford algorithm for 103 iterations with a very small tolerance to716

approximate 𝒚∗ and 𝒙∗ numerically. Then we plot ∥𝒚𝑘 − 𝒚∗∥2 and ∥𝒙𝑘 − 𝒙∗∥2. The717

right subfigure of Figure 3 shows asymptotic linear convergence rates at the selected718

time step 128. We see the convergence rates match our analysis in Theorem 2.5. In719

addition, we check the convergence rates on all of the rest steps that match with our720

analysis.

Fig. 2. Selected snapshots at time steps 2𝑛 , where 𝑛 = 3, 5, · · · , 11. 3D views of the evolution
of order parameter field.

721

4.3. Micro structure simulations. This example involves large Péclet flows in722

a microfluidic device, making it an interesting test for validating our bound-preserving723

scheme in simulating advection-dominated CHNS problems. In this part, we use the724

constant mobility with GL polynomial potential.725

The microstructure image is a set of 334 × 210 × 10 cubic cells of resolution726

ℎ = 1/350. Analogous to the lab experiment setup, we add a buffer of 16×210×70 cells727

to the left side. The pore space together with the buffer region form our computational728

domain Ω, see Figure 4. We refer to phase A the bulk phase with order parameter729

equals to +1 and phase B the bulk phase with order parameter equals to −1. The730

buffer zone is initially filled with phase A and the microstructure is initially filled with731
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Fig. 3. Left: the average of order parameter at each time step, which shows the conservation
is preserved. Middle: the number of Douglas–Rachford iterations at each time step. Right: the
asymptotic linear convergence at time step 128. The predicted rate is the rate given in Theorem 2.5.

phase B, respectively. The initial velocity field is taken to be zero. The left boundary732

of Ω is inflow, the right boundary of Ω is outflow, and the rest boundaries of Ω are733

fluid–solid interfaces. On the inflow boundary, we prescribe 𝜙D = 1, e.g., the phase734

A is injected, and 𝒗D = 10000
9 (𝑦 − 0.2)(𝑦 − 0.8)(𝑧 − 0.4)(𝑧 − 0.6). We the take time step735

size 𝜏 = 5 × 10−4. For physical parameters, we choose Re = 1, Ca = 1, Pe = 100, and736

Cn = ℎ. The microstructure surface is hydrophobic with respect to phase A with a737

contact angle 𝜗 = 135◦. The buffer surface and outflow boundary are neutral, namely738

𝜗 = 90◦.739

Figure 5 shows snapshots of the order parameter field as well as its values along740

the plane {(𝑥, 𝑦, 𝑧) ∈ Ω : 𝑧 = 0.5} in mountain views. Similar to the previous example,741

we employ a rainbow color scale that maps the values in [−1, 1] from blue to red for742

plotting the order parameter field. The center of the diffusive interface is colored green.743

The values outside [−1, 1] are marked in black. We observe that phase A invades744

the microstructure while staying away from the solid surfaces due to the wettability745

constraint. The top two rows correspond to the simulation without applying any746

limiter whereas the bottom two rows correspond to the simulation applying our two-747

stage limiting strategy. Our limiters remove overshoot and undershoot. The fluid748

dynamics are similar for both cases.749

Figure 6 shows the number of iterations of the Douglas–Rachford algorithm on750

each time step as well as the asymptotic linear convergence rates of selected time751

steps. Here, the errors ∥𝒚𝑘 − 𝒚∗∥2 and ∥𝒙𝑘 − 𝒙∗∥2 are measured in a similar way as752

explained in the previous example. A numerical way of getting an exact value of 𝑟753

is to run the Douglas–Rachford iterations sufficiently many times with small enough754

tolerance and count the number of entries that stay out of the bounds in 𝒚∗. Using755

the exact 𝑟 to compute the principal angle 𝜃𝑁−𝑟 , the numerical results match our756

analysis, see Figure 6.

Fig. 4. The computational domain of the microstructure simulation.

757

4.4. Merging droplets. This example deals with droplets of fluid surrounded758

by another fluid. In a capillary-forces-dominated merging process, the large drop-759

let wobbles several times and eventually evolves into the most thermodynamically760

favorable configuration, e.g., a single spherical droplet.761
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Fig. 5. Selected snapshots at time steps 50, 100, 150, 200, and 250. The first and third rows:
3D views of the evolution of the order parameter field. The second and fourth rows: plots of order
parameter warped along the plane {𝑧 = 0.5}. The top two rows are without limiters and the bottom
two rows are with our limiters.

