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1 Introduction

1.1 Monotone high order schemes

In many applications, monotone discrete Laplacian operators are desired and
useful for ensuring stability such as discrete maximum principle [7] or positivity-
preserving of physically positive quantities [15,24,28]. Let ∆h denote the ma-
trix representation of a discrete Laplacian operator, then it is called mono-
tone if (−∆h)

−1 ≥ 0, i.e., the matrix (−∆h)
−1 has nonnegative entries. In

this paper, all inequalities for matrices are entry-wise inequalities. It is well
known that the simplest second order accurate centered finite difference scheme

u′′(xi) ≈ u(xi−1)−2u(xi)+u(xi+1)
∆x2 is monotone because the corresponding matrix

−∆h is an M-matrix thus inverse positive. The most general extension of this
result is to state that a linear finite element method with special implemen-
tation under a mild mesh constraint forms an M-matrix thus monotone on
unstructured triangular meshes [32].

The discrete maximum principle is not true for high order finite element
methods on unstructured meshes [14]. On structured meshes, there exist a few
high order accurate inverse positive finite difference schemes. To the best of
our knowledge, the following schemes for solving a two-dimensional Poisson
equation are the only ones proven to be monotone beyond the second order
accuracy, and all of them can be regarded as finite difference schemes with four
order accuracy for function values for solving elliptic and parabolic equations:

1. The classical 9-point scheme [4, 10, 17] are monotone because the stiffness
matrix is an M-matrix.

2. In [3, 5], a fourth order accurate finite difference scheme was constructed.
The stiffness matrix is a product of two M-matrices thus monotone.

3. The Lagrangian P 2 finite element method on a regular triangular mesh [31]
has a monotone stiffness matrix [25]. On an equilateral triangular mesh,
the discrete maximum principle can also be proven [14]. It can be regarded
as a finite difference scheme at vertices and edge centers, on which super-
convergence of fourth order accuracy holds.

4. Monotonicity was proven for the Q2 spectral element method on an uni-
form rectangular mesh for a variable coefficient Poisson equation under
suitable mesh constraints [21]. This scheme can be regarded as a fourth
order accurate finite difference scheme [19,22]. See also [11] for extensions
to quasi-uniform meshes.

For solving −∆u = f with homogeneous Dirichlet boundary condition on
a rectangular domain, all schemes above can be written in the form Su = M f
with stiffness matrix S−1 ≥ 0 and mass matrix M ≥ 0, thus (−∆h)

−1 =
S−1M ≥ 0. The last two methods are finite difference schemes constructed
from the variational formulation, thus they do not suffer from the drawbacks
of the first two conventional finite difference schemes, such as loss of accuracy
on quasi-uniform meshes, difficulty with other types of boundary conditions
such as Neumann boundary, etc.
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1.2 Monotonicity of Qk spectral element method

The Lagrangian Qk continuous finite element method on rectangular meshes
implemented by (k+1)-point Gauss-Lobatto quadrature is often referred to as
the spectral element method in the literature [26], which has been a very popu-
lar high order accurate method for more than three decades for various second
order equations such as the wave equations [9]. In this paper we are interested
in the monotonicity of the Qk spectral element method for solving the Pois-
son equation −∆u = f . For a one-dimensional problem, the stiffness matrix
in Qk spectral element method reduces to the stiffness matrix of the P k fi-
nite element method without any quadrature, for which the discrete maximum
principle for arbitrary k can be proven by discrete Green’s function [29]. For
two-dimensional problems, Q2 spectral element method was proven monotone
in [21].

The P k finite element method with (k+1)-point Gauss-Lobatto quadrature
for a one-dimensional problem −u′′(x) = f can be equivalently written as
a finite difference scheme at all Gauss-Lobatto quadrature points [22], and
for homogeneous Dirichlet boundary its matrix-vector form can be written
as Su = M f , where u and f are vectors of function point values, M is the
lumped mass matrix, S is the stiffness matrix. The stiffness matrix of Qk

spectral element method for −uxx − uyy = f on a rectangular mesh with
homogeneous Dirichlet boundary can be written as S⊗M+M⊗S. The result
in [29] implies S−1M ≥ 0 for arbitrary polynomial degree k on a uniform mesh
in one dimension, thus it might seem natural to conjecture that monotonicity
S ⊗ M + M ⊗ S holds also for arbitrary polynomial degree k on uniform
rectangular meshes in two dimensions. However, the monotonicity (S ⊗M +
M ⊗ S)−1 ≥ 0 is simply not true for Qk element for k ≥ 9, as shown by
numerical tests in Section 6.

Thus an interesting question is whether Qk spectral element method is
monotone for 2D Laplacian. The Q2 case was proven in [21]. In this paper, we
will prove the monotonicity of the Q3 case. In two dimensions, the cases for
Qk with 4 ≤ k ≤ 8 remain open.

For 3D Laplacian, the numerical tests in Section 6 suggest that Qk spectral
element method with k ≥ 4 cannot be uncoditionally monotone. In other
words, the stiffness matrix in Qk spectral element method for −uxx−uyy−uzz

is

S ⊗M ⊗M +M ⊗ S ×M +M ⊗M × S,

which is no longer monotone when k ≥ 4 as suggested by numerical tests.
Notice that the proof of the monotonicity of Q2 spectral element method for
2D Laplacian in [21] can be easily extended to the three dimensional case.
Thus from this perspective, it is also interesting to study Q3 spectral element
method.
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1.3 Contribution and organization of the paper

For proving inverse positivity, the main viable tool in the literature is to use
M-matrices which are inverse positive. A convenient sufficient condition of M-
matrices is to require all off-diagonal entries to be non-positive. Except the
fourth order compact finite difference, all high order accurate schemes induce
positive off-diagonal entries, destroying such a structure, which is a major chal-
lenge of proving monotonicity. In [3] and [1], and also the appendix in [21],
M-matrix factorizations of the form (−∆h)

−1 = M1M2 were shown for spe-
cial high order schemes but these M-matrix factorizations seem ad hoc and
do not apply to other schemes or other equations. In [25], Lorenz proposed
some matrix entry-wise inequality for ensuring a matrix to be a product of
two M-matrices and applied it to P 2 finite element method on uniform regu-
lar triangular meshes. In [21], Lorenz’s condition was applied to Q2 spectral
element method on uniform meshes. See extensions to quasi-uniform meshes
in [11].

