13
14

A MONOTONE @' FINITE ELEMENT METHOD FOR
ANISOTROPIC ELLIPTIC EQUATIONS

HAO LI * AND XIANGXIONG ZHANG 1

Abstract. We construct a monotone continuous Q! finite element method on the uniform mesh
for the anisotropic diffusion problem with a diagonally dominant diffusion coefficient matrix. The
monotonicity implies the discrete maximum principle. Convergence of the new scheme is rigorously
proven. On quadrilateral meshes, the matrix coefficient conditions translate into specific a mesh
constraint.
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1. Introduction.

1.1. Monotonicity and discrete maximum principle. Consider solving the
following elliptic equation on €2 = (0,1)? with Dirichlet boundary conditions:

Lu=-V-(aVu)+cu=f on €,
(1.1)
u=g¢g on 0L,

where the diffusion matrix a(x) € R?*2, ¢(x), f(x) and g(x) are sufficiently smooth
functions over Q or 9. We assume that Vx € €, a(x) is symmetric and uniformly
positive definite on Q. In the literature, (1.1) is called a heterogeneous anisotropic
diffusion problem when the eigenvalues of a(x) are unequal and vary over on Q. For

a smooth function u € C?(Q2) N C(2), a maximum principle holds [7]:
Lu<0 on = maxu< max{&maxu} .
Q B

In particular,

(1.2) Lu=0in Q= |u(x1,22)| < I%%X|u|7 V(z1,x2) € A

For simplicity, we only consider the homogeneous Dirichlet boundary condition,
iie. g = 0. The anisotropic diffusion problem (1.1) arises from various areas of
science and engineering, including plasma physics, Lagrangian hydrodynamics, and
image processing. To avoid spurious oscillations or non-physical numerical solution,
it is desired to have numerical schemes to satisfy (1.2) in the discrete sense. We
are interested in a linear approximation to £ which can be represented as a matrix
Lj. The matrix Ly is called monotone if its inverse only has nonnegative entries,
ie., L;l > 0. Monotonicity of the scheme is a sufficient condition for the discrete
maximum principle and has various applications espeically for parabolic problems,
see [1, 33, 14, 9, 31, 21, 5, 6, 22, 21, 13, 16].
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2 H. LI AND X. ZHANG

1.2. Monotone schemes for anisotropic diffusion equations. Monotone
(or positive-type in some literature) numerical methods for problem (1.1) have received
considerable attention, e.g., see [11, 17, 18, 19, 20, 25, 34, 30, 12, 2, 27]. The major
efforts of studying linear monotone schemes take advantage of M-matrix (see [29] for
the definition), either by showing the coefficient matrix is M-matrix directly or the
coefficient matrix can be factorized into product of M-matrices. In the following, we
call a numerical scheme satisfying M -matriz property if the corresponding coefficient
matrix is a M-matrix.

By factorizing the stiffness matrix into a product of M-matrices, the monotonocity
can still be ensured. For a nine-point scheme on a two-dimensional quadrilateral grid,
the matrix condition for monotonicity with specific splitting strategy in [28] aligns
with the Lorenz’s condition presented in [23, 14]. The difference is in [23, 14], only
the existence of the factorization was proved while in [28] the authors found the exact
matrix factorization.

In [26], it is proved that a monotone finite difference scheme exists for any lin-
ear second-order elliptic problem on fine enough uniform mesh and a finite difference
method with fixed stencil for all the problems satisfying the M-matrix property does
not exist. With nonnegative directional splittings, [32, 8, 27] propose to construct
finite difference schemes for elliptic operators in the nondivergence form and diver-
gence form. Particularly in [27], it is shown that a monotone scheme satisfying the
M-matrix property can be constructed for continuous diffusion matrix for sufficiently
fine mesh and sufficiently large finite difference stencil.

In [17], for the P! finite elements in two and three dimensions, the author gen-
eralized the well known non-obtuse angle condition for anisotropic diffusion problem
in the sense to have the dihedral angles of all mesh elements, measured in a metric
depending on a(x), be non-obtuse. It reduces to the non-obtuse angle condition for
isotropic diffusion matrices when a(x) = a(x)I. The formulation was also utilized in
[17] for the construction of the so called M-uniform meshes on which the numerical
scheme is monotone. The approach to show monotonicity in [17] is to write the global
matrix as the sum of local contributions. In [10], the Delaunay condition is extended
to anisotropic diffusion problems through a refined analysis studying the whole stiff-
ness matrix for the two-dimensional situation. The analysis of [17] was extended to
the anisotropic diffusion—convection—reaction problems in [24].

For the Q' finite elements, research on monotonicity has predominantly been
focused on meshes whose cells are rectangular blocks. For the two-dimensional Poisson
equation, it was noted in [3] that the M-matrix property is violated when the aspect
ratio, i.e. the ratio between the length of the longer edge and the shorter edge of
the cell, becomes excessively large. Then the discrete maximum principle is not
guaranteed.

1.3. Contributions and organization of the paper. It is well known that
the second-order accurate linear schemes, such as mixed finite element and multi-
point flux approximation, do not always satisfy monotonicity for distorted meshes or
with high anisotropy ratio. In this paper, we construct a monotone Q' finite element
method for solving the equation (1.1), which is second-order accurate for function
values.