Fig. 6. The left top figure shows the number of Douglas–Rachford iterations at each time step.
The middle and right figures show the asymptotic linear convergence at time steps 150 and 250,
where the principal angle 𝜃𝑁−𝑟 is computed by using exact values of 𝑟.

Let us consider four different scenarios. In the first scenario, we use constant762

mobility with GL polynomial potential and we do not apply any limiter. In the763

rest scenarios, we apply our two-stage limiting strategy. In the second scenario, we764

use constant mobility with GL polynomial potential. In the third scenario, we use765

constant mobility with FH logarithmic potential (parameters 𝛼 = 0.3 and 𝛽 = 1). And766

in the fourth scenario, we use degenerate mobility with GL polynomial potential.767

Let Ω = (0, 1)3 to be a closed system, 𝜕Ω = 𝜕Ωwall and set the initial velocity768

field 𝒗0 = 0. Four droplets of phase A are initially in a non-equilibrium configuration,769

surrounded by phase B, i.e., the initial order parameter field is prescribed by770

𝜙0 = max
{
− 1, tanh

(
𝑟1−∥𝒙−𝒂0∥√

2Cn

)
, tanh

(
𝑟1−∥𝒙−𝒂1∥√

2Cn

)
, tanh

(
𝑟2−∥𝒙−𝒂2∥√

2Cn

)
, tanh

(
𝑟2−∥𝒙−𝒂3∥√

2Cn

)}
,771

where 𝒂0 = [0.35, 0.35, 0.35]T and 𝒂1 = [0.65, 0.65, 0.65]T are the centers of the772

two initial larger droplets with radius 𝑟1 = 0.25; and 𝒂2 = [0.75, 0.25, 0.25]T and773

𝒂3 = [0.25, 0.75, 0.75]T are the centers of the two initial smaller droplets with radius774

𝑟2 = 0.16. For the FH logarithmic potential, we use 0.997𝜙0 as the initial order775

parameter field to make its value away from the singularity. We uniformly partition776

domain Ω by cubic elements with the mesh resolution ℎ = 1/50 and take the time777
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step size 𝜏 = 10−4. For physical parameters, we choose Re = 1, Ca = 10−4, Pe = 1,778

Cn = ℎ, and the contact angle 𝜗 = 90◦ on 𝜕Ω.779

Figure 7 shows snapshots of the order parameter field. The center of the diffusive780

interface is colored green and the bulk phases are colored transparent. We see the781

merging of the four droplets, the intermediate wobbling stages, and the final equilib-782

rium configuration of a spherical droplet. We observe from Figure 7 that the fluid783

dynamics are visually similar in these scenarios. However, there are visible differences784

in certain one dimensional profiles, see Figure 8 for the order parameters at the line785

{(𝑥, 𝑦, 𝑧) ∈ Ω : 𝑥 = 𝑦 = 𝑧}.786

Figure 8 shows values of order parameter along the diagonal {(𝑥, 𝑦, 𝑧) ∈ Ω : 𝑥 =787

𝑦 = 𝑧} of the computational domain. In scenario 1, we observe bulk shift at near788

steady state, which is as expected since no limiters are applied. In secnarios 2 and 4,789

our limiters remove overshoots and undershoots. In scenario 3, the FH logarithmic790

potential ensures bounds without bulk shift. The cell average limiter (1.7) is not791

triggered but the Zhang–Shu limiter is triggered. The global mass is conserved, see792

the left subfigure in Figure 9.793

We plot the number of iterations of the Douglas–Rachford algorithm on each794

time step, see the right two subfigures in Figure 9. We check the asymptotic linear795

convergence rates and they match with our analysis. The errors ∥𝒚𝑘 − 𝒚∗∥2 and796

∥𝒙𝑘 − 𝒙∗∥2 are measured in a similar way as in the previous example.797

5. Conclusion. In this paper, we have analyzed the asymptotic linear conver-798

gence rate for using Douglas–Rachford splitting methods of a simple nonsmooth con-799

vex minimization, which forms a high order accurate cell average limiter. We obtain800

an explicit dependence of the convergence rate on the parameters, which gives a prin-801

ciple of parameter selection for accelerating the asymptotic convergence rate. Our802

optimization scheme is efficient and our two-stage limiting strategy is well-suited for803

high order accurate DG schemes for large-scale simulations.804
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Scenario 4: degenerate mobility with GL polynomial potential.
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