For Qk spectral element method with k ≥ 3, it does not seem possible to
apply Lorenz’s condition directly. Instead, we will demonstrate that Lorenz’s
condition can be applied to a few auxiliary matrices to establish the mono-
tonicity in Q3 spectral element method, which can be regarded a fifth order
accurate finite difference scheme [19, 22]. To the best of our knowledge, this
is the first time that monotonicity can be proven for a fifth order accurate
scheme in two dimensions. We are able to show the fifth order Q3 spectral
element on a uniform mesh in two dimensions can be factored into a product
of four M-matrices, whereas existing M-matrix factorizations for high order
schemes involved products of only two M-matrices.

The rest of the paper is organized as follows. In Section 2, we briefly review
the conventional monotone high order finite difference schemes. In Section 3,
we review the monotone P 2 and Q2 finite element methods in their equivalent
finite difference forms, which are fourth order accurate in an a priori error
estimate of function values at finite difference grid points for a smooth solution.
In Section 4, we review the Lorenz’s condition for proving monotonicity. In
Section 5, we prove the monotonicity of Q3 spectral element scheme on a
uniform mesh. Some numerical tests of these schemes are given in Section 6.
Section 7 are concluding remarks.

2 Classical monotone high order finite difference schemes

2.1 9-point scheme

The 9-point scheme was somewhat suggested already in 1940s [13] and dis-
cussed in details in [10,17]. It can be extended to higher dimensions [2, 4].

Consider solving the two-dimensional Poisson equations −uxx − uyy = f
with homogeneous Dirichlet boundary conditions on a rectangular domain
Ω = (0, 1) × (0, 1). Let ui,j denote the numerical solutions at a uniform grid
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(xi, yj) = ( i
Nx ,

j
Ny ), and fi,j = f(xi, yj). For convenience, we introduce two

matrices,

U =

ui−1,j+1 ui,j+1 ui+1,j+1

ui−1,j ui,j ui+1,j

ui−1,j−1 ui,j−1 ui+1,j−1

 , F =

fi−1,j+1 fi,j+1 fi+1,j+1

fi−1,j fi,j fi+1,j

fi−1,j−1 fi,j−1 fi+1,j−1

 .

Then the 9-point discrete Laplacian for the Poisson equation at a grid point
(xi, yj) can be written as

1

12∆x2

 −1 2 −1
−10 20 −10
−1 2 −1

 : U +
1

12∆y2

−1 −10 −1
2 20 2
−1 −10 −1

 : U =
1

12

0 1 0
1 8 1
0 1 0

 : F.

(1)
where : denotes the sum of all entry-wise products in two matrices of the same
size. Under the assumption ∆x = ∆y = h, it reduces to the following:

1

6h2

−1 −4 −1
−4 20 −4
−1 −4 −1

 : U =
1

12

0 1 0
1 8 1
0 1 0

 : F. (2)

The 9-point scheme can also be regarded as a compact finite difference
scheme [12]. There can exist a few or many different compact finite difference
approximations of the same order [18]. For instance, with the fourth order
compact finite difference approximation to Laplacian used in [20, 23], we get
the following scheme:

1
12∆x2

 −1 2 −1
−10 20 −10
−1 2 −1

 : U + 1
12∆y2

−1 −10 −1
2 20 2
−1 −10 −1

 : U = 1
144

 1 10 1
10 100 10
1 10 1

 : F.

(3)
Both schemes (1) and (3) are fourth order accurate and they have the same
stencil and the same stiffness matrix in the left hand side. We have not ob-
served any significant difference in numerical performances between these two
schemes.

Remark 1 For solving 2D Laplace equation −∆u = 0 with Dirichlet boundary
conditions, the 9-point scheme becomes sixth order accurate [12].

Nonsingular M-matrices are inverse-positive matrices. There are many equiv-
alent definitions or characterizations of M-matrices, see [27]. The following is
a convenient sufficient but not necessary characterization of nonsingular M-
matrices [21]:

Theorem 1 For a real square matrix A with positive diagonal entries and
non-positive off-diagonal entries, A is a nonsingular M-matrix if all the row
sums of A are non-negative and at least one row sum is positive.

By condition K35 in [27], a sufficient and necessary characterization is,
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Theorem 2 For a real square matrix A with positive diagonal entries and
non-positive off-diagonal entries, A is a nonsingular M-matrix if and only if
that there exists a positive diagonal matrix D such that AD has all positive
row sums.

Remark 2 Non-negative row sum is not a necessary condition for M-matrices.
For instance, the following matrix A is an M-matrix by Theorem 2:

A =

 10 0 0
−10 2 −10
0 0 10

 , D =

0.1 0 0
0 2 0
0 0 0.1

 , AD =

 1 0 0
−1 4 −1
0 0 1

 .

The stiffness matrix in the scheme (2) has diagonal entries 20
6h2 and offdi-

agonal entries − 1
6h2 , − 4

6h2 and 0, thus by Theorem 1 it is an M-matrix and
the scheme is monotone. In order for the stiffness matrix in (1) and (3) to be
an M-matrix, we need all the off-diagonal entries to be nonnegative, which is
true under the mesh constraints 1√

5
≤ ∆x

∆y ≤
√
5.

