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Abstract. This paper introduces two explicit schemes to sample matrices from Gibbs distribu-
tions on Sn,p+ , the manifold of real positive semi-definite (PSD) matrices of size n × n and rank p.

Given an energy function E : Sn,p+ → R and certain Riemannian metrics g on Sn,p+ , these schemes rely
on an Euler-Maruyama discretization of the Riemannian Langevin equation (RLE) with Brownian
motion on the manifold. We present numerical schemes for RLE under two fundamental metrics on
Sn,p+ : (a) the metric obtained from the embedding of Sn,p+ ⊂ Rn×n; and (b) the Bures-Wasserstein
metric corresponding to quotient geometry. We also provide examples of energy functions with
explicit Gibbs distributions that allow numerical validation of these schemes.
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1. Introduction.

1.1. Problem statement. Consider the space of real, symmetric positive semi-
definite matrices with size n× n and rank p, denoted by

(1.1) Sn,p+ = {X ∈ Rn×n|X = XT , X � 0, rank(X) = p}.

Given an energy E : Sn,p+ → R and a parameter β > 0 referred to as the inverse
temperature, our goal is to sample efficiently from the Gibbs distribution

(1.2) ρβ(X) =
1

Zβ
e−βE(X)ρref(X), Zβ =

∫
Sn,p+

e−βE(X′)ρref(X
′) dX ′.

Gibbs measures must be defined with respect to a base measure. In this work, we equip
the space Sn,p+ with a Riemannian metric g and choose ρref(X)dX =

√
det g(X)dX

to be the canonical volume form associated to the metric g. This volume form is
expressed in coordinates for the metrics studied in this paper in Section 4.

This sampling problem is related to the optimization problem minX∈Sn,p+
E(X) since

in the limit β → ∞ the Gibbs distribution concentrates at the global minima of
E(X). Minimization problems over the space Sn,p+ arise in many areas, especially
semidefinite programming and machine learning, and have been studied extensively.
Gibbs distributions originate in statistical physics, while the sampling problem may
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also be seen as a stochastic variant of the optimization problem. For these reasons,
the sampling problem has a broad range of applications; see Section 1.5 below.

The main contribution of this paper are efficient sampling schemes for ρβ based on
Langevin dynamics. Our approach builds on the geometric theory of optimization;
in particular, we extend Riemannian optimization on Sn,p+ [34, 38] to Gibbs sam-
pling as follows. In [34] it was recognized that two commonly used gradient descent
schemes over Sn,p+ are time discretizations of Riemannian gradient flows, where Sn,p+

is equipped with the two natural Riemannian metrics listed below. We combine this
observation with the theory of Brownian motion on Riemannian manifolds to obtain
Riemannian Langevin equations and explicit sampling schemes.

The reader unfamiliar with these concepts should note that while the abstract theory
serves to guide our work, the schemes presented in this paper may be implemented
without requiring a complete understanding of the underlying theory. Further, while
this paper is focused on the two numerical schemes below, the underlying framework
can be used to extend other Riemannian gradient descent schemes to sampling schemes
for the Gibbs measure. The new phenomenon that arises is the interplay between
Brownian motion and curvature in the Riemannian Langevin equation. This interplay
has been studied in depth by two of the authors (TY and GM) and their co-workers
in recent papers for geometries used in optimization and physics [20, 28, 29].

1.2. Two Riemannian metrics on Sn,p+ . Given X ∈ Sn,p+ , let X = Y Y T be a
low-rank decomposition where Y ∈ Rn×p. We use two fundamental metrics on Sn,p+

obtained from this parametrization, from the Euclidean metric for either the variable
X or the variable Y through the use of Riemannian embedding and Riemannian
submersion respectively. These are the two most natural ways of defining metrics on
Sn,p+ .

The flat metric for X corresponds to the embedded geometry of Sn,p+ in the Euclidean
space Rn×n [34]. Precisely, we consider the natural Riemannian embedding Sn,p+ ↪−→
R
n×n and use the Frobenius norm on Rn×n to define a metric on Sn,p+ . Denote it by

gE , then gE(A,B) = Tr (ATB) for any two square matrices A,B in the tangent space
of Sn,p+ , where Tr denotes the trace of a matrix.

On the other hand, we may also use the flat geometry on Y to define a metric on
Sn,p+ . We observe that if Y Y T = X, then it is also true that Ỹ Ỹ T = X where

Ỹ = Y O and O ∈ Op, the orthogonal group of dimension p. Thus, we may identify
Sn,p+ h Rn×p∗ /Op, as a quotient space, with a quotient map

π : Rn×p∗ → Rn×p∗ /Op
Y 7→ [Y ] = {Y O | O ∈ Op} .

Here Rn×p∗ denotes full rank matrices.

The quotient space structure can be enhanced with a Riemannian metric through the
use of Riemannian submersion. Roughly, the metric for X corresponds to the metric
for Y in a manner that respects the splitting of the tangent space at Y into the space of
the group action and its complement. If Rn×p∗ is equipped with Euclidean metric, then
the metric induced by the submersion is often called the Bures-Wasserstein metric on
Sn,p+ h Rn×p∗ /Op, denoted by gBW (see [2, 26, 27]).
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1.3. Langevin dynamics and the Riemannian Langevin equation. We
now explain how Langevin equations may be defined intrinsically on (Sn,p+ , g).

Let us first recall the Langevin equation on Rn. Assume given a potential or energy
function E : Rn → R and let Wt denote the standard Wiener process on Rn. The
Langevin equation for the potential E is the Itô differential equation

(1.3) dxt = −∇E(xt) dt+

√
2

β
dWt.

The Fokker-Planck equation describes the evolution of the probability density of xt.
With ρ(x, t) dx = P(xt ∈ (x, x+ dx)), we have

(1.4) ∂tρ =
1

β
4ρ+∇ · (ρ∇E) .

The Gibbs density (with reference density being uniform with respect to Lebesgue
measure) is the unique equilibrium of equation (1.4) under natural growth assumptions
on the energy E as |x| → ∞.

The Langevin equation immediately yields a numerical scheme for (approximate)
sampling from the Gibbs distribution. Fix a step size ∆t > 0, let tk = k∆t, k =
0, 1, . . ., and let xk denote the numerical approximation to (1.3) at time tk. The Euler-
Maruyama scheme to approximate equation (1.3), also known as Langevin Monte
Carlo in the statistics literature, is

(1.5) xk+1 = xk −∆t∇E(xk) +

√
2∆t

β
ξk,

where ξk = (ξ1
k, . . . , ξ

n
k ) is an i.i.d. sequence of standard Gaussian vectors in Rn. This

scheme is explicit. In order to extend it to sampling from (1.2) we must understand
how to modify the Langevin equation on the Riemannian manifold (Sn,p+ , g).