To analyze the monotonicity of the stiffness matrix, we approximate integrals
with a specific quadrature rule, particularly, the linear combination of the trapezoid
rule and midpoint rule. We demonstrate that a continuous Q! finite element method
with the specific quadrature rule, when applied to the anisotropic diffusion problem
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MONOTONE Q! FEM 3

on a uniform mesh, ensures monotonicity for the problem with a diagonally domi-
nant diffusion coefficient matrix. The method is linear, second-order accurate. The
convergence of the function values for this method is also proven. The coefficient
constraints become mesh constraints when this Q' finite element method is used on
general quadrilateral meshes.

The paper is organized as follows. In Section 2, we introduce the notations and
review standard quadrature estimates. In Section 3, we derive the Q' scheme for
anisotropic diffusion equation with Dirichlet boundary condition and derive the coef-
ficient constraints for the stiffness matrix to be an M-matrix. In Section 4, we prove
the convergence of function values. In Section 5, we discuss the extension to general
quadrilateral meshes. Numerical results are given in Section 6.

2. Preliminaries.

2.1. Notation and tools. We list the tools and notation as follows.

e For the problem dimension d, though we only consider the case d = 2, some-
times we keep the general notation d to illustrate how the results are influ-
enced by the dimension.

e For the Q! finite element space, i.e., tensor product of linear polynomials, the
local space is defined on a reference cell K, e.g., K = [0,1]2. Then, the finite
element space on a physical mesh cell e is given by the reference map from
K to e. The reference element K is as Figure 1.

(0,1) (1,1)

(0,0) (1,0)
FiG. 1. The reference element.

On a reference element K, we have the Lagrangian basis dgo,o, QEOJ, ngSM, qASLo
as

(2.1)

$00 = (1=21)(1=22), ¢o1 = (1-21)T2, ¢11 = 2122, 1,0 = T1(1—22).

e We will use " for a function to emphasize the function is defined on or trans-
formed to the reference element K from a physical mesh element.

e For a quadrilateral element e, we assume F, is the bilinear mapping such that
F.(K) =e. Let cij, 1,7 = 0,1 be the vertices of the quadrilateral element e.
The mapping F', can be written as

1
FG:Z

C
£=0 m=0

1
Z,m¢£,m-

e QUK) = {p(x) = Z%:o Z}:o pijdij(X), %€ K} is the set of Q' polyno-
mials on the reference element K. A
o Qe) = {vh € Hl(e) :vpo F; € Ql(K)} is the set of Q' polynomials on an

element e.
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H. LI AND X. ZHANG

= {p(x) € H' () : p|, € Q*(e), Ve €y} denotes the continuous Q!
ﬁmte element space on €.
Vbh:{vhth:vhzo on 00}
Let (f,v). denote the inner product in L?(e) and (f,v) denote the inner

product in L*(Q):
/fvdx (f,v) /fvdx- (fsv)e.

Let (f,v)c,n denote the approximation to (f,v). by the mixed quadrature
defined in (2.7) over element e with some specified quadrature parameter and
(f,v)p denotes the approximation to (f,v) by

(Fovdn = SO0

e

Let E( f) denote the quadrature error for integrating f(x) on element e. Let
E(f) denote the quadrature error for integrating f(%) = f(F.(%)) on the
reference element K. Then E(f) = h*E(f) on uniform rectangular mesh
with mesh size h.

The norm and semi-norms for W*?(Q) and 1 < p < +oo, with standard
modification for p = 400 :

1/p
lena=| 35 [[ 100t ax |
i<k 79
1/p
|u|k7P7Q: Z // ‘8;1 zp U 331,.732)’de ’
i+j=k

1/p
[ulk,p.0 = <// |a]:§1 u(wy, T2 } dx+//| u(zy, T2 |pdx> .
Q

e In the special case where w = , we drop the subscript, i.e. (-,-) := (,")a
and || - || == - -

e For any v, € V"1 < p < 400 and k > 1, we will abuse the notation to
denote the broken Sobolev norm and semi-norms by the following symbols

»
th”k,p,g = (Z ||Uh||z’p’e> )
‘ 1
P
‘vh|k,p,Q = (Z |Uh|£,p,e> )
e
1
p
[On)1p00 = <Z wh]i,pﬁ) :

(&

e For simplicity, sometimes we may use ||u||x q,|ulxo and [u]x o denote norm
and semi-norms for H*(Q2) = W*2(Q). When there is no confusion, Q may
be dropped in the norm and semi-norms, e.g., ||ullx = ||ul/x o
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Inverse estimates for polynomials:

[onllgrre <CP Hlvnllge, Von € V' k>0,

Elliptic regularity holds for the problem (3.1):
Jull2 < ClI fllo

Let ©y, is a finite element mesh for Q. For each element e € €, we denote
a, = (a¥) as an approximation to the average of a on element e, i.e. a¥ =
W f a'dx. Specifically, we choose % as the the function value of a/ at
the center of element e. Then we define piece-wise constant function a as

(x)=2a,, forxee.

Y]

Define the projection operator II; : 4 € LI(K) —Ihae Ql(K) by
(2.2) / (Hlu) wdk = / abdx, Vi € QY(K).
R R

Observe that all degrees of freedom of 1,4 can be expressed as a linear
combination of [ Gpdx where p(x) takes the forms 1, &1, &2, and Z12. This

implies that the H'(K) (or H?(K)) norm of II;4 is dictated by [ apdx.
Utilizing the Cauchy-Schwartz inequality, we deduce:

’/ apdk| <
i

From which it follows that:

C”“HozK

||H1QH1,2,K =

This establishes that I1; acts as a continuous linear mapping from L2 (K ) to
HY(K). Similarly, by extending this argument, we can also demonstrate that
I1; is a continuous linear mapping from L2(K) to H2(K).

e We denote all the the vertices of 2, inside Q2 by x;,7 =1,..., N,. We denote
nodal basis functions in V}, by ¢;,7 = 1,... Ny, which are continuous in £,
linear in each element e and

wi (xi) =1, ;i (xj)=0, j#i.