2.2 The Bramble and Hubbard’s scheme

In [3], a fourth order accurate monotone scheme was constructed. Consider
solving a one-dimensional problem

−u′′ = f, x ∈ [0, 1], u(0) = σ0, u(1) = σ1, (4)

on a uniform grid xi =
i

n+1 (i = 0, 1, · · · , n + 1). The scheme can be written
as

−σ0 + 2u1 − u2

∆x2
= f1,

−un−1 + 2un − σ1

∆x2
= fn

1
12ui−2 − 4

3ui−1 +
5
2ui − 4

3ui+1 +
1
12ui+2

∆x2
= fi, i = 2, 3, · · · , n− 1.

The matrix vector form of the scheme is 1
∆x2Hu = f̃ where

H =



2 −1
− 4

3
5
2 − 4

3
1
12

1
12 − 4

3
5
2 − 4

3
1
12

. . .
. . .

. . .
. . .

. . .
1
12 − 4

3
5
2 − 4

3
1
12

1
12 − 4

3
5
2 − 4

3
−1 2


,u =



u1

u2

...

un−1

un


, f̃ =



f1
f2

...

fn−1

fn


+



σ0

∆x2

− σ0

12∆x2

0

− σ1

12∆x2

σ1

∆x2


.

For two-dimensional Laplacian, the scheme is defined similarly. In particular,
assume ∆x = ∆y = h for a square domain, the stiffness matrix can be written
as 1

h2 (H ⊗ I + I ⊗H) where I is the identity matrix and ⊗ is the Kronecker
product. Its monotonicity was proven in [3].
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3 Monotone high order finite element methods on structured
meshes

It is well-known that finite element methods with suitable quadrature are
equivalent to finite difference schemes. The schemes in this section are equiv-
alent to finite difference schemes defined at quadrature points.

3.1 Finite element method with the simplest quadrature

Consider an elliptic equation on Ω = (0, 1) × (0, 1) with Dirichlet boundary
conditions:

Lu ≡ −∇ · (a∇u) + cu = f on Ω, u = g on ∂Ω. (5)

Assume there is a function ḡ ∈ H1(Ω) as an extension of g so that ḡ|∂Ω = g.
The variational form of (5) is to find ũ = u− ḡ ∈ H1

0 (Ω) satisfying

A(ũ, v) = (f, v)−A(ḡ, v), ∀v ∈ H1
0 (Ω), (6)

where A(u, v) =
∫∫

Ω
a∇u · ∇vdxdy +

∫∫
Ω
cuvdxdy, (f, v) =

∫∫
Ω
fvdxdy.

(a) The quadrature points and a finite
element mesh for P 2

(b) The corresponding finite differ-
ence grid

Fig. 1 An illustration of Lagrangian P 2 element and the simple third order accurate quadra-
ture using vertices and edge centers.

Let h be quadrature point spacing of a regular triangular mesh shown in
Figure 1 (or a rectangular mesh shown in Figure 2) and V h

0 ⊆ H1
0 (Ω) be

the continuous finite element space consisting of piecewise P 2 polynomials (or
Q2 polynomials), then the most convenient implementation of finite element
method is to use the simple quadrature consisting of vertices and edge cen-
ters with equal weights (or 3 × 3 Gauss-Lobatto quadrature rule) for all the
integrals, see Figure 1 for P 2 method (or Figure 2 for Q2 method). Such a
numerical scheme can be defined as: find uh ∈ V h

0 satisfying

Ah(uh, vh) = ⟨f, vh⟩h −Ah(gI , vh), ∀vh ∈ V h
0 , (7)
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(a) The quadrature points and a finite
element mesh

(b) The corresponding finite differ-
ence grid

Fig. 2 An illustration of Lagrangian Q2 element and the 3× 3 Gauss-Lobatto quadrature.

where Ah(uh, vh) and ⟨f, vh⟩h denote using simple quadrature for integrals
A(uh, vh) and (f, vh) respectively, and gI is the piecewise P 2 (or Q2) La-
grangian interpolation polynomial at the quadrature points shown in Figure
1 for P 2 method (or Figure 2 for Q2 method) of the following function:

g(x, y) =

{
0, if (x, y) ∈ (0, 1)× (0, 1),

g(x, y), if (x, y) ∈ ∂Ω.

Then ūh = uh+gI is the numerical solution for the problem (5). Notice that
(7) is not a straightforward approximation to (6) since ḡ is never used. When
the numerical solution is represented by a linear combination of Lagrangian
interpolation polynomials at the grid points, it can be rewritten as a finite
difference scheme. We also call it a variational difference scheme since it is
derived from the variational form.

3.2 The P 2 finite element method

For Laplacian Lu = −∆u, the scheme (7) on a uniform regular triangular
mesh can be given in a finite difference form [31]:

1

h2

 0 −1 0
−1 4 −1
0 −1 0

 : U = fi,j , if (xi, yj) is an edge center; (8a)

1

9h2

 1 −4 1
−4 12 −4
1 −4 1

 : U = 0, if (xi, yj) is a vertex. (8b)

Notice that the stiffness matrix is not an M-matrix due to the positive
off-diagonal entries in (8b) and its inverse positivity was proven in [25].

Since the simple quadrature is exact for integrating only quadratic poly-
nomials on triangles, it is not obvious why the finite difference scheme (8) is
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fourth order accurate. With such a quadrature on two adjacent triangles form-
ing a rectangle in a regular triangular mesh, we obtain a quadrature on the
rectangle, see Figure 3. For a reference square [−1, 1]× [−1, 1], the quadrature
weights are 2

3 and 4
3 for an edge center and the cell center respectively.