First, the term ∇E must be replaced by the Riemannian gradient, written as grad E .
The more subtle modification of equation (1.3) concerns the noise. The natural anal-
ogy is to replace the Wiener process Wt on Rn with Brownian motion on the Rie-
mannian manifold (Sn,p+ , g) at inverse temperature β, denoted Bg,β

t . This yields the
(formal) Riemannian Langevin equation on (Sn,p+ , g)

dXt = −grad E(Xt)dt+ dBg,β
t .(1.6)

This equation is only formal because stochastic differential equations on manifolds
must be defined using the Stratonovich formulation in order to ensure coordinate
independence (Itô differentials do not satisfy the chain rule, while Stratonovich dif-
ferentials do) [16, 19]. On the other hand, Itô differential equations are convenient
for analysis as well as simulation. Thus, in formulating the Riemannian Langevin
equation, it is necessary to first formulate the appropriate Stratonovich equation and
then compute the deterministic Itô–Stratonovich correction. A central observation in
our work is that this correction term is due to curvature and is explicitly computable
for several Riemannian geometries relevant to optimization [17, 20, 28, 29].
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1.4. Riemannian Langevin Monte Carlo sampling schemes. For the two
metrics considered in this paper, the Itô–Stratonovich correction due to curvature may
also be computed explicitly, yielding the SDEs in Section 2. The rigorous analysis
of these SDEs is presented in the companion paper [36], and we focus on numerical
algorithms in this paper. The Euler-Maruyama approximation to these SDEs yields
the numerical sampling schemes listed below.

The SDEs also admit other numerical approximations. We have chosen the Euler-
Maruyama schemes because these schemes are fully explicit, simple to state, imple-
ment and numerically validate. They are generalizations of the popular unadjusted
Langevin Monte Carlo for sampling in Euclidean spaces. Further, these schemes re-
duce to deterministic Riemannian gradient descent methods in the limit β →∞.

1.4.1. Scheme E for the embedded geometry. For the embedded manifold
(Sn,p+ , gE), the scheme is
(1.7)

Xk+1 = PSn,p+

[
Xk −∆t grad E(Xk) +Qk

(√
2∆t

β

[
B11 B12

BT12 0

]
+

∆t

β

p∑
i=1

1
λi

[
0 0
0 In−p

])
QTk

]
,

where PSn,p+
is the Euclidean projection to Sn,p+ , and Xk = QkΛQTk is the full

SVD of Xk = Sn,p+ with eigenvalues λ1 ≥ · · · ≥ λp > 0. The entries of B12 are

i.i.d. drawn from
√

1
2N (0, 1). The entries of the symmetric B11 are defined as fol-

lows: the diagonal entries are i.i.d. drawn from N (0, 1), and off-diagonal entries

are bij = bji ∼
√

1
2N (0, 1). When β = ∞, equation (1.7) reduces to Xk+1 =

PSn,p+
(Xk −∆t grad E(Xk)), which is the Riemannian gradient descent on (Sn,p+ , gE),

see [1, 38]. We refer to (1.7) as Scheme E.

In this scheme, the term
∆t

β

p∑
i=1

1
λi

[
0 0
0 In−p

]
in equation (1.7) is the correction due

to the mean curvature of the embedding of Sn,p+ ↪−→ R
n×n.

1.4.2. Scheme BW for the Bures-Wasserstein metric. For the quotient
manifold (Rn×p∗ /Op, gBW ), the scheme is

(1.8) Yk+1 = Yk −∆t2∇E(YkY
T
k )Yk +

√
2∆t

β
Bk +

∆t

β
Uk

[ ∑
j:j 6=i

σi
σ2
i+σ2

j

]
ii
V Tk ,

whereBk is n-by-pmatrix with entries being i.i.d. standard Gaussian, Yk = UkΣkV
T
k ∈

Rn×p is the compact SVD with singular values σi, and
[ ∑
j:j 6=i

σi
σ2
i+σ2

j

]
ii

is the diagonal

matrix whose i-th diagonal entry is
∑
j:j 6=i

σi
σ2
i+σ2

j
. We refer to (1.8) as Scheme BW. The

Riemannian Langevin Monte Carlo scheme (1.8) can be viewed as a natural extension
of Burer-Monteiro gradient descent method

(1.9) Yk+1 = Yk −∆t 2∇E(YkY
T
k )Yk,

which is the simplest low-rank gradient descent method for minimizing E(X) under
the constraint X ∈ Sn,p+ . It is clear that as β →∞, (1.8) reduces to (1.9). The Burer-
Monteiro gradient descent method is equivalent to a Riemannian gradient descent
method on the quotient manifold Rn×p∗ /Op with Bures-Wasserstein metric, see [38].
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1.4.3. Gibbs distribution sampling and numerical validation. While the
Gibbs distribution always has the same density function e−βE with respect to ρref ,
the reference density ρref depends on the metric. Thus, the two schemes (1.7) and
(1.8), generate samples for two different probability distributions. In order to vali-
date our schemes, we choose energy functions that allow an explicit computation of
these densities for both metric. These energy functions yield matrix integrals of in-
dependent analytic interest. They also allow side-to-side benchmarking for different
Gibbs samplers on Sn,p+ . We demonstrate the efficiency of sampling from these Gibbs
distributions numerically. Further analysis on convergence to equilibrium as t → ∞
using the Bakry-Emery criterion is considered in the companion paper [36].

Finally, while we do not discuss their convergence and efficiency approximating SDE
as the step-size ∆t → 0; this is possible following existing approximation results
[22, 8, 24].

1.5. Some applications and related work.

1.5.1. Applications of PSD matrices. Positive semi-definite (PSD) fixed
rank matrices arise in many problems such as distance matrices [33] and covariance
matrices in statistics, and have been used in applications including kernels in machine
learning [30], semidefinite optimization [4], quantum information, etc. Riemannian
optimization algorithms over Sn,p+ under different metrics have been well studied, e.g.,
see [34, 18, 27, 38] and references therein.

1.5.2. Langevin dynamics and Monte Carlo schemes on manifolds.

There is an extensive literature on Langevin dynamics in statistics and related areas,
with interest in nonconvex optimization [6, 7], as well as machine learning such as
generative models [12].

In recent years, there has been interest in studying Langevin diffusion and Monte Carlo
Markov Chain (MCMC) schemes on manifolds [9, 10, 15, 3, 5, 37, 31, 13, 23, 24]. In
this paper, we are interested in Riemannian Langevin Monte Carlo schemes on Sn,p+ .

In the statistics literature, manifold Langevin schemes have been studied in [15, 5].
However, these schemes apply only to simpler embedded manifolds M ⊂ R

n with
explicit geodesics such as the sphere and Stiefel manifolds. The above schemes do
not directly apply to the manifold Sn,p+ , even for the embedded geometry. In [37],
a sampling scheme using projection to surface is constructed; however, this is not a
Langevin scheme.

In general, a Langevin scheme can be used for either optimization [35, 24], or Monte
Carlo type numerical integration, which is common in Bayesian statistic. For opti-
mization, stochastic optimization by Langevin dynamics with simulated annealing is
an established approach [25]. In [6], underdamped Langevin schemes are shown to
be much more efficient than the overdamped case (1.5). For sampling, Metropolis-
adjusted Langevin algorithm [15] is often used. For simplicity, we focus on the simple
schemes (1.7) and (1.8) without considering any of simulated annealing, underdamped
Langevin, or Metropolis-adjustment, to which it is possible to extend our schemes.
Though the Riemannian optimization on Sn,p+ can be easily extended to Hermitian
PSD matrices of fixed rank [38], we remark that such an extension for Langevin
dynamics would be significantly different.



6 T. YU, S. ZHENG, J. LU, G. MENON AND X. ZHANG

1.6. Organization of the paper. In Section 2, we state the explicit formulae
for the SDE (1.6) and Gibbs measure on the manifold Sn,p+ under two metrics gE and
gBW . We then derive the schemes (1.7) and (1.8) in Section 3. The energy functions
and Gibbs distributions used to benchmark the schemes are presented in Section 4.
The numerical results are studied in Section 5.