2.2. Mixed quadrature. To analyze and impose the monotonicity of the stiff-
ness matrix, we will use numerical quadrature rules to approximate integrals. As we
will see, the choice of quadrature rules can significantly affect the monotonicity of the
numerical schemes.

For a one-dimensional integral of function f over the interval [0, 1], we can approx-

f0)+£(1)
2

imate fol f(&)dz using either the trapezoid rule, given by , or the midpoint

rule, f (%) Both quadrature offer second-order accuracy. We will use the linear
combination of these two kinds of quadrature as follows:

O +FD) 1
03 / f@ 5 + (1 =N/ (2>
:wlf(fl) + w2f(£2) + dlsf(él)a

This manuscript is for review purposes only.
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6 H. LI AND X. ZHANG

where A is a parameter to be determined and
A A A
-, wa=1—-X w3=_, =0, = -,
5 2 3= 73 & & 5
When )\ = 1, the mixed quadrature recovers the trapezoid rule and when A = 0 the
mixed quadrature recovers the midpoint rule.

To approximate integration on square K, we may use the mixed quadrature (2.3)

with different parameters A\' and A\? for different dimension z; and x5 respectively.
By Fubini’s theorem,

(2.5)
[ swas= [ [swas= [ ([ sns)ae.) i

1 3 r+1 r4+1 3
= [ (Seir (08) ) = Soad (s (66) ) - S-S air (66).
g=1 p=1 q=1

p=1q=1

(2.4) O = €5 =1.

where w{ are just w; while replacing A with A/ in (2.4) for i = 1,2,3, j = 1, 2.

On the reference element K , for convenience, to denote the above quadrature
for integral approximation with parameter A = ()\1,)\2), we will use the following
notation

3 3
(26) | =33 alazs (én6,) .
K p=1qg=1

Given the quadrature parameter A, = ()\é, /\z), the quadrature approximation to
J. f(x)dx is denoted as

(2.7) [redixi= [ or.Godx

Then we define the quadrature approximation over the entire domain 2 as
(2.8) / fdix =" [ fdx x,
Q ee), v ¢

where Ag = (A) ccq, Can be viewed as a vector-valued piece-wise constant function,
with values A\, that differ across elements.

As a particular instance, fQ fd'x denote the case A, = (1,0) for all e € Q, i.e.
the integral on each element are approximated by the trapezoid rule in all directions.

2.3. Quadrature error estimates. The Bramble-Hilbert Lemma for Q% poly-
nomials can be stated as follows, see Exercise 3.1 .1 and Theorem 4.1.3 in [4]:

THEOREM 2.1. If a continuous linear mapping I1: H*Y(K) — H"Y(K) satis-
fies 1o = © for any v € QF(K), then

(2.9) 4 — fm”k+1,f< < C[a]k+1,f(7 Va € Hk+1(K)~

Therefore if I(-) is a continuous linear form on the space H*Y(K) satisfying (D) =
0,V € QF(K), then

@)l < ClUl,, glilyyrz Vi€ HYHEK),

_ is the norm in the dual space of H*(K).

where HlH;H’K

This manuscript is for review purposes only.
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MONOTONE Q! FEM 7

By applying Bramble-Hilbert Lemma, we have the following quadrature estimates.

LEMMA 2.2. For a sufficiently smooth function a € H?(e), we have
(2.10) /adx - /adhx =0 (h2+g) [a]2,e = O (B*T?) [a]2,00,
(2.11) /adx - /Ztedx =0 (h2+g) [a]2,e = O (h2+d) [a]2,00,e

e e

Proof. For any f € H Q(K ), since quadrature are represented by point values,
with the Sobolev’s embedding we have

BN < Olflo,,ic < CllFllo o1

Therefore E(-) is a continuous linear form on H2(K) and E(f) = 0 if f € Q'(K).
Then the Bramble-Hilbert lemma implies

|B(a)] = K| E(@)| < Ch¥faly 5 1 = O (*7F) [ala.c = O (h*) [a]2,00.0

LEMMA 2.3. If f € H%(Q), Yo, € V!, we have
(f.on) = (f,vn)y, = O (B2) I fll2 llonll; -
Proof. Applying Theorem 2.1, on element e, with 6 ”" “ vanish, we obtain:
(f”) = th(f@h) < Chd[f@h]z,z,f(
<Ch (1l 10010 0o ¢ + 1 211901 e )
(

<Ch?

|f|2727f(|6h|0,2,1§' + |f‘1,2,f(|ﬁh|1,2,f(>
W2 (| f]2.2,e e+ 1fl2elvnli2e) = O (h®)

By sum the above result over all elements of €, then we conclude with
(f,on) = (fron)y, = O (W) [ f 112wl -
LEMMA 2.4. Ifu € H3(e), fori,j = 1,2, then Yoy,
/uzi (Vn) e, dx — /um (Vn)e, déﬁcx =0 (h2)

Proof. Applying Theorem 2.1, we obtain:

ellvnllye -

E(uwz (Uh)wj) = hd_2E<’ll5“ (ﬁh)ij) < Ch’d_2[ﬁ’ii (/ﬁh)ij]2}27f{
<Chi-2 <|uz

s, 1,2,K|(ﬁh)i1 |1,oo,f( + |am 0,2,R|(@h)ij |2,oo,f(>

2,2,1‘<|(f’h)ij

Schd72

2,2,K|(ﬁh)ij ‘0,2,1% + mrz|12K|(@h)% |1,2,i< + lag, o,2,f(|(ﬁh)ij |2,2,f()

where the second last inequality is implied by the equivalence of norms over Ql(k )

and in the last inequality we use the fact that the third derivative of Q' polynomial
vanish.

