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Abstract5

We consider an optimization based limiter for enforcing positivity of internal energy in a semi-implicit
scheme for solving gas dynamics equations. With Strang splitting, the compressible Navier–Stokes system is
splitted into the compressible Euler equations, solved by the positivity-preserving Runge–Kutta discontinu-
ous Galerkin (DG) method, and the parabolic subproblem, solved by Crank–Nicolson method with interior
penalty DG method. Such a scheme is at most second order accurate in time, high order accurate in space,
conservative, and preserves positivity of density. To further enforce the positivity of internal energy, we im-
pose an optimization based limiter for the total energy variable to post process DG polynomial cell averages.
The optimization based limiter can be efficiently implemented by the popular first order convex optimiza-
tion algorithms such as the Douglas–Rachford splitting method if using the optimal algorithm parameters.
Numerical tests suggest that the DG method with Q𝑘 basis and the optimization-based limiter is robust for
demanding low pressure problems such as high speed flows.
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1. Introduction9

1.1. Motivation and objective10

For studying viscous gas dynamics, the dimensionless compressible Navier–Stokes (NS) equations without11

external forces in conservative form on a bounded spatial domain Ω ⊂ R𝑑 over time interval [0, 𝑇] are12

𝜕𝑡𝑼 + ∇ · 𝑭a = ∇ · 𝑭d , 𝑭a =
©­«

𝜌𝒖
𝜌𝒖 ⊗ 𝒖 + 𝑝I
(𝐸 + 𝑝)𝒖

ª®¬ and 𝑭d =
1

Re

©­«
0
𝝉

𝒖 · 𝝉 − 𝒒

ª®¬ , (1)

where the conservative variables are density 𝜌, momentum 𝒎, and total energy 𝐸, Re denotes the Reynolds13

number and I ∈ R𝑑×𝑑 denotes an identity matrix, 𝒖 = 𝒎
𝜌 is velocity and 𝑝 is pressure. With the Stokes14

hypothesis, the shear stress tensor is given by 𝝉(𝒖) = 2𝜺(𝒖) − 2
3 (∇ · 𝒖)I, where 𝜺(𝒖) = 1

2 (∇𝒖 + (∇𝒖)
T). The15

total energy can be expressed as 𝐸 = 𝜌𝑒 + ∥𝒎∥
2

2𝜌 , where 𝑒 denotes the internal energy and ∥ · ∥ is the vector16

2-norm. With Fourier’s heat conduction law, the heat diffusion flux 𝒒 = −𝜆∇𝑒 with parameters 𝜆 =
𝛾
Pr > 0,17

where the positive constant 𝛾 is the ratio of specific heats and Pr denotes the Prandtl number. For air, we18

have 𝛾 = 1.4 and Pr = 0.72. For simplicity, we only consider the ideal gas equation of state19

𝑝 = (𝛾 − 1)𝜌𝑒. (2)
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The system (1) can be written as20

𝜕𝑡𝜌 + ∇ · (𝜌𝒖) = 0 in [0, 𝑇] ×Ω, (3a)

𝜕𝑡(𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖) + ∇𝑝 − 1
Re∇ · 𝝉(𝒖) = 0 in [0, 𝑇] ×Ω, (3b)

𝜕𝑡𝐸 + ∇ · ((𝐸 + 𝑝)𝒖) − 𝜆
ReΔ𝑒 − 1

Re∇ · (𝝉(𝒖)𝒖) = 0 in [0, 𝑇] ×Ω. (3c)

When vacuums occur, the solutions of compressible NS equations may lose continuous dependency with21

respect to the initial data, see [1, Theorem 2] and [2, Remark 3.3]. On the other hand, the density and22

internal energy of a physically meaningful solution in most applications should both be positive. For problems23

without any vaccum, define the set of admissible states as24

𝐺 = {𝑼 = [𝜌,𝒎 , 𝐸]T : 𝜌 > 0, 𝜌𝑒(𝑼 ) = 𝐸 − ∥𝒎∥
2

2𝜌
> 0}.