2. Riemannian Langevin equations on Sn,p+ . In this section, we state the
Itô form of the Riemannian Langevin equation (1.6) for both Riemannian geometries
studied in this paper. The theoretical basis for these SDEs is discussed at greater
depth in [36]. The main ideas are as follows: (a) the abstract theory of Brownian
motion on Riemannian manifolds is used to define the Riemannian Langevin equation
in Stratonovich form for the metrics gE and gBW on Sn,p+ ; (b) the Itô-Stratonovich
conversion rule is used to compute the associated Itô form of these SDEs and it is
observed that the Itô-Stratonovich correction term corresponds to mean curvature.
This approach yields the SDEs below. These SDEs are used to develop numerical
schemes in Section 3.

2.1. The Riemannian Langevin equation for embedded geometry (Sn,p+ , gE).

LetX ∈ Sn,p+ have the compact SVDX = UΛUT with U ∈ Rn×p. Let U⊥ ∈ Rn×(n−p)

be a matrix with columns orthonormal to columns of U . The tangent space of Sn,p+

at X = UΛUT ∈ Sn,p+ is given by [34, 38]:
(2.1)

TXS
n,p
+ =

{[
U U⊥

] [H KT

K 0

] [
UT

UT⊥

]
: ∀K ∈ R(n−p)×p,∀H ∈ Rp×p, HT = H

}
.

The induced metric gE by the embedding Sn,p+ ↪−→ R
n×n is then defined as

gE(A,B) = Tr (ATB), ∀A,B ∈ TXSn,p+ ,

which is the Frobenius inner product for two matrices.

Equation (1.6) describes the evolution of a point Xt ∈ Sn,p+ in abstract terms. We
now rewrite it in a simpler equivalent form describing the evolution of the entries
of the matrix entries {(Xt)ij}ni,j=1 representing Xt. Let us write X = UΛUT for
the compact singular value decomposition (SVD) of X. We further assume that the
singular values Λ = diag(λ1, ..., λp) are written in decreasing order. We suppress the
subscript t in the following equations, though the reader should note that U and Λ
depend on Xt.

Then we find that the law of Xt is determined by the Itô differential equation

dXt = −grad E(Xt)dt+

√
2

β
dWn,p,Xt

t +
1

β
H(Xt)dt.(2.2)

In this equation, the stochastic forcing Wn,p,Xt
t is the orthogonal projection of white

noise in Rn×n onto TXtS
n,p
+ . Precisely, given W i

t for 1 ≤ i ≤ n and W i,j
t for 1 ≤ i <
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j ≤ n independent standard one-dimensional Wiener process, we set

dWn,p,Xt
t =

[
U U⊥

]


dW 1
t · · · 1√

2
dW 1,p

t
1√
2
dW 1,p+1

t · · · 1√
2
dW 1,n

t

...
. . .

...
...

. . .
...

1√
2
dW 1,p

t · · · dW p
t

1√
2
dW p,p+1

t · · · 1√
2
dW p,n

t
1√
2
dW 1,p+1

t · · · 1√
2
dW p,p+1

t 0 · · · 0
...

. . .
...

...
. . .

...
1√
2
dW 1,n

t · · · 1√
2
dW p,n

t 0 · · · 0


[
UT

UT⊥

]
,

The term H(Xt) is the mean curvature of the embedding Sn,p+ → Rn×n. We adopt
the convention in geometric analysis: the mean curvature is defined as the trace of
the second fundamental form of the embedding. Explicitly, we have

H(Xt) =

(
p∑
i=1

1

λi

)[
U U⊥

] [ 0p×p 0p×(n−p)
0(n−p)×p In−p

] [
UT

UT⊥

]
.(2.3)

The following feature of equation (2.2) is fundamental. The stochastic forcing is the
naive projection of white noise in the ambient space Rn×n onto TXtS

n,p
+ . Intuitively,

when one uses the Euler-Maruyama discretization, the role of this term is to update
Xt by taking unbiased random steps in any direction in the tangent space. However,
Itô calculus has a subtle interplay with the geometry of the embedding, and in order
to keep Xt on the manifold Sn,p+ , it is necessary to include the correction term given
by the mean curvature.

2.2. The Riemannian Langevin equation for Bures-Wasserstein geom-
etry (Sn,p+ , gBW ). The manifold Sn,p+ can also be viewed as a quotient manifold

Rn×p∗ /Op, for which the noncompact Stiefel manifold Rn×p∗ is called the total space.
Denote the natural projection as

π : Rn×p∗ → Rn×p∗ /Op.

For any Y ∈ Rn×p∗ , the equivalence class containing Y is

[Y ] = π−1(π(Y )) = {Y O | O ∈ Op} ,

which is an embedded submanifold of Rn×p∗ (see e.g., [1, Prop. 3.4.4]). The tangent
space of [Y ] at Y is therefore a subspace of TY Rn×p∗ called the vertical space at Y ,
and is denoted by VY =

{
Y Ω | ΩT = −Ω,Ω ∈ Rp×p

}
, see [38].

Define
θ : Rn×p∗ → Sn,p+

Y 7→ Y Y T .

Then θ is invariant under the equivalence relation and induces a bijection θ̃ on
Rn×p∗ /Op such that θ = θ̃ ◦ π. For any function E(X) defined on Sn,p+ , there is a

function F defined on Rn×p∗ that induces E : for any X = Y Y T ∈ Sn,p+ , F (Y ) :=
E ◦ θ(Y ) = E(Y Y T ). This is summarized in the diagram below:

Rn×p∗

Rn×p∗ /Op Sn,p+ R

θ:=θ̃◦ππ

θ̃ E
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In particular, Sn,p+ is diffeomorphic to Rn×p∗ /Op under θ̃, see [38]. For any Y ∈
Rn×p∗ , the flat metric for the total space Rn×p∗ , correction term corresponds to mean
curvature.

g(a, b) = Tr (aT b),∀a, b ∈ TY Rn×p∗ = Rn×p

induces a metric on the quotient manifold Rn×p∗ /Op, which is called Bures-Wasserstein
metric, see [27, 26, 38]. Another way to understand the Bures-Wasserstein metric at
X ∈ Sn,p+ h Rn×p∗ /Op is via the map θ:

gBW (A,B) = Tr (abT ) ∀A,B ∈ TXSn,p+ , a, b ∈ TY Rn×p∗
s.t.dθ(Y )[a] = A,dθ(Y )[b] = B, a, b ∈ Ker(dθ(Y ))⊥(2.4)

where X has decomposition X = Y Y T , dθ(Y )[a] = Y aT + aY T is the differential of
θ at Y , and a ∈ Ker(dθ(Y ))⊥ ⇔ Y Ta = aTY .

The Riemannian Langevin equation is now determined by the geometry of Riemannian
submersion. We must obtain an Itô differential equation for Yt, such that Xt = YtY

T
t

is a matrix that has the same law as the solution to (1.6) in (Sn,p+ , gBW ).

In comparison with equation (2.2), we see that the natural choice for white noise
driving Yt is white noise in Rn×p. This is the stochastic differential dWt, where
Wt = {W ij

t }1≤i≤n,1≤j≤p consists of np independent standard one-dimensional Wiener
processes. However, as in equation (2.2) we must include a deterministic correc-
tion. This correction corresponds to mean curvature again, but in a more subtle way
than (2.2). The equivalence class of Y such that X = Y Y T is a group orbit of Op
embedded within Rn×p. The logarithm of the volume of this group orbit constitutes
a natural Boltzmann entropy. It may be computed explicitly, and we find

(2.5) S(Y ) =
1

2

p∑
i=1

p∑
j=i+1

log(σ2
i + σ2

j )

where {σi}pi=1 are singular values of Y . It is known that ∇S(Y ) is the mean curvature
of the group orbit in Rn×p [32, p.3505].