/N 7 N

SChd—?

|a|3,2,f< 0

This manuscript is for review purposes only.



199

200

216

DN
-~

218

219
220

222

8 H. LI AND X. ZHANG

Therefore,
d
E(ug, (vn)z;) < Ch® (Juls 2,e|vnl12. + [ul22.clvnl2.2.c) = O (B?) [[ulls.c lonll,.. -
LEMMA 2.5. If f € H%(Q) or f € V!, Yuy,, we have
(fson) = (fron)y, = O (W) [ fll2 lvnllo -
Proof. As in the proof of Lemma 2.3, we have
]

E(fv) = O (h?) || fll2.c llonll; . -

By applying the inverse estimate to polynomial vy, we have

E(fv) = O (h) [ fll2.e

Summing the previous result across all elements in 2, we conclude:
(fson) = (fson)p, = O (R) I £z [[onllo -

3. The Q' finite element method and its monotonicity. In this section, we
give a derivation of the Q' finite element scheme and then discuss its monotonicity.

onllo.e -

3.1. Derivation of the scheme. The variational form of (1.1) is to find u €
H} () satisfying

(3.1) A(u,v) = (f,v), Yve Hj(Q),

where A(u,v) = [,aVu - Vodx + [, cuvdx, (f,v) = [, fvdx.

Let V* € H3(Q) be the continuous finite element space consisting of piece-wise
Q" polynomials. To have a second-order monotone method, we first approximate
the matrix coefficients a = (a%(x)) by either its average m J. adx or its middle

point value on each element e. The approximation is denoted by a.. Then we get the
modified bilinear form

A(u,v) = / 5Vu-Vde+/ cuvdx,
Q Q
where a = (ée)eeﬂh' In practice, we take a. to be the middle point value of a on
element e for smooth enough a and fine enough mesh.
By approximating integrals in A(uy,vy,) with quadrature specified in (2.8), along
with designated quadrature parameter Aq, we derive the following numerical scheme:
find uy, € V{* satisfying

(32) ‘Ah(uhavh) = <f7 Uh>h7 V’Uh S ‘/Oh>

where the approximated bilinear form is defined as

(3.3) Ah(uh,vh) = /

aVuy, - Vvhd'}\x + / cuhvhd}fx
Q

Q
and the right hand side is

(3.4) (fsvn)n SZ/vahd}fX

Of course, the quadrature parameter A = (A, A?) on each element need to be
determined for the quadrature (2.7).

It is not obvious that the numerical solution uy is an accurate approximation of
the exact solution u as a varies depending on the mesh.

This manuscript is for review purposes only.
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223 3.2. Monotonicity. Let A = (Aj, (Vp;, Vip;)) be the stiffness matrix of our Q!
224 scheme (3.2) for equation (1.1). To have the monotonicity, we enforce the stiffness
225 matrix A to be a M-matrix. We are interested in conditions for A to be an M-matrix.
226 Recall a sufficient condition for M-matrix, see condition Cjq in [29]:

27 LEMMA 3.1. For a real irreducible square matriz A with positive diagonal entries
8 and non-positive off-diagonal entries, A is a nonsingular M -matriz if all the row sums
229 of A are non-negative and at least one row sum is positive.

NN
\J

230 Then we have the following result on the uniform rectangular mesh.

231 THEOREM 3.2. Assume Ve € Qy, |al?| < min{all,a??}. Then for the Q' scheme
232 given by (3.2) for the elliptic equation (1.1) on uniform rectangular mesh, the stiffness
233 matriz is a M-matriz, provided the quadrature parameters for each element e are
234 chosen as:

=11 =22 =12

a.t — a2 2|a |

235 (3.5 MN2 € . c1- =
» (35) erte al'+az2’ " all +a??

236 When |al?| = min{al!,a??}, (3.5) means we take AL, \? to be the upper bound of the

237 interval, i.e. 1 — %
238 Proof. First, we consider the following quadrature approximation results on the

230 reference element K. With quadrature (2.6) and quadrature parameter A, = ()\é, )\5),
240  we have

1 1
241 <5V¢0,0, V(bO,l)h = <5V¢1’17 V¢1’0>h = —Z()\gdél + )\2522) + Z(dil - a?),
1 1
242 <E_3.V(]50’0, V¢1’0>h = <§V¢0’17 v¢1’1>h = —Z()\idél + )\(135,22) + 1(532 - aél),
1 1
243 (aVo,0, Vd1,1)n = 1 (1 =2ha' + (1 - x0)az?) — 5@27
1 1
s (aVo,1,Vo10)n = 1 (1 =2Da" + (1= X)ag?) + 5@3
45
246 With (3.5) and the assumption |al?| < min{al!,a??}, we have
(3.6)
1 1
(aVe0,0, Voo, )n = (@Vé1,1, Vérohn € {2 (lae®| = ac?), g (@’ —az” — fa.' — az?|