The function 𝜌𝑒(𝑼 ) = 𝐸 − ∥𝒎∥
2

2𝜌 is a concave function of 𝑼 , which implies the set 𝐺 is convex [3]. For25

an initial condition 𝑼0 = [𝜌0 ,𝒎0 , 𝐸0]T ∈ 𝐺, a numerical solution preserving the positivity is preferred for26

the sake of not only physical meaningfulness but also numerical robustness. For the equation of state (2),27

negative internal energy means negative pressure, with which the linearized compressible Euler equation loses28

hyperbolicity and its initial value problem is ill-posed [3]. On the other hand, a conservative and positivity-29

preserving scheme in the sense of preserving the invariant domain 𝐺 is numerically robust [4, 5, 2, 6, 7].30

For solving a convection-diffusion system (3), a fully explicit time stepping results in a time step constraint31

Δ𝑡 = 𝒪(ReΔ𝑥2) thus only suitable for high Reynolds number flows in practice. In order to achieve larger32

time step such as a hyperbolic CFL Δ𝑡 = 𝒪(Δ𝑥), a semi-implicit scheme can be used [2, 7].33

The objective of this paper is to construct a high order accurate in space, conservative, and positivity-34

preserving scheme for solving the compressible NS equations (3). In particular, we will use the Strang35

splitting approach in [2, 7] with arbitrarily high order discontinuous Galerkin (DG) method for spatial36

discretization, which gives a scheme of at most second order accuracy in time. In general, a scheme that37

is high order in both time and space is preferred. On the other hand, for many fluid problems include gas38

dynamics problems, the solutions are often smoother with respect to the time variable, thus the spatial39

resolution of a numerical scheme is often more crucial for capturing fine structures in solutions than its40

temporal accuracy. Higher order spatial discretizations often produce better numerical solutions even if the41

time accuracy is only first order for various convection-diffusion problems [8, 9, 10, 7].42

1.2. Existing positivity-preserving schemes for compressible NS equations43

In the literature, there are many positivity-preserving schemes for compressible Euler equations, which44

have been well studied since 1990s. For compressible Navier–Stokes equations, most of the practical45

positivity-preserving schemes were developed only in the past decade.46

Grapas et al. in [4] constructed a fully implicit pressure correction scheme on staggered grids, which is47

at most second order in space, conservative, and unconditionally positivity-preserving. Nonlinear systems48

must be solved for time marching. As a fully implicit scheme on a staggered grid, it seems difficult to extend49

it to a higher order accurate scheme.50

Zhang in [5] proposed a simple nonlinear diffusion numerical flux, with which arbitrarily high order51

Runge–Kutta DG schemes solving (3) can be rendered positivity-preserving without losing conservation and52

accuracy by a simple positivity-preserving limiter in [3]. The advantages of such a fully explicit approach53

include easy extensions to general shear stress models and heat fluxes, and possible extensions to other54

types of schemes, such as high order finite volume schemes [11] and the high order finite difference WENO55

(weighted essentially nonoscillatory) schemes [6]. However, like many fully explicit schemes for convection-56

diffusion systems [12, 13, 14, 15], the time step constraint is Δ𝑡 = 𝒪(ReΔ𝑥2).57

Guermond et al. in [2] introduced a semi-implicit continuous finite element scheme via Strang splitting,58

which preserves positivity under standard hyperbolic CFL condition Δ𝑡 = 𝒪(Δ𝑥). By the same operator59

splitting approach, in [7] we constructed a semi-implicit conservative DG scheme, with the continuous finite60
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element method for solving (3), and the scheme with Q𝑘 (𝑘 = 1, 2, 3) basis can be proven positivity-preserving61

with Δ𝑡 = 𝒪(Δ𝑥).62

The early pioneering work on DG methods for solving compressible NS equations was conducted by63

Bassi and Rebay [16, 17] as well as Baumann and Oden [18]. Advantages of DG methods include high order64

accuracy, flexibility in handling complex meshes and hp-adaptivity, and highly parallelizable characteristics.65