We then have the following Itô differential equation for Yt such that Xt = YtY
T
t has

the same law as the solution to (1.6).

dYij =− ∂E(Y Y T )

∂Yij
dt+

√
2

β
dW ij

t −
1

β

∂S(Y )

∂Yij
dt, 1 ≤ i ≤ n, 1 ≤ j ≤ p.(2.6)

The correction term can be explicitly computed using the following

Lemma 1. If Y ∈ Rn×p∗ has SVD as Y = QΣPT with singular values σi, then the
gradient of the correction term S is given by ∇S(Y ) = QΣ̃PT where Σ̃ is a diagonal
matrix with diagonal entries

∑
j 6=1

σ1

σ2
1+σ2

j
,
∑
j 6=2

σ2

σ2
2+σ2

j
, · · · ,

∑
j 6=p

σp
σ2
p+σ2

j
.

3. Two Riemannian Langevin Monte Carlo schemes. To get a simple
Riemannian Langevin Monte Carlo sampling scheme, we only consider convenient
discretization and approximation methods, which can be easily and efficiently imple-
mented. For the Brownian motion term, we consider the most straightforward and
simplest discretization of the SDEs (2.2) and (2.6), i.e., the Euler-Maruyama type
discretization.



RIEMANNIAN LANGEVIN MONTE CARLO FOR PSD MATRICES OF FIXED RANK 9

One extra complication from the manifold constraint is how to approximate the ex-
ponential map. For optimization algorithms on Riemannian manifolds [1], retraction,
which is at least a first order approximation to the exponential map, is often used. For
instance, for approximating an ODE d

dtX = −grad E(X) on a manifoldM, with any
retraction operator RM mapping to M, a simple forward Euler type approximation,
or equivalently the Riemannian gradient descent method, is given by

Xk+1 = RM[Xk+1 −∆t grad E(Xk)].

In particular, when combining the Euler-Maruyama type discretization for SDE and
the simple Riemannian gradient descent by retraction, we get the two simple Riem-
manian Langevin Monte Carlo schemes as follows.

3.1. Scheme E for the embedded geometry.

3.1.1. The Riemannian gradient. For a given energy function E(X), its Rie-
mannian gradient grad E(X) of at X ∈ Sn,p+ , is the Euclidean projection of the Euclid-

ean gradient∇E(X) ∈ Rn×n defined as [∇E(X)]ij = ∂
∂Xi
E(X), onto the tangent space

TXSn,p+ , see [1, 34, 38]. It is straightforward to verify that ∇E(X) is a symmetric ma-
trix for any differentiable E and anyX ∈ Sn,p+ . For any givenX ∈ Sn,p+ , letX = UΛUT

be its compact SVD. Let PU = UUT and PU⊥ = U⊥U
T
⊥ = I − UUT . By derivations

in [38], grad E(X) can be computed and represented as

grad E(X) =
[
U U⊥

] [UT∇E(X)U UT∇E(X)U⊥
UT⊥∇E(X)U 0

] [
UT

UT⊥

]
= PU∇E(X)PU + PU⊥∇E(X)PU + PU∇E(X)PU⊥ .

The compact implementation of computing grad E(X) is given in Algorithm 3.1.

Algorithm 3.1 Compact computation of the Riemannian gradient grad E(X)

Require: The compact SVD of X ∈ Sn,p+ : X = UΛUT

Ensure: grad E(X) = UHUT + UpU
T + UUTp ∈ TXS

n,p
+

T ← ∇E(X)U
H ← UTT
Up ← T − UH

3.1.2. The retraction by projection. Let Sn×n denote symmetric matrices,
then the Euclidean projection PSn,p+

: Sn×n −→ Sn,p+ is a convenient retraction oper-

ator, see [1, 34, 38]. A straightforward implementation is given in Aglorithm 3.2.

Algorithm 3.2 Computation of the retraction PSn,p+
(X + Z)

Require: the compact SVD of X: X = UΛUT ∈ Sn,p+ , Z ∈ Sn×n.
Ensure: PSn,p+

(X + Z) = Q+Λ+Q
T
+ ∈ S

n,p
+ .

(Q+,Λ+) = svd(X + Z)
U+ ← Q+(:, 1 : p) Λ+ ← Λ+(1 : p, 1 : p)
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3.1.3. A Riemannian Langevin Monte Carlo scheme. For approximat-
ing the SDE (2.2) on (Sn,p+ , gE), with the retraction operator and Euler-Maruyama
method for SDE, we have the scheme (1.7), which can be more explicitly written as
(3.1)

Xk+1 = PSn,p+

[U U⊥
] Λ−∆tUT∇E(Xk)U +

√
2∆t
β B11 −∆tUT∇E(Xk)U⊥ +

√
2∆t
β B12

−∆tUT⊥∇E(Xk)U +
√

2∆t
β BT12

∆t
β

p∑
i=1

1
λi
In−p

[UT
UT⊥

] ,

where Xk = UΛUT is the compact SVD of Xk ∈ Sn,p+ with eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λp > 0. The third term in the right hand side is the white noise term in the

tangent space TXkS
n,p
+ . Entries of B12 ∈ Rp×(n−p) are i.i.d drawn from

√
1
2N (0, 1),

and B11 ∈ Rp×p are defined as follows.

(3.2) B11 =


N (0, 1)

. . . bij

bji
. . .

N (0, 1)


with bij = bji ∼

√
1
2N (0, 1). The implementation details of the scheme (1.7) are

given as follows in the Algorithm 3.3.

Algorithm 3.3 The Riemannian Langevin Monte Carlo scheme (1.7) for (Sn,p+ , gE)

Require: initial iterate X1 ∈ Sn,p+ ; full SVD of X1: X1 = Q1Λ1Q
T
1

1: for k = 1, 2, . . . , N do
2: Compute Riemannian gradient

ξk := grad E(Xk) . See Algorithm 3.1
3: Compute noise term

B =
√

2∆t
β

[
B11 B12

BT12 0

]
+ ∆t

β

p∑
i=1

1
λi

[
0 0
0 In−p

]
4: Obtain the new iterate by retraction

Xk+1 = PSn,p+
(Xk −∆tξk +QkBQ

T
k ) . See Algorithm 3.2

5: end for

Remark 2. The mean curvature correction term is necessary for avoiding rank de-
ficient samples in the following sense. A sampling scheme on Sn,p+ might generate a
sample X with a rank numerically close to p− 1, and the mean curvature correction
term in the scheme (1.7) would be huge if λp → 0, thus it will force iterate Xk to stay
away from the boundary of Sn,p+ .

Remark 3. Notice that the complexity of computing SVD of X +Z in Algorithm 3.2
would be O(n3) in a naive implementation. For a Riemannian gradient method, if
Z ∈ TXkS

n,p
+ , a compact implementation of computing PSn,p+

(X + Z) in [38] is only

O(np2) + O(p3), which is no longer possible for the Langevin Monte Carlo scheme
(1.7) due to the mean curvature correction term in the normal space. On the other
hand, if Lanczos type algorithm is used for computing to top p eigen-componenes of
X+Z, it seems possible to explore the special structure in (3.1) to find a more efficient
implementation, but we do not consider a more compact implementation in this paper.