1
(aVeo,0, Vér,0)n = (aVo,1,Voi1)n € { (lat?| —al'), 4(5&2 —alt —lalt —a2?|
247
1

(@000, Torn € —lmin{all a2} ~ al?), 5 (a2 + a2

1 1
(80,1, Vér.oln € (—2<mm{a£,a?}+a22>, (a|—at)

248 which are all non-positive. Again, when |al?| = min{al!,a??}, we will take the above
249 values as the bound of the closed side of the interval.
250 Given j € {1,..., N}, consider the corresponding node z;. Obviously, if both x;

This manuscript is for review purposes only.
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and z; are vertices of the same elements e,
Aij = An(ej, i)

= Z /ETIV(,DJ"VQOidgeX"F/C(pJ‘(‘Did?X
e

ecQy, V€
3.7 S . f s hs
(3.7) = Z / avep; - Vsﬂid}icX-i- / cgojapid’fx
e€Qy K K
=y / ave; - Vgidh x +/ épjpidix
i,j€e K K
where > i,jee Means summation over all elements e containing both vertices ¢ and j.

Notice that [, é¢;p;di% vanish if i # j and [ AV, - V@di % aligns with one
of the values in (3.6) depending on their relative positions. Therefore, for ¢ # j, with
(3.5) and the assumption |al?| < min{al!,a??} we have

(3.8) Ay = Z /K ave; - @@id}ief{ <0.

i,j€e

If x; has no neighboring node on the boundary, then the i-th row sum of A is
non-negative:

Np,
> A= Anlgs. i) = An(l,:) = Ce; > 0,
j =0

where C is a certain positive number and ¢; = ¢(x;) > 0. Therefore, A;; > >, |Ayj].
When x; has a neighboring node on the boundary, we do have A;; > > it |A;j].
When x; has two neighboring node on the boundary, based on (3.6), in the stencil of
x;, one of the corresponding coefficients of the two neighboring nodes on the boundary
must be negative, and it is not in A; ., then Zj Aij >0, ie Ay > Zj# |4l
Therefore, we conclude the proof. ]

REMARK 1. For each element e, the choice in (3.5) make AL, \2 > 0, which im-
plies the V"-ellipticity of the bilinear form (3.3) discussed in Section J.2. Therefore,
we can assure of V" -ellipticity and the stiffness matriz being an M-matriz simultane-
ously.

REMARK 2. The constraint on the coefficient, |al?| < min{all,a??}, aligns with
the condition for rendering the stiffness matriz as an M-matriz in the seven-point
stencil control volume method with optimal optimal monotonicity region in the case
of homogeneous medium and uniform mesh in [28]. In [27], the authors show that
a three-by-three stencil can be used to construct monotone finite difference schemes
under the assumption |a'?| < min{a'!, a®?}.

4. Convergence of the Q' finite element method with mixed quadra-
ture. In this section, we prove the second-order accuracy of the scheme (3.2) on
uniform rectangular mesh. For convenience, in this section, we may drop the sub-
script h in a test function v, € V. When there is no confusion, we may also drop dx
or dX in a integral.

4.1. Approximation error estimate of bilinear forms. In this subsection,
we estimate the approximation error of Ay, (u,v) to A(u,v).

This manuscript is for review purposes only.



MONOTONE Q! FEM 11

281 THEOREM 4.1. Assume a,c € W3>(Q) for i,j = 1,2 and v € H3(Q), then
282 Yo € V", on element e, we have

283 (4.1) /(aVu) - Voudx — /(éeVu) . Vvd}iex =0(h?)||ull3,el|v]|2,e,

ib’l (4.2) /cuvdx — /cuvd}fx =0 (h2) lull2.ellv]l2,e-

285 e e

286 Proof. For k,l =1,2 and function a € W%>(e), we have

= h
/auzkvzldx— /aeumkvmdkﬁx
€ €

287 (4.3) :/(a — T ) Uz, Vg, dX + T (/uwkvxldx— /uzkvwldﬁex>
= /(a — Q) Uy Vg AX + Ge B (U, Vs, )

€

288 For the first term,
/(a — T ) Uy, Vg, dX
e

289 (4.4) :/(a — Ge) (U Vg, — Uz Uy )AX + /(a — Q¢ )Ugy, Uz, dX

_ . 1 _
<lla = @cllo,c0.ell ey, V2, — Ty Uy [l0,1,e + 7meas(e) /e(a — ae)dx/euxkvxldx.

200 By Poincare inequality and Cauchy-Schwartz inequality, we have

lla — @ell0,00,e [ty Ve, — U Vi [0,1e

291 (4.5)
=0(h*)[lall1,00.e IV (e, v2)llg,1,c = OR)[ull2.ellv]|2.e-

292 By Lemma 2.2 and Cauchy-Schwartz inequality

1 _
W/e(a - ae)dx/euxkvxldx

293 (4.6) p2+d
[t llo.cllva, lo.c = O () [lu

Lellvll1,e

) [a]Q,oo,e

B meas(e

204 where in the last equation meas(e) = O(h?) is also used. Therefore, we have the
295 estimate of the first term of (4.3):

26 (47) / (0 — e)ttay Vo dx = O(12) a2 lullz.c [0]|2e-
e

297 For the second term of (4.3), by Lemma 2.4, we obtain

2ox (48) / Gt a5 — / Gty U 2% = O(h2)]allo,sore tl]3.c [ 0] 20
c c

299 which together with (4.7) imply the estimate of (4.3):