See [19, 20, 21] for an overview of DG methods. In this paper, we focus on constructing DG schemes66

within the Strang splitting approach, by which the compressible NS system (3) is splitted into a hyperbolic67

subproblem (H) and a parabolic subproblem (P), representing two asymptotic regimes the vanishing viscosity68

limit (the compressible Euler equations) and the dominant of diffusive terms:69

(H)


𝜕𝑡𝜌 + ∇ · (𝜌𝒖) = 0,

𝜕𝑡(𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,

𝜕𝑡𝐸 + ∇ · ((𝐸 + 𝑝)𝒖) = 0,

(P)


𝜕𝑡𝜌 = 0,

𝜕𝑡(𝜌𝒖) − 1
Re∇ · 𝝉(𝒖) = 0,

𝜕𝑡𝐸 − 𝜆
ReΔ𝑒 − 1

Re∇ · (𝝉(𝒖)𝒖) = 0.

(4)

The equation 𝜕𝑡𝜌 = 0 in the parabolic subproblem implies the variable 𝜌 in (P) is time independent. Multiply
the second equation in (P) by 𝒖, use the identity ∇ · (𝝉(𝒖)𝒖) = (∇ ·𝝉(𝒖)) ·𝒖+𝝉(𝒖) : ∇𝒖, we obtain the following
equivalent system in non-conservative form:

(P)


𝜕𝑡𝜌 = 0, (5a)
𝜌𝜕𝑡𝒖 − 1

Re∇ · 𝝉(𝒖) = 0, (5b)

𝜌𝜕𝑡 𝑒 − 𝜆
ReΔ𝑒 =

1
Re𝝉(𝒖) : ∇𝒖. (5c)

We use the positivity-preserving Runge–Kutta DG method [3] for subproblem (H), i.e., the Zhang–Shu70

method for constructing positivity-preserving schemes [22, 3, 23, 24, 25] applied to solving compressible Euler71

equations, which is arbitrarily high order accurate, conservative, and positivity-preserving. For the parabolic72

subproblem, many different types of DG methods have been developed for solving diffusion equations in73

literature, which include interior penalty DG [26, 27, 28, 29], local DG [30, 31], direct DG [32, 33, 34],74

hybridizable DG [35, 36, 37], compact DG [38, 39], and so on. In this paper, we utilize the interior penalty75

DG method to discretize subproblem (P). The first challenge of using DG methods for subproblem (P) is76

how to ensure conservation of conserved variables. In [7], we have proven that conservation can be preserved77

via choosing appropriate interior penalty DG forms of ∇ · 𝝉(𝒖) and 𝝉(𝒖) : ∇𝒖. The next major challenge is78

how to ensure positivity when discretizing (5c). It is very difficult to prove any positivity-preserving result79

for arbitrarily high order schemes solving (5c) for implicit time stepping, even if the temporal accuracy is80

only first order.81

Consider a heat equation 𝜕𝑡 𝑒 − Δ𝑒 = 0 as a simplification of (5c). When using backward Euler time82

discretization, a systematic approach to obtaining a sufficient condition for the discrete maximum principle83

or positivity is to show the monotonicity of the linear system matrix. A matrix is called monotone if all84

entries of its inverse are nonnegative. The monotonicity of Q1 interior penalty DG on multi-dimensional85

structured meshes has been established in [7], also see [40, 41] for related results; and the monotonicity of86

continuous finite element method with Q2 and Q3 elements has been proven in [42, 43, 44]. However, for87

arbitrary high order scheme on unstructured meshes, the monotonicity does not hold [45]. Furthermore, for88

higher order implicit time marching strategy, such as the Crank–Nicolson method, the monotonicity of the89

linear system matrix is not enough to ensure positivity.90

1.3. A constraint optimization approach for enforcing positivity and global conservation91

To preserve positivity of internal energy, we will introduce a constraint optimization postprocessing92

approach. For enforcing bounds or positivity in numerical schemes solving PDEs, various optimization93

based approaches have been considered in the literature. We list a few of such methods. Guba et al. in94