Fig. 3 The simple quadrature on two triangles give a quadrature on a square.

Lemma 1 The quadrature on a square [−1, 1] × [−1, 1] using only four edge
centers with weight 2

3 and one cell center with weight 4
3 is exact for P 3 poly-

nomials.

Proof Since the quadrature is exact for integrating P 2 polynomials on either
triangle in Figure 3, it suffices to show that it is exact for integrating basis
polynomials of degree three, i.e., x2y, xy2, x3 and y3. It is straightforward to
verify that both exact integrals and quadrature of these four polynomials on
the square are zero.

Therefore, with Bramble-Hilbert Lemma (see Exercise 3.1.1 and Theorem
4.1.3 in [8]), we can show that the quadrature rule is fourth order accurate if
we regard the regular triangular mesh in Figure 3 (a) as a rectangular mesh.

The standard L2(Ω)-norm estimate for the finite element method with
quadrature (7) using Lagrangian P 2 elements is third order accurate of func-
tion value for smooth exact solutions [8]. On the other hand, superconver-
gence of function values in finite element method without quadrature can be
proven [6,30], e.g., the errors at vertices and edge centers are fourth order ac-
curate on triangular meshes for function values if using P 2 basis, see also [16].
It can be shown that using such fourth order accurate quadrature will not
affect the fourth order superconvergence even for a general variable coefficient
elliptic problem, see [22]. Notice that the scheme can also be given on a nonuni-
form mesh and its fourth order accuracy still holds on a quasi uniform mesh
since it is also a finite element method.

3.3 The Q2 spectral element method

The scheme (7) with Lagrangian Q2 basis is fourth order accurate [22] and
monotone on a uniform mesh under suitable mesh constraints [21].

Consider a uniform grid (xi, yj) for a rectangular domain [0, 1]×[0, 1] where
xi = ih, i = 0, 1, . . . , n+ 1 and yj = jh, j = 0, 1, . . . , n+ 1, h = 1

n+1 , where n
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must be odd. Let uij denote the numerical solution at (xi, yj). Let u denote an
abstract vector consisting of uij for i, j = 1, 2, · · · , n. Let ū denote an abstract
vector consisting of uij for i, j = 0, 1, 2, · · · , n, n+ 1. Let f̄ denote an abstract
vector consisting of fij for i, j = 1, 2, · · · , n and the boundary condition g
at the boundary grid points. Then the matrix vector representation of (7) is
Sū = M f where S is the stiffness matrix andM is the lumped mass matrix. For
convenience, after inverting the mass matrix, with the boundary conditions,
the whole scheme can be represented in a matrix vector form L̄hū = f̄ . For
Laplacian Lu = −∆u, L̄hū = f̄ on a uniform mesh is given as

(L̄hū)i,j :=
−ui−1,j − ui+1,j + 4ui,j − ui,j+1 − ui,j−1

h2
= fi,j , if (xi, yj) is a cell center,

(L̄hū)i,j :=
−ui−1,j + 2ui,j − ui+1,j

h2
+

ui,j−2 − 8ui,j−1 + 14ui,j − 8ui,j+1 + ui,j+2

4h2
= fi,j ,

if (xi, yj) is an edge center for an edge parallel to the y-axis,

(L̄hū)i,j :=
ui−2,j − 8ui−1,j + 14ui,j − 8ui+1,j + ui+2,j

4h2
+

−ui,j−1 + 2ui,j − ui,j+1

h2
= fi,j ,

if (xi, yj) is an edge center for an edge parallel to the x-axis,

(L̄hū)i,j :=
ui−2,j − 8ui−1,j + 14ui,j − 8ui+1,j + ui+2,j

4h2
+

ui,j−2 − 8ui,j−1 + 14ui,j − 8ui,j+1 + ui,j+2

4h2
= fi,j ,

if (xi, yj) is a knot,

(L̄hū)i,j := ui,j = gi,j if (xi, yj) is a boundary point.

(9)
If ignoring the denominator h2, then the stencil can be represented as:

cell center
−1

−1 4 −1
−1

knots

1
4
−2

1
4 −2 7 −2 1

4
−2
1
4

edge center (edge parallel to y-axis)
−1

1
4 −2 11

2 −2 1
4

−1

edge center (edge parallel to x-axis)

1
4
−2

−1 11
2 −1
−2
1
4

3.4 The Q3 spectral element method

In the scheme (7), if using Lagrangian Q3 basis with 4 × 4 Gauss-Lobatto
quadrature, we get Q3 spectral element method, which is also a fifth order
accurate finite difference scheme [22]. The 4-point Gauss-Lobatto quadrature

for the reference interval [−1, 1] has four quadrature points [−1 −
√
5
5

√
5
5 1].

Thus on an uniform rectangular mesh, the corresponding finite difference grid
consisting of quadrature points is not exactly uniform, see Figure 4.
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(a) Quadrature points and a finite ele-
ment mesh.

(b) The corresponding finite differ-
ence grid.

Fig. 4 An illustration of a mesh for Q3 element and the 4× 4 Gauss-Lobatto quadrature.

Fig. 5 Three adjacent 1D cells for P 3 elements using 4-point Gauss-Lobatto quadrature.

Now consider a uniform mesh for a one-dimensional problem and assume
each cell has length h, see Figure 3.4. There are two quadrature points inside
each interval, and we refer to them as the left interior point and the right
interior point. The Q3 spectral element method in difference form for one-
dimension problem (4) can be written as L̄hū = f̄ :

(L̄hū)i :=
4

h2

[
13ui −

15
√
5 + 25

8
(ui−1 + ui+1) +

15
√
5− 25

8
(ui−2 + ui+2)−

1

4
(ui−3 + ui+3)

]
= fi, xi is a knot;

(L̄hū)i :=
4

h2

[
−3

√
5 + 5

4
ui−1 + 5ui +

−5

2
ui+1 +

15
√
5− 25

8
ui+2

]
= fi, xi is the left interior point;

(L̄hū)i :=
4

h2

[
15
√
5− 25

8
ui−2 −

5

2
ui−1 + 5ui −

3
√
5 + 5

4
ui+1

]
= fi, if xi is the right interior point.