300 (4.9) /aumkvzldxf /aeumkvzld’)ﬁex: O(h?)|allz,00,e ltls,e]|v]2,e-
e c
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Therefore, we have

2,00,€ ‘u||3,e||v||27€'

(4.10) /(a(x)Vu) - Vudx — / (a(x) - Vu) Vody x = O (h?) ||a

€ €

Similarly we have

(4.11) /cuvdx — /cuvd’fx =0 (1?) |lcll2,00,e lull2,e v

2,e- a

We also have
LEMMA 4.2. Assume a',c € W*>(Q) fori,j =1,2. We have

A (o, wn) = Ap (vn, wn) = O(h) l[vally llwnlly,  Von,wr, € V"

Proof. By Theorem 4.1 and noticing that the third derivative of Q' polynomial
vanish, we have

(4.12) /(aVvh) -Vwpdx — / (a.Vuy) - thd})‘\ex :O(hQ)th||276||wh||2767

€ €

(4.13) /cvhwhdx — /cvhwhd’fx =0 (hz) lorll2,ellwnll2,e-

€

By applying the inverse estimate to polynomial z;, we get

(4.14) /(aVvh) - Vwpdx — / (a.Vuy) - thd}j‘ex =0(h)||vnlz2.ellwnll1.e,
(4.15) /cvhwhdx — /cvhwhd?x =0 (h) ||lvnll2,ellwnll1,e-
Then by summing over all the elements we get prove the Lemma. ]

4.2. Vh-ellipticity and the dual problem. In order to prove the convergence
results of the scheme (3.2), we need A, satisfies V"-ellipticity:

(4.16) Yo, € VI, Clloalls < An (v, vn) -

By following the proof of Lemma 5.1 in [15], we have

LEMMA 4.3. Assume the eigenvalues of a have a uniform positive lower bound
and a uniform upper bound and c have a upper bound. If there exists lower bound
Xo > 0 such that Ve € Q, the quadrature parameter N, A2 > \g, then there are two
constants C1,Cy > 0 independent of mesh size h such that

Yo, € VI, Crllonllf < An (va,vn) < Callunllf-

_ Proof. For element e, at first we map all the functions to the reference element
K. Let Z,  denote the set of vertices on the reference element K. We notice that

the set Z, . is a Q' (K)-unisolvent subset. Since the weights of trapezoid rule are
strictly positive, we have

2
Vp e QHK), Z/Rﬁ%id}ffc =0=py =0at Z, 1,
=1

This manuscript is for review purposes only.



MONOTONE Q! FEM 13

. 2 A~ ~ .
where i = 1,2. As a consequence, »;_; [, % pﬁ,id}fx defines a norm over the quotient

space Ql(K)/QO(K). Since that |- |,  is also a norm over the same quotient space,
by the equivalence of norms over a finite dimensional space, we have

2
LAl p .12 2 he £12
Ve QUR) Cilil o <Y [ i< Culil
i=1
As the quadrature parameter A1, A2 > \g > 0, we have

2
Cilonl g <1 Y /K (on)2,di% < /K (8V64)-Vindl %+ /K Gl < O [l
=1

Mapping these back to the original element e and summing over all elements, by
the equivalence of two norms |- |; and | - ||; for the space HZ(2) D V', we get the
conclusion. ]

In the following part, we assume the assumption of Lemma 4.3 is fulfilled, i.e. the
V'_ellipticity holds.

In order to apply the Aubin-Nitsche duality argument for establishing convergence
of function values, we need certain estimates on a proper dual problem.

Define 6 := u — uy, and consider the dual problem: find w € H{(£2) satisfying
(4.17) A*(w,v) = (0,v), Yve HJ(Q),
where A*(-,-) is the adjoint bilinear form of A(-,-) such that

A*(u,v) = A(v,u) = (aVv, Vu) + (cv,u).

Although here the bilinear form we considered is symmetric i.e. A(-,-) = A*(-,+), we
still use A*(+,-) for abstractness.
Let wy, € V{ be the solution to

(418) Az (wh,vh) = (G,Uh), Yy, € Voh.

Notice that the right hand side of (4.18) is different from the right hand side of
the scheme (3.2).
We have the following standard estimates on wy, for the dual problem.

LEMMA 4.4. Assume a”,c € W%>®(Q) and u € H3(Q), f € H?(Q). Let w be
defined in (4.17), wy, be defined in (4.18). With elliptic regularity and V"-ellipticity
hold, we have

lw = wall, <Chllwll2

(4.19)
[wnll, <C 6], -

Proof. By V"-ellipticity, we have C ||wy, — vh||§ < Aj (wp — vp, wp, — vp). By the
definition of the dual problem (4.17), we have
A3 (wh,wp, —vp) = (0, wp, —vp) = A% (w,wy, —vp,), Yo, € Vi
Therefore Vv, € V', by Lemma 4.2, we have

Ch lwn — vn||? < A, (wh — vn,wp, — vp)

=A" (w — vy, wp, — vp) + [4F, (Wh, wp, —vp) — A* (w, wy, — vp)] + [A" (vp, wp, — vy) — AJ, (U, wWh — vR)]

=A* (’LU — Vp, Wh — Uh) + [A (wh — Up, ’Uh) — A (wh - ’U}H’Uh)]
<C|lw = vnlly [lwn = vnlly + Chlvnlly lwn = vall;
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14 H. LI AND X. ZHANG
which implies
(4.20) [w —wn|l; < |lw—vally + [|lwn —vrlly < Cllw—wally + Ch|lvgll, -

Now consider IT;w € V' where II; is the piece-wise Q' projection and its defini-
tion on each element is defined through (2.2) on the reference element. By Theorem
2.1 on the projection error, we have

(4.21) lw —Thwly < Chllwllz, [lw—Thwl, < Cllwll,,
which implies

(4.22) Myw|y < flwllz + lw — hwll, < Cllwlz.