[46] introduced a bound-preserving limiter for spectral element method, implemented by standard quadratic95

programming solvers. van der Vegt et al. in [47] considered a positivity-preserving limiter for DG scheme96

with implicit time integration and formulated the positivity constraints in the KKT system, implemented97
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by an active set semismooth Newton method. Cheng and Shen in [48] introduced a Lagrange multiplier98

approach to preserve bounds for semilinear and quasi-linear parabolic equations, which provides a new99

interpretation for the cut-off method and achieves the preservation of mass by solving a nonlinear algebraic100

equation for the additional space independent Lagrange multiplier. Ruppenthal and Kuzmin in [49] utilized101

optimization-based flux correction to ensure the positivity of finite element discretization of conservation102

laws. The primal-dual Newton method was employed to calculate the optimal flux potentials.103

Next, we describe the main idea of our approach. Let 𝑼P
𝑖
= [𝜌P

𝑖
,𝒎P

𝑖
, 𝐸P

𝑖
]
T

be a vector denoting the cell104

average of the DG polynomial 𝑼P
ℎ
(𝒙) = [𝜌P

ℎ
(𝒙),𝒎P

ℎ
(𝒙), 𝐸P

ℎ
(𝒙)]T on the 𝑖-th cell 𝐾𝑖 after solving subproblem105

(P). The density cell averages are positive, which can be ensured if using a positivity-preserving scheme for106

subproblem (H). The main challenge here is that in general 𝑼P
𝑖

may not be in the convex invariant domain107

set 𝐺. We emphasize that the Zhang–Shu limiter [3] can be used only if 𝑼P
𝑖
∈ 𝐺, which can be proven for108

one time step or time stage for fully explicit finite volume and DG schemes with a positivity-preserving flux109

[3, 5], or very special semi-implicit schemes like [7], thus these schemes can be rendered positivity-preserving110

by using the Zhang–Shu limiter [3] in each time step or time stage.111

With a prescribed small positive number 𝜖, which serves as the desired lower bound for density and112

internal energy, the numerical admissible state set 𝐺𝜖 is defined as follows.113

𝐺𝜖 = {𝑼 = [𝜌,𝒎 , 𝐸]T : 𝜌 ≥ 𝜖, 𝜌𝑒(𝑼 ) = 𝐸 − ∥𝒎∥
2

2𝜌
≥ 𝜖}.

Define 𝐸P
ℎ
= [𝐸P

1 , 𝐸
P
2 , · · · , 𝐸P

𝑁
]
T

as the vector of all cell averages for the total energy. We propose to114

modify the total energy only. And we would like to modify it to another vector 𝐸ℎ = [𝐸1 , 𝐸2 , · · · , 𝐸𝑁 ]
T

such115

that it minimizes the ℓ2 distance to 𝐸P
ℎ
, subject to the constraints of preserving global conservation and116

positivity. Specifically, given 𝑼P
ℎ
= [𝑼P

1 , · · · ,𝑼P
𝑁
]
T

with positive density 𝜌P
𝑖
≥ 𝜖, find the minimizer for117

min
𝐸ℎ∈R𝑁




𝐸ℎ − 𝐸P
ℎ




2 subjects to
𝑁∑
𝑖=1

𝐸𝑖 |𝐾𝑖 | =
𝑁∑
𝑖=1

𝐸P
𝑖
|𝐾𝑖 | and [𝜌P

𝑖
,𝒎P

𝑖
, 𝐸𝑖]

T
∈ 𝐺𝜖 , ∀𝑖 , (6a)

where |𝐾𝑖 | is the area or volume of each cell 𝐾𝑖 . Let 𝐸
∗
ℎ = [𝐸

∗
1 , · · · , 𝐸

∗
𝑁 ]

T
be the minimizer. Then we correct118

the DG polynomial cell averages for the total energy variable. Namely, let 𝐸P
𝑖
(𝒙) be the DG polynomial in119

each cell 𝐾𝑖 , and we correct it by a constant120

𝐸𝑖(𝒙) = 𝐸P
𝑖 (𝒙) − 𝐸P

𝑖
+ 𝐸 ∗𝑖 . (6b)