(L̄hū)0 := u0 = σ0, (L̄hū)n+1 := un+1 = σ1.

(10)
The explicit scheme in two dimensions will be given in Section 5.

4 Lorenz’s condition for monotonicity

In this section, we briefly review the Lorenz’s condition for monotonicity [25],
which will be the main tool to prove the monotonicity of the Q3 spectral
element method. The monotonicity implies discrete maximum principle for
the scheme, see [7, 21].
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Definition 1 Let N = {1, 2, . . . , n}. For N1,N2 ⊂ N , we say a matrix A =
[aij ] of size n× n connects N1 with N2 if

∀i0 ∈ N1,∃ir ∈ N2,∃i1, . . . , ir−1 ∈ N s.t. aik−1ik ̸= 0, k = 1, · · · , r.
(11)

If perceiving A as a directed graph adjacency matrix of vertices labeled by N ,
then (11) simply means that there exists a directed path from any vertex in
N1 to at least one vertex in N2. In particular, if N1 = ∅, then any matrix A
connects N1 with N2.

Given a square matrix A and a column vector x, we define

N 0(Ax) = {i : (Ax)i = 0}, N+(Ax) = {i : (Ax)i > 0}.

Given a matrix A = [aij ] ∈ Rn×n, define its diagonal, off-diagonal, positive
and negative off-diagonal parts as n× n matrices Ad, Aa, A

+
a , A

−
a :

(Ad)ij =

{
aii, if i = j

0, if i ̸= j
, Aa = A−Ad,

(A+
a )ij =

{
aij , if aij > 0, i ̸= j

0, otherwise.
, A−

a = Aa −A+
a .

The following two results were proven in [25]. See also [21] for a detailed
proof.

Theorem 3 If A ≤ M1M2 · · ·MkL where M1, · · · ,Mk are nonsingular M-
matrices and La ≤ 0, and there exists a nonzero vector e ≥ 0 such that
one of the matrices M1, · · · ,Mk, L connects N 0(Ae) with N+(Ae). Then
M−1

k M−1
k−1 · · ·M

−1
1 A is an M-matrix, thus A is a product of k + 1 nonsin-

gular M-matrices and A−1 ≥ 0.

Theorem 4 (Lorenz’s condition) If A−
a has a decomposition: A−

a = Az +
As = (azij) + (asij) with As ≤ 0 and Az ≤ 0, such that

Ad +Az is a nonsingular M-matrix, (12a)

A+
a ≤ AzA−1

d As or equivalently ∀aij > 0 with i ̸= j, aij ≤
n∑

k=1

azika
−1
kk a

s
kj ,

(12b)

∃e ∈ Rn \ {0}, e ≥ 0 with Ae ≥ 0 s.t. Az or As connects N 0(Ae) with N+(Ae).
(12c)

Then A is a product of two nonsingular M-matrices thus A−1 ≥ 0.

The following result can be found in [11]:

Proposition 1 The matrix L in Theorem 3 must be an M-matrix.

In practice, the condition like (12c) can be difficult to verify. In this paper,
the vector e will be taken as 1 consisting of all ones in Theorem 3.
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5 Monotonicity of Q3 spectral element method on a uniform mesh

5.1 The main approach for proving monotonicity

Even though Lorenz’s condition Theorem 4 can be nicely verified for the Q2

spectral element method in finite difference form [21], it is very difficult to
apply Lorenz’s condition to higher order Qk spectral element methods due
to their much more complicated structure. In particular, even for Q3 scheme,
simple decomposition of A−

a = Az+As such that A+
a ≤ AzA−1

d As is difficult to
show. Instead, we propose to apply Theorem 4 to a few simpler intermediate
and auxiliary matrices, then use Theorem 3. To be specific, let A = A3 be the
matrix representation of Q3 spectral element method in finite difference form,
and let A0 = M1 be an M-matrix. Then we seek to construct matrices Ai and
Li satisfying the conditions in Theorem 4 such that

A1 ≤ A0L0, A2 ≤ A1L1, A3 ≤ A2L2,

with the constraints that Ai1 ≥ 0 and A0 = M1 connects N 0(Ai1) with
N+(Ai1) for all Ai. With e = 1 in Theorem 3, we have

A1 ≤ A0L0 = M1L0 ⇒ A1 = M1M2 ⇒ A2 ≤ M1M2L1 ⇒ A2 = M1M2M3

⇒ A3 ≤ M1M2M3L2 ⇒ A = A3 = M1M2M3M4.

We remark that the matrices Ai and Li satisfying constraints above may
not be unique. It is tedious to verify the inequalities for the matrices listed
in the rest of the section, especially for the matrices for the two-dimensional
scheme. For reviewers’ convenience, we provide a symbolic computation code in
MATLAB for easily verifying these inequalities. They can be also downloaded
at https://www.math.purdue.edu/∼ zhan1966/research/code/Q3proof.tar.gz.
We emphasize that the proof in this section is a rigorous constructive
mathematical proof, with or without such a code for verifying it.

5.2 One-dimensional scheme

We first demonstrate the main idea for the one-dimensional case, for which we
only need to construct matrices such that A1 ≤ A0L0, A ≤ A1L1.