3.2. Scheme BW for the Bures-Wasserstein metric.
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3.2.1. The Riemannian gradient and a simple retraction operator.

Given a smooth energy function E(X) defined on Sn,p+ , the corresponding function h

on Rn×p∗ /Op satisfies

(3.3)
h : Rn×p∗ /Op → R

π(Y ) 7→ E(β̃(π(Y ))) = E(β(Y )) = E(Y Y T ).

Observe that the function F (Y ) := E(Y Y T ) satisfies F (Y ) = h◦π(Y ) = E◦β(Y ). The
Riemannian gradient of h at π(Y ) is a tangent vector in Tπ(Y )Rn×p∗ /Op . The next
theorem is given in [1, Section 3.6.2], showing that the horizontal lift of gradh(π(Y ))
can be obtained from the Riemannian gradient of F defined on Rn×p∗ .

Theorem 4. The horizontal lift of the gradient of h at π(Y ) is the Riemannian gra-
dient of F at Y . That is,

gradh(π(Y ))Y = gradF (Y ).

For the Bures-Wasserstein metric, the following result is proven in [38]:

Proposition 5. Let E be a smooth real-valued function defined on Sn,p+ and let F :

Rn×p∗ → R : Y 7→ E(Y Y T ). Assume Y Y T = X. Then the Riemannian gradient of F
is given by

gradF (Y ) = 2∇E(Y Y T )Y

where ∇E(·) is the gradient of E w.r.t. X.

In [26, Prop. A.8], the relationship between the horizontal lifts of the quotient tangent
vector ξπ(Y ) lifted at different representatives in [Y ] is given:

Lemma 6. Let η be a vector field on Rn×p∗ /Op, and let η̄ be the horizontal lift of η.
Then for each Y ∈ Rn×p∗ , we have

η̄Y O = η̄YO

for all O ∈ Op.

The retraction on the quotient manifold Rn×p∗ /Op can be defined using the retraction
on the total space Rn×p∗ . For any A ∈ TY Rn×p∗ and a step size τ > 0,

RY (τA) := Y + τA,

is a retraction on Rn×p∗ if Y +τA remains full rank, which is ensured for small enough
τ . Then Lemma 6 indicates that R satisfies the conditions of [1, Prop. 4.1.3], which
implies that

(3.4) Rπ(Y )(τηπ(Y )) := π(RY (τηY )) = π(Y + τηY )

defines a retraction on the quotient manifold Rn×p∗ /Op for a small enough step size
τ > 0.

Finally, we give an example of what these results imply by considering the Riemannian
gradient descent method for minimizing E(X) over (Sn,p+ , gBW ). With the simple
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retraction (3.4), the Riemannian gradient descent method for minimizing the function
h[π(Y )] on Rn×p∗ /Op is given by

Yk+1 = Yk −∆t2∇E(YkY
T
k )Yk,

which is the simple Burer-Monteiro gradient descent method for minimizing E(X)
over Sn,p+ . See Section 5.1 in [38] for details.

3.2.2. A simple Riemannian Langevin Monte Carlo scheme. With the
Euler-Maruyama discretization for SDE (2.6), and the simple retraction and Rie-
mannian gradient as given previously, a simple Riemannian Langevin Monte Carlo
scheme for approximating the Riemannian SDE (2.6) on the Riemannian manifold
(Sn,p+ , gBW ) can be given as

(3.5) Yk+1 = Yk −∆t2∇E(YkY
T
k )Yk +

√
2∆t

β
Bk +

∆t

β
U
[∑

j:j 6=i
σi

σ2
i+σ2

j

]
ii
V T ,

where Bk is n-by-p matrix with i.i.d. N (0, 1) entries and Yk = UΣV T is the compact
SVD of Y with singular values σi > 0 for i = 1, 2, · · · , p.

Notice that all operations are performed in the space of size n×p. For finding compact
SVD of Y , one can first compute QR decomposition of Y , which costs O(np2)+O(p3).
Then compute SVD of size p × p, which is O(p3). So the complexity of this scheme
is O(np2) + O(p3) for each iteration. For large n and small p, Scheme BW should
be cheaper than Scheme E in each iteration, but they generate different samples for
different Gibbs distributions which depend on the metric, i.e., Scheme BW cannot
replace Scheme E for generating Gibbs distribution defined by embedded geometry.

4. Examples with analytical formulae. In this section, we provide a few
examples with analytical formulae so that they can be used in numerical experiments
for testing the two schemes (3.1) and (3.5) on the Gibbs distribution.

For the rest of this section, X = QΛQT ∈ Sn,p+ denotes the full SVD with descending
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp > 0.

4.1. Scalar random variables. Let X be a random variable satisfying the

Gibbs distribution on Sn,p+ with dimension N = np− p(p−1)
2 under either metric, then

X is a matrix-valued random variable. For convenience, we consider a scalar random
variable D = D(X) as a function of X ∈ Sn,p+ , e.g., D = ‖X‖F where ‖ · ‖F is the
matrix Frobenius norm.

We consider the distribution function for the scalar random variable D:

(4.1) Pr[D < d] =
1

Zβ

∫
Ud

e−βEdV, Zβ =

∫
M

e−βEdV,

where Ud := {X ∈ Sn,p+ |D(X) < d} is the domain of integral. For simplicity we only
consider symmetric functions such that the random variable D, the energy function E ,
and the volume form are all invariant under the group action by the orthogonal group
On. We consider an energy function E satisfying E(X) = E(OXOT ), ∀O ∈ On, so
that Gibbs distribution function only depends on the spectrum of X when considering

(4.1) with D = ||X||F =
√
λ2

1 + · · ·+ λ2
p. Since On is an isometry group for both
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metrics gE and gBW , the volume form dV in the two cases is also invariant under On
action.

Notice that Q and Λ can be used as coordinates of the manifold Sn,p+ . The volume
form expressed by coordinates Q and Λ is given by

dV =
√

det g(

p∏
i=1

dλi)dµOn ,(4.2)

where µOn is the Haar measure on On, and g is the matrix of metric gE or gBW
expressed under coordinate Q and λ. For gE its determinant det g is

det g =
( ∏

1≤i<j≤p

|λi − λj |2
)( ∏

1≤i≤p

λ
2(n−p)
i

)
,(4.3)

and for gBW it is

det g =
( ∏

1≤i<j≤p

|λi − λj |2

λi + λj

)( ∏
1≤i≤p

λ
(n−p)
i

)
.(4.4)

So for gE the distribution Pr[D < d] is expressed as

Pr[D < d] =
1

Zβ

∫
||X||F<d

e−βEdV

∝
∫

p∑
i=1

λ2
i
<d2

λi>0,i=1,...,p

e−βE(λ1,...,λp)
( ∏

1≤i<j≤p

|λi − λj |
)( ∏

1≤i≤p

λn−pi

)
dλ1 · · · dλp,(4.5)

where we have used the fact that the integrand does not depend on the coordinate
Q ∈ On, so the integral of µOn only provides a constant coefficient. As we could

always renormalize Pr[D < d] by considering the quotient Pr[D<d]
Pr[D<∞] , we only need the

dependence of the integral on parameter d.