The updated or postprocessed DG polynomials 𝑼P
ℎ
(𝒙) = [𝜌P

ℎ
(𝒙),𝒎P

ℎ
(𝒙), 𝐸ℎ(𝒙)]T now have cell averages in121

the numerical admissible state set 𝐺𝜖, and the simple Zhang–Shu positivity-preserving limiter in [3, 23] can122

be used to further ensure the full scheme is positivity-preserving.123

Since ℓ2 distance is minimized, the accuracy of (6a) can also be justified under suitable assumptions,124

which will be discussed in Section 3.2.125

1.4. Efficient implementation of the constraint optimization defined postprocessing126

The simple postprocessing approach (6) was considered in [50] for preserving bounds of a scalar variable127

in complex phase field equations. Thanks to the constraints in (6a), global conservation and positivity of the128

internal energy are easily achieved, and the accuracy is also easy to justify for scalar variables [50], which129

are the advantages of such a simple approach. On the other hand, in any optimization based approach, it is130

often quite straightforward to have these desired properties such as positivity, conservation, and high order131

accuracy. From this perspective, the critical issue in all optimization based approaches, is the computational132

efficiency, especially for a time dependent demanding nonlinear system like (3).133
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In large-scale high-resolution fluid dynamic simulations, degree of freedoms to be processed at each time134

step can be quite large. Thus in general it is preferred to solve (6a) by first order optimization methods135

since they scale well with problem size, i.e., the complexity is 𝒪(𝑁) for each iteration, with 𝑁 being the136

total number of cells.137

In [50], it is demonstrated that the minimizer to a constraint minimization like (6a) can be efficiently138

computed by using the Douglas–Rachford splitting method [51] if using the optimal algorithm parameters139

obtained from a sharp asymptotic convergence rate analysis. The Douglas–Rachford splitting method is a140

very popular first order splitting method, because it is equivalent to ADMM [52] and dual split Bregman141

method [53] with special parameters, see also [54] and references therein for the equivalence. For special142

convex optimization problems, it is also equivalent to PDHG [55].143

For the minimization problem (6a), there are many different ways or methods to find the minimizer.144

We emphasize that Douglas–Rachford splitting with the optimal parameters has a provable computational145

complexity 𝒪(𝑁) for finding the minimizer up to round off errors [50], which is its main advantage.146

Given the DG polynomial after solving the subproblem (P), we define the 𝑖-th cell as a bad cell if its147

cell average has negative internal energy, i.e., 𝑼P
𝑖
= [𝜌P

𝑖
,𝒎P

𝑖
, 𝐸P

𝑖
]
T
∉ 𝐺𝜖. Let 𝑟 be the number of bad cells,148

then 𝑟/𝑁 is the bad cell ratio. It is proven in [50] that the sharp asymptotic linear convergence rate of the149

Douglas–Rachford splitting with the optimal parameters is approximately 1−2 𝑟
𝑁

3−2 𝑟
𝑁
≈ 1

3 when 𝑟 ≪ 𝑁 . In other150

words, such a minimization solver is provably extremely efficient when the bad cell ratio is small, which is151

usually the case for a good scheme solving (3) such as Strang splitting with DG methods [7].152

1.5. The main result and organization of this paper153

Our full scheme in this paper is a very high order accurate in space, conservative, and positivity-preserving154

semi-implicit DG scheme to solve the compressible NS equations (3), with a standard hyperbolic CFL155

Δ𝑡 = 𝒪(Δ𝑥). For the implicit part, the scheme is fully decoupled with two linear systems to solve sequentially156

for each time step. We emphasize that the spatial discretization in this paper is done by only DG methods,157

which is not exactly the same as the spatial scheme in [7]. The main novelty is the postprocessing approach158

(6) to preserve conservation and positivity for solving the parabolic subproblem using very high order159

accurate DG methods. The minimizer to (6a) can be efficiently computed by using the generalized Douglas–160