Let L̄h denote the coefficient matrix in (10), then consider A = h2

4 L̄h. For
convenience, we will perceive the matrix A as a linear operator A. Notice that
the coefficients for two interior points are symmetric in (10), thus we will only
show stencil for the left interior point for simplicity:

A at boundary point x0 or xn+1 :
h2

4

A at knot : −1

4

15
√
5− 25

8

−15
√
5− 25

8
13

−15
√
5− 25

8

15
√
5− 25

8
− 1

4

A at interior point :
−3

√
5− 5

4
5 − 5

2

3
√
5− 5

4
,

https://www.math.purdue.edu/~zhan1966/research/code/Q3proof.tar.gz
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where bolded entries indicate the coefficient for the operator output location
xi.

For all the matrices defined below, they will have symmetric structure at
two interior points, thus for simplicity we will only show the stencil of the
corresponding linear operators for the left interior point. We first define three
matrices A1, A0, and Z0.

A1 at boundary :
h2

4

A1 at knot : 0
15
√
5− 25

8
− 7 13 − 7

15
√
5− 25

8
0

A1 at interior point: − 1

2
4.8 − 2 0

A0 at boundary :
h2

4
A0 at knot: 0 0 − 7 15 − 7 0 0

A0 at interior point: − 1

2
4.8 − 1

2
0

Z0 at boundary : 0

Z0 at knot: 0 0 0 0 0 0 0

Z0 at interior point: 0 0 − 2 +
1

2
0

Then we define L0 = I + (A0)
−1
d Z0 where I is the identity matrix and (A0)d

denotes the diagonal part of A0. By considering composition of two operators
A0 and L0, we get the matrix product A0L0. Due to the definition of Z0, A0L0

still has the same stencil as above:

A0L0 at boundary :
h2

4

A0L0 at knot: 0
35

16
− 7 15 − 7

35

16
0

A0L0 at interior point: − 1

2
4.8+

5

32
− 2 0

It is straightforward to see A1 ≤ A0L0. By Theorem 1, A0 is an M-matrix,
thus we set M1 = A0. Also it is easy to see that A1(1) > 0 thus N 0(A11) is
an empty set. So A0 trivially connects N 0(A11) with N+(A11). By Theorem
3, we have A1 ≤ A0L0 = M1L0 ⇒ A1 = M1M2 where M2 is an M-matrix.

Let (A1)d denote the diagonal part of A1. Then define L1 = I + (A1)
−1
d Z1

using the following Z1:

Z1 at boundary: 0

Z1 at knot: 0 0 0 0 0 0 0

Z1 at interior point: − 11

10
0 − 1

2
0
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And the matrix A1L1 still have the same stencil and symmetry:

A1L1 at boundary:
h2

4

A1L1 at knot: −165
√
5+275

384
15

√
5−25
8 + 35

48 −7 + −75
√
5+125

384 13+ 2(7748 ) −7 + −75
√
5+125

384
15

√
5−25
8 + 35

48
−165

√
5+275

384

A1L1 at interior point: − 8

5
4.8+

5

24
− 5

2

11

24

A direct comparison verifies that A ≤ A1L1 = M1M2L1. Also it is easy to
see that A(1)i = 0 if xi is not a boundary point. The operator A0 has a
three-point stencil at interior grid points, thus the directed graph defined by
the adjacency matrix A0 has a directed path starting from any interior grid
point to any other point, see Figure 5.2. So M1 = A0 connects N 0(A1) with
N+(A1). By Theorem 3, we have A ≤ A1L1 = M1M2L1 ⇒ A = M1M2M3

where M3 is an M-matrix. Therefore, A−1 = M−1
3 M−1

2 M−1
1 ≥ 0.

Fig. 6 The directed graph defined by matrix M1 for the finite difference grid shown in
Figure 3.4.

5.3 Two-dimensional case

(a) Three point types defining the sten-
cil: knot (black), edge point (blue), interior
point (green).

(b) The directed graph defined by the ma-
trix M1.

Fig. 7 An illustration of a Q3 mesh with 2× 2 cells.
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Due to symmetry, the stencil of the scheme can be defined at three different
types of points, see Figure 7 (a). Let each rectangular cell have size h× h and

denote Q3 scheme by L̄hū = f̄ . Let A = h2

4 L̄h. Then for a boundary point

(xi, yj) ∈ ∂Ω, A(ū)ij = h2

4 uij . And the stencil of A at interior grid points is
given as

− 1
4

15
√
5−25
8

−15
√
5−25

8

A at knot: − 1
4

15
√
5−25
8

−15
√
5−25

8
26 −15

√
5−25
8

15
√
5−25
8

− 1
4

−15
√
5−25

8

15
√
5−25
8

− 1
4

− 1
4

15
√
5−25
8

−15
√
5−25

8

A at edge point: 3
√
5−5
4

− 5
2

18 −3
√
5−5
4

−15
√
5−25

8

15
√
5−25
8

− 1
4

3
√
5−5
4

− 5
2

A at interior point: 3
√
5−5
4

− 5
2

10 −3
√
5−5

4

−3
√
5−5

4

Next we list the definition of matrices Ai and Zi by the corresponding
linear operators Ai and Zi. For convenience, we will only list the stencil at
interior grid points. For the domain boundary points (xi, yj) ∈ ∂Ω, all Ai

matrices will have the same value as A: Ai(ū)ij =
h2

4 uij . And Zi(ū)ij = 0 for

(xi, yj) ∈ ∂Ω. The matrix Li is defined as Li = I + (Ai)
−1
d Zi, i = 0, 1, 2.