Similarly, for the Bures-Wasserstein metric gBW we have

Pr[D < d] ∝
∫

p∑
i=1

λ2
i
<d2

λi>0,i=1,...,p

e−βE(λ1,...,λp)
( ∏

1≤i<j≤p

|λi − λj |√
λi + λj

)( ∏
1≤i≤p

λ
n−p

2
i

)
dλ1 · · · dλp

(4.6)

Next we give a few energy functions.
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4.2. Example I: E(X) = 1
2 ||X||

2
F . This is the simplest example. Using the

general expression above, for embedded geometry gE we have

Pr[D < d] ∝
∫

p∑
i=1

λ2
i
<d2

λi>0,i=1,...,p

e
− β2

p∑
i=1

λ2
i ( ∏

1≤i<j≤p

|λi − λj |
)( ∏

1≤i≤p

λn−pi

)
dλ1 · · · dλp

=

d∫
0

e−
β
2 ρ

2

ρN−1
( ∫
Sp−1
+

∏
1≤i<j≤p

|ωi − ωj |
p∏
i=1

|ωi|n−p
p∏
i=1

dω
)
dρ

=
( ∫
Sp−1
+

∏
1≤i<j≤p

|ωi − ωj |
p∏
i=1

|ωi|n−p
p∏
i=1

dω
) d∫

0

e−
β
2 ρ

2

ρN−1dρ

∝
d∫

0

e−
β
2 ρ

2

ρN−1dρ,(4.7)

where we have used the spherical coordinate for (λ1, ..., λp) = ρω, with ρ =

√
p∑
i=1

λ2
i

being the radius and ω ∈ Sp−1
+ = Sp−1 ∩ Rp+ being the coordinate on the positive

orthant of unit sphere.

For gBW , similarly we have

Pr[D < d] ∝
d∫

0

e−βρ
2

ρ
N
2 −1dρ.(4.8)

Now we can see that βD2 = β||X||2F is subject to χ2(N) distribution for the embedded
metric gE , and χ2(N2 ) distribution for the Bures-Wasserstein metric.

4.3. Example II: E(X) = Tr(X logX). We consider the von Neumann entropy

E(X) = Tr(X logX) =

p∑
i=1

λi log λi

and construct a more interesting example. The minimizers of E(X) = Tr(X logX) on
Sn,p+ are matrices X ∈ Sn,p+ with spectrum λ1 = · · · = λp = e−1.

The random variable we consider is still D = ||X||F . Since E(X) = Tr(X logX) =
p∑
i=1

λi log λi only depends on spectrum, the argument in the previous section about
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integral on On still applies. Similar to (4.7), for gE we have

Pr(D < d) =

∫
p∑
i=1

λ2
i
<d2

λi>0,i=1,...,p

e
−β

p∑
i=1

λi log λi ∏
1≤i<j≤p

|λi − λj |
p∏
i=1

|λi|n−p
p∏
i=1

dλi

=

∫
p∑
i=1

λ2
i
<d2

λi>0,i=1,...,p

∏
1≤i<j≤p

|λi − λj |
p∏
i=1

|λi|n−p−βλi
p∏
i=1

dλi,

and for gBW we have

Pr(D < d) =

∫
p∑
i=1

λ2
i
<d2

λi>0,i=1,...,p

∏
1≤i<j≤p

|λi − λj |√
λi + λj

p∏
i=1

|λi|
n−p

2 −βλi
p∏
i=1

dλi.

Although we do not have a closed expression for both cases, such integrals can be
easily approximated by an accurate quadrature.

4.4. Example III: E(X) = 1
2 ||X − A||2F . We consider a quadratic function

E(X) = 1
2 ||X −A||

2
F where A ∈ Sn,p+ with D = ||X −A||F . In this example, On sym-

metry does not hold, and we can only make an estimate of the distribution function.

The random variable D we are considering now is D = ||X − A||F , its distribution
function is evaluated as

Pr(D < d) ∝
∫
Ud

e−
β
2D

2

dV(4.9)

where Ud = {X ∈ Sn,p+ |D(X) < d}. Using delta function, formally we can simplify
the integral to

Pr(D < d) ∝
∫
M

1{D<d}e
− β2D

2

dV(4.10)

=

∫
M

(

∫ ∞
0

1{ρ<d}e
− β2 ρ

2

δ(D − ρ)dρ)dV

=

∫ ∞
0

1{ρ<d}e
− β2 ρ

2

(

∫
M
δ(D − ρ)dV )dρ

=

∫ d

0

e−
β
2 ρ

2

(

∫
M

d

dρ
1{D−ρ}dV )dρ

=

∫ d

0

e−
β
2 ρ

2 d

dρ
(

∫
M

1{D−ρ}dV )dρ

=

∫ d

0

e−
β
2 ρ

2 d

dρ
VD(ρ)dρ

(4.11)

where VD(ρ) =
∫
M 1{D<ρ}dV =

∫
D<ρ

dV .



16 T. YU, S. ZHENG, J. LU, G. MENON AND X. ZHANG

In general it is difficult to calculate
∫
D<ρ

dV , but we consider the following approxi-

mation. Consider the volume of the ball Bn,pA (r) = BA(r) ∩ Sn,p+ , where

BA(r) =
{
X ∈ Sn×n : ||X −A||F < r

}
.

It is difficult to compute Vol(Bn,pA (r)), but we propose the following estimate, for fixed
A ∈ Sn,p+ :

Vol(Bn,pcA (r)) ≈ αrN , c� 1,(4.12)

where α is a constant that does not depend on r, N is the dimension of Sn,p+ . For gE ,
α is exactly the volume of unit ball in RN , while for gBW , α depends on dimension
N and A ∈ Sn,p+ .

For the embedded geometry, the approximation (4.12) can be justified by the following
arguments:

1. The second fundamental form IIcA of the manifold is vanishing for fixed A
and c→∞. See [36].

2. The Riemannian curvature tensor of ambient space Sn×n is 0. Applying
the Gauss equation [11, Prop 3.1] we can express the Riemannian curvature
tensor R of (Sn,p+ , gE) in terms of its second fundamental form II:

〈R(x,y)z,w〉 = −〈II(x, z), II(y,w)〉+ 〈II(x,w), II(y, z)〉,(4.13)

x,y, z,w ∈ TSn,p+ , 〈U, V 〉 = Tr(UV T ) is the metric in Sn×n, .

Thus, with vanishing II we have vanishing Riemannian curvature tensor, and
zero sectional curvature.

3. Vanishing extrinsic curvature and intrinsic curvature means that the neigh-
borhood is approximately an Euclidean space, so the ball Bn,pcA (r) is approx-
imately just a ball in RN and has volume αrN , with α being the volume of
a unit ball.

For the gBW metric, following similar arugments, we can get the same approximation
(4.12). We emphasize that the approximation (4.12) is accurate only if c is large
enough. Putting all this together, when A has eigenvalues λ1 ≥ · · · ≥ λp � 1, we
have the following

(4.14) Pr(D < d) ∝
∫

D<d

e−
β
2D

2

dV =

d∫
0

e−
β
2 ρ

2 d

dρ

( ∫
D<ρ

dV
)
dρ ∝∼

t∫
0

e−
β
2 ρ

2

ρN−1dρ,

where ∝∼ stands for being approximately proportional to.