Rachford splitting method with nearly optimal parameters.161

The postprocessing step (6a) only preserves the global conservation and does not preserve any local162

conservation property. We remark that the local conservation in the Strang splitting approach for solving (3)163

is already lost since the non-conservative variables are computed in (5). Nonetheless, the global conservation164

can be ensured [7]. Thus from this perspective, the postprocessing step (6a) is acceptable whenever the non-165

conservative form (5) is solved.166

One can also consider a more general version of (6a) by also modifying the density and momentum167

variables to enforce the positivity of the internal energy 𝑼P
𝑖
= [𝜌P

𝑖
,𝒎P

𝑖
, 𝐸P

𝑖
]
T
∈ 𝐺𝜖. Such a more complicated168

limiter is certainly more difficult to implement efficiently. On the other hand, for the Strang splitting169

approach in [2, 7], the momentum variable is robustly computed, which allows us to consider a simpler170

limiter like (6a). Most importantly, numerical tests suggest that the simple postprocessing (6) is sufficient171

to enforce the positivity thus the robustness for the subproblem (P) in the Strang splitting with very high172

order DG methods.173

We emphasize that the postprocessing (6) is too simple to make a bad scheme more useful, e.g., it does174

not eliminate any oscillations. It is most useful for a good scheme that is stable for most testing cases yet175

might lose positivity thus robustness for solving challenging low pressure problems, e.g., the Strang splitting176

method in [2, 7]. For instance, as will be shown by numerical tests in this paper, for computing the Mach177

2000 astrophysical jet problem, Strang splitting with very high order DG method produces blow-up due to178

loss of positivity, but will be stable when combined with the postprocessing (6), i.e., an optimization based179

positivity-preserving limiter.180

The rest of this paper is organized as follows. In Section 2, we introduce the fully discrete numerical181

scheme. In Section 3, we discuss a high order accurate constraint optimization based postprecessing proce-182
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dure, which preserves the conservation and positivity. Numerical tests are shown in Section 4. Concluding183

remarks are given in Section 5.184

2. Numerical scheme185

In this section, we describe the fully discretized numerical scheme for solving the compressible NS equa-186

tions (3). Our scheme incorporates the DG spatial discretization within the Strang splitting framework.187

2.1. Time discretization188

Given the conserved variables 𝑼𝑛 at time 𝑡𝑛 (𝑛 ≥ 0) and the step size Δ𝑡, the Strang splitting for evolving189

to time 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡 for the system (3) is to solve subproblems (H) and (P) separately [2, 7]. A schematic190

flowchart for time marching is as follows:191

𝑼𝑛 solve (H)
−−−−−−−−−→
step size Δ𝑡

2

𝑼H solve (P)
−−−−−−−−−→
step size Δ𝑡

𝑼P solve (H)
−−−−−−−−−→
step size Δ𝑡

2

𝑼𝑛+1. (7)

We utilize the strong stability preserving (SSP) Runge–Kutta method to solve (H) and the 𝜃-method with192

a parameter 𝜃 ∈ (0, 1] to solve (P). For any 𝑛 ≥ 0, the time discretization in one time step consists of the193

following steps.194

Step 1. Given 𝑼𝑛 = [𝜌𝑛 ,𝒎𝑛 , 𝐸𝑛]T, we use the third order SSP Runge–Kutta method with step size 1
2Δ𝑡195

to compute 𝑼H = [𝜌H ,𝒎H , 𝐸H]T:196

𝑼 (1) = 𝑼𝑛 − Δ𝑡

2
∇ · 𝑭a(𝑼𝑛), (8a)

𝑼 (2) =
3

4
𝑼𝑛 + 1

4

[
𝑼 (1) − Δ𝑡

2
∇ · 𝑭a(𝑼 (1))

]
, (8b)

𝑼H =
1

3
𝑼𝑛 + 2

3

[
𝑼 (2) − Δ𝑡

2
∇ · 𝑭a(𝑼 (2))

]
. (8c)

Step 2. Given 𝑼H = [𝜌H ,𝒎H , 𝐸H]T, compute (𝒖H , 𝑒H) by solving197

𝒎H = 𝜌H𝒖H and 𝐸H = 𝜌H𝑒H + ∥𝒎
H∥2

2𝜌H
.