By setting v, = Ilyw, using (4.20), (4.21) and (4.22), we have

(4.23) lw —wpll; < Cllw —Thwl);, + Ch{[wl], < Chf|wll,.

By (4.21) and (4.23), we also have
(4.24) [wn —hw|); < flw—Ihwl; +|w—wal, < Chlwl.

By the inverse estimate on the piece-wise polynomial wy, — I[Tyw, we get
(4.25) flwnlly < [lwn = Mw]ly + [ hw — wlly+|wlls < Ch™ [y, — Mwl|; +Clw]|2.0
With (4.24), (4.25) and the elliptic regularity ||w|2 < C'||6]],, we get

[wnlly < Cllwllz < C 0], -

4.3. Convergence results. In this section, we initially establish the error es-
timate for |ju — uh||1’Q. Subsequently, we demonstrate that the Q' finite element
method, as given by (3.2), achieves second-order accuracy for function values.

We have the estimate of the error [|u —up||,  as follows:

THEOREM 4.5. Assume a”,c € W2>(Q) and u € H*(Q),f € H?*(Q). With
elliptic reqularity and V"-ellipticity hold, we have

lu = unlly o = O (R) ([ull20 + [[fll2.2) -

Proof. By the First Strang Lemma,
(4.26)

) A (v, wp) — Ap (v, w
fu o <C [ ne vl g+ sup AL = Anlonn)
’ v, eVH ’ wp€Vy, ||wh||1,Q

- |<f,wh>h—<f,wh>|>_

wpEVH ||wh||1,§z

By Lemma 4.2, we have:

|A (vn, wn) = An (vn, w)| _ O(R)||vnll2.eflwallre

Hwh||1,sz B ||wh||1,sz

= O(h)[vnll2,0-
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By Lemma 2.3, we have

sup [(fswn)y — (Frwn)l _ OBl l2.0llwnllie O(1?)[Ifll2.0-

wpEVH ||wh||1,Q [wnll1,0

By the approximation property of piece-wise Q' polynomials,

[ = unlly o = O)(Jull2,0 + | fll20)-

In the following part we prove the Aubin-Nitsche Lemma up to the quadrature
error for establishing convergence of function values.

THEOREM 4.6. Assume a,c € W2°°(Q) and u(x) € H3(Q), f € H*(Q). As-
sume V" ellipticity holds. Then the numerical solution from scheme (3.2) uy is a
2-th order accurate approximation to the exact solution w:

lun — ully o = O (h?) (lullz.q + I f]l20) -
Proof. With 6 = u — uy, € H}(Q), we have
(4.27) 16112 = (0,0) = A (8, w) = A(u— up, wp) + A (u — up, w — wy)
For the first term (4.27), by Lemma 4.1, we have
A(u —up,wp) = [A(u,wn) — Ap (un, wn)] + [An (un, wn) — A (up, wp)]
= (f,wn) = (fywn), + O (h?) [Junlls [lwnll,
=0 (h?) [ £ll2 llwall, + O (h?) [funllz [lwnll,
=0 (B?) (I £ll2 + llunll2)116]0,

where in the second last equation Lemma 2.3 and the fact the third derivative of
Q' polynomials vanish are used. As the estimate of ||wp||2 and ||w]||2 in the proof of
Lemma 4.4, we have

(4.28)

lunlly <llun — Myully + [Thu = ully + ulls < Ch™H lup — hull, + Cllulls
<Ch™ ! ([lu = Thully + [lu = uplly) + Cllull2
<Ch™H [Ju = up|y + Cllulls
<C(llull2 + 11 fll2),

where Theorem 4.5 is used in the last inequality. Therefore, we have
(4.30) A(u—up,wy) = O (h2) (| fll2 + llull2) |10]o-

For the second term (4.27), by continuity of the bilinear form and Lemma 4.4, we
have

(4.29)

Au = up,w —wp) < Clu—uply [lw = wall, < Chflu—unly [lw]
<Chlu— sl 16llo = O (n*) (Ilfl2 + l[ull2)|0]lo.
Therefore, by (4.27), (4.28) and (4.31), we have

(4.32) 16llo = © (n*) (11 £ll2 + llull2)- 0

(4.31)

REMARK 3. Similar convergence results for the Q' method on general quasi-
uniform quadrilateral meshes can be established via the same proof procedure in this
section.
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5. Extension to general quadrilateral meshes. For a quadrilateral element
e as in Fig. 2, let F. the mapping such that F@(K) =e.
For ¢ € V', by definition ¢ = ¢|. o F. € Ql(f() According to the chain rule, we
have
Voo F,=DF''V¢

T T
— A _ (2 9 AR ) o)
Whefe‘PoFe—%V—(am’am) vv—(aTu%) :
Therefore, we have

(5.1) /aVuh  Vopdx :/ (DF;%&DFZ*@@;L) Vi | Jo| dk
K

€

In the case of regular meshes with mesh size h, the matrix DF, 'aDF~! = %é
and J, = h2.