4.5. MCMC numerical integration. It is well known that MCMC can be
used for integrating a function numerically, and that one of the main advantages
is that the convergence rate is independent of the dimension. Both schemes in this
paper are MCMC type sampling schemes on the manifold. Suppose we have generated
samples Xi satisfying the Gibbs distribution on the manifold, e.g.,

Xi ∼
1

Zβ
e−βE(X)dVg,
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where Zβ =
∫

Sn,p+

e−βE(X)dV is an unknown normalization factor and dV is the volume

form depending on the metric. Then for approximating the integral of a nice function
f(X) on the same manifold

∫
Sn,p+

f(X)dV, we can use

1

m

m∑
i=1

f(Xi)e
βE(Xi) ≈

∫
Sn,p+

f(X)dV∫
Sn,p+

e−βE(X)dV
=

1

Zβ

∫
Sn,p+

f(X)dV,(4.15)

because each f(Xi)e
βE(Xi) is a random variable with expectation

E
[
f(Xi)e

βE(Xi)
]

=
1

Zβ

∫
Sn,p+

f(Xi)e
βE(Xi)e−βE(Xi)dV,

and the left hand side is a random variable with expectation

E

[
1

m

m∑
i=1

f(Xi)e
βE(Xi)

]
=

1

m

m∑
i=1

E
[
f(Xi)e

βE(Xi)
]

=
1

Zβ

∫
Sn,p+

f(X)dV,

where the expectation E[·] is taken w.r.t. Gibbs distribution under corresponding
metric.

So using the generated samples Xi, we can approximate the integral
∫
Sn,p+

f(X)dV up

to a constant Zβ that does not depend on f(X). Notice that the additional advantage
of Monte Carlo type quadrature on a manifold is that we do not need to know what
dV is. On the other hand, Zβ cannot be approximated by the same approach. Though
we do not consider any specific application for numerical integration, equation (4.15)
can be used as one way to validate the Riemannian Langevin Monte Carlo schemes.

For the following special functions, it is possible to calculate exact integrals. For the
energy function E(X) = 1

2 ‖X‖
2
F , and a special integrand f(X) = ‖X‖kF e−

α
m‖X‖

m
F

with k > −N,m > 2, α > 0, using the results in 4.2, the distribution of D = ||X||F is

for metric gE : Pr[D < d] ∝
∫ d

0

e−
β
2 ρ

2

ρN−1dρ,(4.16)

for metric gBW : Pr[D < d] ∝
∫ d

0

e−
β
2 ρ

2

ρ
N
2 −1dρ,(4.17)

so the integral on the manifold could be expressed by expectation of a random variable,
which leads to
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for gE :
1

Zβ

∫
Sn,p+

f(X)dV = E[f(X)e
β
2 ||X||

2
F ] = E[Dke−

α
mD

m

e
β
2D

2

]

=

∫∞
0
ρke−

α
mρ

m+ β
2 ρ

2

ρN−1e−
β
2 ρ

2

dρ∫∞
0
ρN−1e−

β
2 ρ

2
dρ

=
1
m (α/m)−

k+N
m Γ((k +N)/m)

1
2 (β/2)−N/2Γ(N/2)

(4.18)

for gBW :
1

Zβ

∫
Sn,p+

f(X)dV = E[f(X)e
β
2 ||X||

2
F ] = E[Dke−

α
mD

m

e
β
2D

2

]

=

∫∞
0
ρke−

α
mρ

m+ β
2 ρ

2

ρ
N
2 −1e−

β
2 ρ

2

dρ∫∞
0
ρ
N
2 −1e−

β
2 ρ

2
dρ

=
1
m (α/m)−

k+N/2
m Γ((k +N/2)/m)

1
2 (β/2)−N/4Γ(N/4)

.(4.19)

5. Numerical tests. In this section we test the samples generated by the two
Riemannian Langevin Monte Carlo schemes (3.1) and (3.5) on the examples construc-
ted in the previous section. The samples are generated by the following procedure:
we run the iterative schemes (3.1) or (3.5) for sufficiently many m̃ iterations then take
the last m iterates as the samples for the Gibbs distribution. Both m̃ and m should
be chosen such that the (m̃−m)-th iterate has already reached equilibrium e.g., m̃ is
6, 000, 000 and m is 5, 000, 000 for specially chosen energy functions and parameters
β.

Now suppose we have generated samples Xi ∈ Sn,p+ (i = 1, · · · ,m) for either metric.
In order to test or show the numerical convergence to the Gibbs distribution, we will
consider two kinds of numerical tests.

The first kind of tests is to test on the scalar random variable D(X) = ‖X‖F or
D(X) = ‖X−A‖F as described in Section 4. Then we compare the cumulative distri-
bution function (CDF) of the random variable D with its empirical CDF calculated
from the MCMC samples.

Denote the true CDF of D by FD(t) := Pr(D ≤ t). The empirical CDF of samples is

F̂D(t) :=
1

m

m∑
i=1

1D(Xi)≤t,

where 1D(Xi)≤t takes value 1 if D(Xi) ≤ t, and value 0 if otherwise. The Kol-
mogorov–Smirnov test statistic (K-S statistic) is defined by

(5.1) KSD := sup
t

∣∣∣FD(t)− F̂D(t)
∣∣∣ .

In our numerical tests, we compute the KS statistic by taking the maximum difference
of FD and F̂D at 100 equally spaced points in the interval [0, tmax] where FD(tmax) ≈
1.

The second kind of tests is on the integral examples in Section 4.5, let X be a random
variable satisfying Gibbs distribution on the manifold Sn,p+ under either metric. Define

µ := E

(
f(X)eβE(X)

)
=

1

Zβ

∫
Sn,p+

f(X)dV.
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Given m samples Xi ∈ Sn,p+ , we define

(5.2) µ̂m :=
1

m

m∑
i=1

f(Xi)e
βE(Xi).

Notice that samples generated by MCMC are not independent. If we assume

σ2 := var
(
f(X1)eβE(X1)

)
+ 2

∞∑
k=1

cov
(
f(X1)eβE(X1), f(X1+k)eβE(X1+k)

)
<∞,

then by the Markov Chain Central Limit Theorem[21, 14], as m→∞, we have

(5.3)
√
m(µ̂m − µ)→ N (0, σ2)

where the convergence is in the sense of distribution. Thus if m � 1, µ̂m−µ
µ roughly

follows the distributionN (0,O( 1
m )) and the relative error term

∣∣∣ µ̂m−µµ

∣∣∣ roughly follows

the folded normal distribution with mean O( 1√
m

) and variance O( 1
m ). Hence we can

use µ̂m defined in (5.2) to estimate µ = 1
Zβ

∫
Sn,p+

f(X)dV , and the relative error is

O( 1√
m

).

5.1. Numerical validation of the scalar variable D(X). The manifold Sn,p+

has dimension N = np − p(p − 1)/2. For both metrics, we consider three examples
in Section 4 with special energy functions E in the Gibbs distribution e−βE and the
CDF for the scalar variable D(X):

1. Example I: E(X) = 1
2 ‖X‖

2
F with the CDF for D(X) = ‖X‖F :

For gE : FD(t) = Pr(‖X‖F ≤ t) ∝
t∫

0

e−
β
2 ρ

2

ρN−1dρ,

For gBW : FD(t) = Pr(‖X‖F ≤ t) ∝
t∫

0

e−
β
2 ρ

2

ρN/2−1dρ.