The matrices and their products are given by:
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0

15
√
5−25
8

−15
√
5−25
8

A1 at knot: 0 15
√
5−25
8

−15
√

5−25
8

26 −15
√

5−25
8

15
√

5−25
8

0

−15
√
5−25
8

15
√

5−25
8

0
0

0

−7

A1 at edge point: 0 − 5
2

17 − 1
100

−7

0

0

0

− 1
2

A1 at interior point: 0 − 1
2

10 − 1
2

− 1
2

0

0

−15
√

5−25
8

A0 at knot: 0 0 −15
√
5−25

8
30 −15

√
5−25
8

0 0

−15
√

5−25
8

0

0
0

0

−7

A0 at edge point: 0 − 1
100

17 − 1
100

−7

0

0

0

− 1
2

A0 at interior point: 0 − 1
2

10 − 1
2

− 1
2
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0

0

0

Z0 at knot : 0 0 0 0 0 0 0

0

0

0
0

0

0

Z0 at edge point: 0 − 5
2
+ 1

100
0 0

0

0

0

0

0

Z0 at interior point: 0 0 0 0

0

0

747
√

5+1245
2720

−15
√
5−25

8

A0L0 at knot: 0 747
√

5+1245
2720

−15
√
5−25

8
30 −15

√
5−25

8
747

√
5+1245

2720
0

−15
√
5−25

8

747
√

5+1245
2720

0
0

0

−7

A0L0 at edge point: 0 − 5
2

17+ 249
170000

− 1
100

−7

0

0

0

− 1
2

249
3400

A0L0 at interior point: 0 − 1
2

10 − 1
2

249
3400

− 1
2
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− 1
4

15
√

5−25
8

−15
√

5−25
8

A2 at knot: − 1
4

15
√

5−25
8

−15
√
5−25
8

26 −15
√
5−25
8

15
√

5−25
8

− 1
4

−15
√

5−25
8

15
√

5−25
8

− 1
4

0

15
√
5−25
8

1
4

−7

A2 at edge point: 3
√

5−5
4

− 5
2

17 −3
√

5−5
4

−7

15
√
5−25
8

1
4

0

0

− 5
2

− 5
14

A2 at interior point: 0 − 5
2

10 − 1
2

− 5
14

− 1
2

0

0

0

Z1 at knot : 0 0 0 0 0 0 0

0

0

0
0

0

0

Z1 at edge point: 0 0 0 −3
√
5−5

4
+ 1

100

0

0

0

0

− 5
2
+ 1

2
− 5

14

Z1 at interior point: 0 − 5
2
+ 1

2
0 0

− 5
14

0

3
√
5−505
2720

15
√
5−25
8

−15
√
5−25
8

A1L1 at knot: 3
√

5−505
2720

15
√
5−25
8

−15
√

5−25
8

26+ 4(747
√

5+1745
2720

) −15
√

5−25
8

15
√
5−25
8

3
√

5−505
2720

−15
√
5−25
8

15
√
5−25
8

3
√
5−505
2720

0

7
5

1
4

7
5

−7

A1L1 at edge point: 75
√
5+124
680

− 5
2
+ 2( 1

4
) 17 −3

√
5−5

4

7
5

−7

7
5

1
4

0

1
56

0

1
56

2( 1
10

) − 5
2

− 5
14

A1L1 interior point: 0 − 5
2

10+ 2( 1
10

) − 1
2
+ 1

56

− 5
14

− 1
2
+ 1

56
2( 75

√
5+124

3400
)
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0

0

0

Z2 at knot: 0 0 0 0 0 0 0

0

0

0
0

0

0

Z2 at edge point: 0 0 0 0

0

0

0

0

0

Z2 at interior point: 0 0 0 −2

−2

− 1
4

15
√
5−25
8

−15
√
5−25
8

A2L2 at knot : − 1
4

15
√
5−25
8

−15
√

5−25
8

26 −15
√
5−25

8
15

√
5−25
8

− 1
4

−15
√
5−25
8

15
√
5−25
8

− 1
4

−3
√
5+5

8

15
√

5−25
8

1
4
+ −3

√
5+5

8

−7 7
5

A2L2 at edge point: 3
√
5−5
4

− 5
2

17+ 2(7
5
) −3

√
5−5
4

−7 7
5

15
√

5−25
8

1
4
+ −3

√
5+5

8

−3
√
5+5

8

0 1
2

0 0 − 5
2

− 5
14

+ 1
2

A2L2 at interior point: 1
2

− 5
2

10 −2− 1
2

− 5
14

+ 1
2

−2− 1
2

0
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By Theorem 1, A0 is an M-matrix, thus we set M1 = A0. Notice that the
matrix M1 = A0 has a 5-point stencil and the directed graph defined by M1

is given in Figure 7 (b), in which there is a directed path starting from any
interior grid point to any other point. For convenience, let A3 = A. Then we
have Ak(1) ≥ 0 (k = 0, 1, 2, 3). Moreover, Ak(1)ij > 0 (k = 0, 1, 2, 3) for
any domain boundary point (xi, yj) ∈ ∂Ω. The directed graph defined by M1

easily implies that M1 connects N 0(Ai1) with N+(Ai1) for all i = 0, 1, 2, 3.
By straightforward comparison, we can verify that A1 ≤ A0L0, A2 ≤

A1L1, A ≤ A2L2. By Theorem 3, we have

A1 ≤ A0L0 = M1L0 ⇒ A1 = M1M2 ⇒ A2 ≤ M1M2L1 ⇒ A2 = M1M2M3

⇒ A ≤ M1M2M3L2 ⇒ A = M1M2M3M4 ⇒ A−1 ≥ 0.

Remark 3 The matrices Ai and Li are found by matching the inequalities
above. Such matrices are not unique. These matrices and the inequalities can
be easily verified by computer codes.