Approximate (5.1) by the mixed quadrature (2.6) with parameter A = (A}, \?),
ie.

o2 [ v ax= |

; (a%h) Vindix

where a = (|Je| DFgléDFeT’l) (%a %)
As in Fig. 2, denote

— — — —
Co = €Co,1 —Co,0, €1 =°C1,0 —Co,0, €C2=¢C1,1 —C10, €C3=C1,1—Co21

and
191

11 11 11
&= ()" i=01,23, DE=DF(5,5), Jon=ILl(55) a=al5y I

then we have

1/t +¢ek b+l _ 1 E+c2 —ct—ck
DF, — = 1 3 0 2 DF 1_ 0 2 0 2
"o (C% +c2 cd+cd) h 2det(DFy) \—ci1 —¢3 ci+c} )’

~11 ~12
(5.3) a=J.,DF, 'a.DF} " = (aiz asg) :

a

Q

To make the stiffness matrix a M-matrix, by Theorem 3.2, the following is a
sufficient condition:

(5.4) |as?| < min{a}', a2},
While we have

a'' =det(a.)C (3 +c3 —cf—ch

_ 1 1 2 2 0 -1 a’
=det(a.)C (c§ +c3 G+ c3) 1 0 ) \a2

a
(5.5) a*?
ey + ¢k
—C (b +cb cg+cg)< s )(qg)ﬂg
—C (e +e) a (e +a3),
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108 and similarly

. T __ - T __
109 (5.6) a'? :—C’(c_o)—&-c—%) a ! (c—1>+c_>3), a*? :C(c_{—i—c—gf) ot (c_>1+c—3>),
11 with O = ———Je
T 4det(DFy)?det(ae) "
412 By Ci+c—ci—c;=10, (5.4) is equivalent to
T__ T __
en @)@ e S0 (@) s (6 -el) >0
o : T __ T__
(ci+ch) a ' (c+ch) >0, (ci+eh) a'(ef—eh) >0
C1,1
c5
Co,1
<
%
o C1,0
o
Co,0
Fic. 2. A quadrilateral element e.
414 THEOREM b5.1. If the quadrilateral mesh fulfill the condition (5.4) with a defined

115 in (5.3) or the mesh condition (5.7), then the stiffness matriz of the linear Q' finite
116 element scheme (3.2) for solving BVP (1.1) is an M-matrix.

417 REMARK 4. If the diffusion operator degenerate to Laplacian, i.e. a = a(x)[. A
418 sufficient condition for (5.7) is that both diagonals of the quadrilateral element bisect
419 each angle, resulting in two non-obtuse angles for each vertex.

420 REMARK 5. By adopting some anisotropic mesh adaptation strateqy where an
421 anisotropic mesh is generated as an M -uniform mesh or a uniform mesh in the metric
422 specified by the diffusion matriz a. The method (3.2) for any anistropic problem
423 possibly can be monotone on that anisotropic mesh.

424 If we consider rectangular meshes, for simplicity we assume

425 co,0 =(0,0), ci10=(h1,0), co1=(0,h2), c11=(h1,h2).

126 Then we have

) %(—111 al2
427 a= - =
a12 %GQQ
2

128 and (5.4) becomes

h h
120 (5.8) al?| < min{ﬁ@il, hi&?}'
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18 H. LI AND X. ZHANG

Recall that y/alla22 > |al?|, taking % = Z%i will guarantee (5.8). Therefore, if the

rectangular mesh is deployed with aspect ratio Z—é;, then the stiffness matrix of the
Q' method (3.2) is a M-matrix.

If the elliptic coefficient a is constant on the whole domain €2, when the rect-
angular mesh are fine enough, there must exist rectangular mesh with aspect ratio
approximatly Z—éi such that the stiffness matrix of scheme (3.2) solve the BVP (1.1)
is an M-matrix.

6. Numerical experiment. In this section, we show an accuracy test verifying
the proved order of accuracy of the scheme (3.2) on uniform meshes. We consider the
following two dimensional elliptic equation:

(6.1) ~V-(aVu) +cu=f on [0,7]?

air a2
where a = ( a a ), a1 = a2 = a1 = 1+ 10x§ + T cosxe + To, a9 =
21 Q22

2+ 10x§ + 1 cosxo + 9, with an exact solution
_ o 2 .
u(wy, o) = — sinx1” sin x5 cos .

The errors at grid points are listed in Table 1. We observe the desired second
order accuracy in the discrete 2-norm and infinity norm for the function values.

TABLE 1
A 2D elliptic equation with Dirichlet boundary conditions. The first column is the number of
elements in a finite element mesh. The second column is the number of degree of freedoms.

FEM Mesh | DoF [ {2 error  order | {® error order
4 x4 32 | 4.41E-1 - 3.48E-1 -

8 x 8 72 7.20E-2 2.61 | 5.93E-2 255

16 x 16 152 | 1.65E-2 2.13 | 1.39E-2 2.09

32 x 32 317 | 4.03E-3 2.03 | 3.45E-3 2.02

64 x 64 632 | 1.00E-3 2.01 | 8.61E-4 2.00

7. Conclusion. We constructed a linear monotone Q! finite element method
for anistropic diffusion problem (1.1). On uniform meshes, when the diffusion matrix
is diagonally dominant, the M-matrix property is guaranteed thus monotonicity is
achieved. When this Q' finite element method is deployed on a general quadrilateral
mesh, we get a local mesh constraint.
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