2. Example II: E(X) = Tr (X logX) with the CDF FD(t) = Pr(‖X‖F ≤ t) for
D(X) = ‖X‖F :

For gE : FD(t) ∝
∫

p∑
i=1

λ2
i
<t2

λi>0,i=1,...,p

∏
1≤i<j≤p

|λi − λj |
p∏
i=1

|λi|n−p−βλi
p∏
i=1

dλi,

For gBW : FD(t) ∝
∫

p∑
i=1

λ2
i
<t2

λi>0,i=1,...,p

∏
1≤i<j≤p

|λi − λj |√
λi + λj

p∏
i=1

|λi|
n−p−1

2 −βλi
p∏
i=1

dλi.

which is a p-fold integral and can be approximated accurately by quadrature
such as Simpson’s rule for relatively small values of p, e.g., p = 2, 3.
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3. Example III: E(X) = 1
2 ‖X −A‖

2
F where A ∈ Sn,p+ has eigenvalues λ1 ≥ · · · ≥

λp � 1, with the CDF for D(X) = ‖X −A‖F :

For both gE and gBW : FD(t) = Pr(‖X −A‖F ≤ t) ∝∼

t∫
0

e−
β
2 ρ

2

ρN−1dρ.

In implementation of the scheme, the step size ∆t and β in schemes (3.1) and (3.5) are
two parameters that need to be tuned to reach equilibrium with reasonable computing
time. We first use a numerically stable ∆t then adjust β so that the noise term has
reasonable variance. And of course one needs a sufficient large number of iterations for
schemes (3.1) and (3.5) to reach their equilibrium state, and a sufficient large number
m of samples to observe numerical convergence toward the Gibbs distribution through
the scalar random variable D, e.g., the KS statistic (5.1) should be small. See Figure
1, Figure 2, Figure 3, and Figure 4 for the numerical results.

0 2 4 6 8 10
0

0.5

1

Empirical CDF

True CDF

(a) Scheme E (3.1) on (Sn,p+ , gE) with
∆t = 0.001 and β = 0.4. The error be-
tween two CDFs is KS = 0.0054.

0 2 4 6 8
0

0.5

1

Empirical CDF

True CDF

(b) Scheme BW (3.5) on (Sn,p+ , gBW )
with ∆t = 0.001 and β = 0.4. The er-
ror between two CDFs is KS = 0.0023.

Fig. 1. Example I: E(X) = 1
2
‖X‖2F , n = 5, p = 3 and manifold dimension is N = 12. The

empirical CDF is computed by 5E6 MCMC samples generated after 6E6 iterations of the Riemann-
ian Langevin Monte Carlo schemes. Both CDFs of scheme E and scheme BW are evaluated at 100
equally spaced points on [0, 10] and [0, 8], respectively, and the difference can be measured by the KS
statistic (5.1).

5.2. MCMC numerical integration. We consider special cases k = 0,m = 2
in the examples (4.18) and (4.19), then (4.18) reduces to (βα )N/2 and (4.19) reduces

to (βα )N/4. In other words, we may verify the numerical convergence of samples Xi to
Gibbs distribution by verifying

(5.4) For gE :
1

m

m∑
i=1

e−
α−β

2 ‖Xi‖
2
F → (

β

α
)N/2,

(5.5) For gBW :
1

m

m∑
i=1

e−
α−β

2 ‖Xi‖
2
F → (

β

α
)N/4.

In Figure 5 we indeed observe the O(1/
√
m) for the relative error of numerical inte-

gration.
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True CDF

(a) Scheme E (3.1) on (Sn,p+ , gE) with
∆t = 0.001 and β = 0.5. The error be-
tween two CDFs is KS = 0.0096
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1

Empirical CDF

True CDF

(b) Scheme BW (3.5) on (Sn,p+ , gBW )
with ∆t = 0.001 and β = 0.5. The er-
ror between two CDFs is KS = 0.0043.

Fig. 2. Example II: E(X) = Tr (X logX), n = 5, p = 3 and manifold dimension is N =
12. The empirical CDF is computed by 5E6 MCMC samples generated after 6E6 iterations of the
Riemannian Langevin Monte Carlo schemes. Both CDFs are evaluated at 100 equally spaced points
on [0, 15], and the difference can be measured by the KS statistic (5.1).
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(a) Scheme E (3.1) on (Sn,p+ , gE) with
∆t = 0.001 and β = 0.5. The error be-
tween two CDFs is KS = 0.006.
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1

Empirical CDF

True CDF

(b) Scheme BW (3.5) on (Sn,p+ , gBW )
with ∆t = 0.001 and β = 0.5. The er-
ror between two CDFs is KS = 0.0043.

Fig. 3. Example II: E(X) = Tr (X logX), n = 10, p = 2 and manifold dimension is N =
19. The empirical CDF is computed by 5E6 MCMC samples generated after 6E6 iterations of the
Riemannian Langevin Monte Carlo schemes. Both CDFs of scheme E and scheme BW are evaluated
at 100 equally spaced points on [0, 20] and [0, 15],respectively, and the difference can be measured by
the KS statistic (5.1).

5.3. A numerical study of the convergence to equilibrium. The general
mathematical theory of convergence of a Langevin equation to its equilibrium measure
has been well studied; we consider the specific case of the RLE studied here in the com-
panion paper [36]. One particular application of the two Riemannian Langevin Monte
Carlo schemes is to use them to numerically study the SDE solutions, e.g., by taking
very small time steps, a Riemannian Langevin Monte Carlo scheme approximates the
Riemannian Langevin equation on the manifold. We have shown comparison of the
Langevin equation on (Sn,p+ , gE), (Sn,p+ , gBW ), Rn×n in Figure 6, in which we can see
interesting differences between two metrics. With all three figures in Figure 6, we can
see that the SDE on (Sn,p+ , gBW ) has a much faster convergence to its Gibbs measure
than the SDE on (Sn,p+ , gE).

6. Conclusion. We have constructed two efficient Riemannian Langevin Monte
Carlo schemes for sampling PSD matrices of fixed rank from the Gibbs distribution
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Approximated CDF

(a) Scheme E (3.1) on (Sn,p+ , gE) with
∆t = 0.001 and β = 0.4. The error be-
tween two CDFs is KS = 0.0084.
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(b) Scheme BW (3.5) on (Sn,p+ , gBW )
with ∆t =2E-7 and β = 0.4. The error
between two CDFs is KS = 0.0052.

Fig. 4. Example III: E(X) = 1
2
‖X −A‖2F , n = 5, p = 3 and manifold dimension is N = 12.

The nonzero eigenvalues of A are equally spaced between 10000 and 20000. The empirical CDF is
computed by 5E6 MCMC samples generated after 6E6 iterations of the Riemannian Langevin Monte
Carlo schemes. Both CDFs are evaluated at 100 equally spaced points on [0, 10], and the difference
can be measured by the KS statistic (5.1).
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(a) Integration on (Sn,p+ , gE) via samples gen-
erated by Scheme E (3.1) with ∆t = 0.001 and
β = 0.4.
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(b) Integration on (Sn,p+ , gBW ) via samples
generated by Scheme BW (3.5) with ∆t =
0.001 and β = 0.4.

Fig. 5. Convergence rate of the relative error of
∣∣∣ µ̂m−µµ

∣∣∣ MCMC integration on the manifold

with n = 10, p = 2 and dimension N = 19. Parameters are α = 0.75, β = 0.4, for which it is a
numerical integration of the function f(X) = 1

2
‖X‖2F on the manifold Sn,p+ . The error shown is

the averaged one of 12 independent runs.

on the manifold Sn,p+ equipped with two fundamental metrics. We have also provided
several examples for which these sampling schemes can be numerically validated.
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