6 Numerical Tests

6.1 Monotonicity tests

For solving a one-dimensional Poisson equation −u′′ = f on the domain (0, 1)
with homogeneous Dirichlet boundary condition u(0) = u(1) = 0, consider
the classical continuous finite element method using P k polynomial basis on
a uniform mesh consisting of N intervals. If all the integrals are replaced
by (k + 1)-point Gauss-Lobatto quadrature, then it is equivalent to a finite
difference scheme at all Gauss-Lobatto points excluding two domain boundary
points. The finite difference scheme can be written as Su = M f or Hu = f ,
where S is the stiffness matrix, M ≥ 0 is the lumped mass matrix and H =
M−1S. The results in [29] imply that S ≥ 0 thus H ≥ 0 for any k. See Figure
8 for the smallest entry in the matrix H−1 for k = 2, 3, . . . , 15 on different
meshes.

For a two-dimensional Poisson equation −uxx − uyy = f on the domain
(0, 1)×(0, 1) with homogeneous Dirichlet boundary condition, the Qk spectral
element method, i.e., Qk finite element method with (k + 1) × (k + 1)-point
Gauss-Lobatto quadrature, is equivalent to a finite difference scheme at all
Gauss-Lobatto points excluding all domain boundary points. On a uniform
mesh consisting of N × N rectangular cells, the stiffness matrix and lumped
matrix can be written as S⊗M +M ⊗S and M ⊗M respectively [22]. So the
finite difference scheme matrix in two dimensions can be written as

H2D = (M ⊗M)−1(S ⊗M +M ⊗ S) = H ⊗ I + I ⊗H,

where the matrices S,M,H are the same ones as in the one-dimensional
scheme. Unfortunately, here the Kronecker product and H−1 simply does not
imply the inverse positivity of H2D. In numerical tests on a N×N mesh, there
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is a clear cut off at k = 9. For Qk spectral element method with k ≥ 9, the
inverse positivity is simply lost in two dimensions even on very coarse meshes,
see numerical results in Figure 9.

In three dimensions, the finite difference scheme matrix (−∆h) of the Qk

spectral element method can be written as

H3D = H ⊗ I ⊗ I + I ⊗H ⊗ I + I ⊗ I ⊗H.

The numerical tests shown in Figure (10) suggest that H3D is no longer
unconditionally monotone for Qk spectral element method with k ≥ 4.
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Fig. 8 H−1 ≥ 0 holds for any k in Pk finite element method with (k + 1)-point Gauss-
Lobatto quadrature on a uniform mesh with N cells for one-dimensional Laplacian.

6.2 Accuracy tests

For verifying the order for smooth solutions, we show some accuracy tests of
the monotone schemes mentioned in this paper for solving −∆u = f on a
square (0, 1)× (0, 1) with Dirichlet boundary conditions. We will simply refer
to the classical 9-point scheme (1) as 9-point scheme, and refer to its variant (3)
as compact finite difference. The schemes are tested for the Poisson equation
−∆u = f with nonhomogeneous Dirichlet boundary condition:

f = 74π2cos(5πx)cos(7πy)− 8

u = cos(5πx)cos(7πy) + x2 + y2
(13)
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Fig. 9 On a uniform mesh with N ×N cells, inverse positivity of the matrix is simply lost
in Qk spectral element method for 2D Laplacian if k ≥ 9.
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Fig. 10 The smallest entry in the matrix (H ⊗ I ⊗ I + I ⊗ H ⊗ I + I ⊗ I ⊗ H)−1 for Qk

spectral element method on a uniform N × N × N mesh for Qk spectral element method
will be negative if k ≥ 4.

The errors of fourth order accurate schemes on uniform grids are listed in
Table 1. The errors of Q3 spectral element method on uniform rectangular
meshes are listed in Table 2.
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Table 1 Accuracy test on uniform meshes for (13).

Finite Difference Grid
Q2 spectral element method P 2 finite element method 9-point scheme (1)

l2 error order l∞ error order l2 error order l∞ error order l2 error order l∞ error order

7× 7 3.62E-1 - 1.10E-0 - 9.68E-1 - 2.59E-0 - 2.48E-2 - 5.69E-2 -

15× 15 3.75E-2 3.26 9.68E-2 3.50 7.81E-2 3.63 3.00E-1 3.11 2.61E-4 6.56 6.46E-4 6.45

31× 31 2.44E-3 3.94 7.18E-3 3.75 4.70E-3 4.05 1.84E-2 4.02 3.65E-5 2.84 8.97E-5 2.85

63× 63 1.54E-4 3.98 5.50E-4 3.70 2.89E-4 4.02 1.11E-3 4.04 2.55E-6 3.83 6.57E-6 3.77

Finite Difference Grid
compact finite difference (3) Bramble-Hubbard scheme

l2 error order l∞ error order l2 error order l∞ error order

7× 7 9.88E-2 - 2.26E-1 - 3.14E-1 - 8.23E-1 -

15× 15 5.40E-3 4.19 1.33E-2 4.08 1.76E-2 4.15 6.16E-2 3.73

31× 31 3.22E-4 4.06 7.91E-4 4.07 3.38E-3 2.37 1.15E-2 2.41

63× 63 1.98E-5 4.01 5.11E-5 3.95 3.04E-4 3.47 1.20E-3 3.32

Table 2 Accuracy test of Q3 spectral element method on uniform meshes.

Q3 Finite Element Mesh Finite Difference Grid l2 error order l∞ error order

2× 2 5× 5 1.18E0 - 2.61E0 -

4× 4 11× 11 6.08E-2 4.28 1.45E-1 4.17

8× 8 23× 23 2.87E-3 4.40 7.10E-3 4.35

16× 16 47× 47 9.82E-5 4.87 2.41E-4 4.88

32× 32 95× 95 3.12E-6 4.97 7.60E-6 4.99

7 Concluding remarks

We have proven that the Q3 spectral element method on a uniform mesh is
monotone, by proving its finite difference scheme matrix is a product of four
M-matrices for two-dimensional Laplace operator.
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