Step 3. Given (𝒖H , 𝑒H), set 𝜌P = 𝜌H due to (5a). We employ the Crank–Nicolson method to discretize198

(5b) and apply the 𝜃-method, where 𝜃 ∈ (0, 1], to discretize (5c). For the second step in Strang splitting199

(7), we have200

𝒖∗ =
1

2
𝒖P + 1

2
𝒖H and 𝑒∗ = 𝜃𝑒P + (1 − 𝜃)𝑒H ,

𝜌P 𝒖P − 𝒖H

Δ𝑡
− 1

Re
∇ · 𝝉(𝒖∗) = 0,

𝜌P 𝑒
P − 𝑒H
Δ𝑡

− 𝜆
Re

Δ𝑒∗ =
1

Re
𝝉(𝒖∗) : ∇𝒖∗.

The scheme above can be implemented as first to compute (𝒖∗ , 𝑒∗) by sequentially solving two decoupled201

linear systems202

𝜌P𝒖∗ − Δ𝑡

2Re
∇ · 𝝉(𝒖∗) = 𝜌H𝒖H , (9a)

𝜌P𝑒∗ − 𝜃Δ𝑡 𝜆
Re

Δ𝑒∗ = 𝜌H𝑒H + 𝜃Δ𝑡
Re

𝝉(𝒖∗) : ∇𝒖∗ , (9b)

then set 𝒖P = 2𝒖∗ − 𝒖H and 𝑒P = 1
𝜃 𝑒
∗ + (1 − 1

𝜃 )𝑒H.203
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Step 4. Given (𝜌P , 𝒖P , 𝑒P), compute (𝒎P , 𝐸P) by204

𝒎P = 𝜌P𝒖P and 𝐸P = 𝜌P𝑒P + ∥𝒎
P∥2

2𝜌P
.

Step 5. Given 𝑼P = [𝜌P ,𝒎P , 𝐸P]T, to obtain 𝑼𝑛+1 = [𝜌𝑛+1 ,𝒎𝑛+1 , 𝐸𝑛+1]T in the third step in Strang205

splitting (7), solve (H) for another 1
2Δ𝑡 by the third order SSP Runge–Kutta method.206

We have the first order backward Euler scheme with 𝜃 = 1, for which 𝑒P = 𝑒∗ and it is possible to design207

positivity-preserving schemes if the discrete Laplacian is monotone, e.g., Q2 andQ3 spectral element methods208

on uniform meshes, as shown in [7]. Unfortunately, for any 𝜃 < 1, 𝑒P = 1
𝜃 𝑒
∗ + (1 − 1

𝜃 )𝑒H is not a convex209

combination thus it is difficult to have 𝑒𝑃 > 0 even if 𝑒∗ > 0 can be ensured by a monotone discrete Laplacian.210

For 𝜃 = 1
2 , we have the second order Crank–Nicolson scheme. It is important to note that in each time step,211

only two decoupled linear systems need to be sequentially solved in (9).212

2.2. Preliminary aspects of space discretization213

We use the Runge–Kutta DG method to discretize subproblem (H) and the interior penalty DG method214

to discretize subproblem (P). For completeness, we briefly review these methods without delving into215

their derivation. See [3, 5, 7] for more details. For simplicity, we only consider Q𝑘 polynomial basis on216

uniform rectangular meshes, and there is no essential difficulty to extend the main results in this paper to217

unstructured meshes. For example, for preserving conservation and positivity, the constraint optimization-218

based postprocessing approach discussed in Section 2.3 is also applicable to P𝑘 polynomials on unstructured219

meshes.220

Mesh, approximation spaces, and quadratures. Let 𝒯ℎ = {𝐾𝑖} be a uniform partitions of the compu-221

tational domain Ω by square elements (cells) with the element diameter ℎ. The unit outward normal of a222

cell 𝐾 is denoted by 𝒏𝐾 . Let Γℎ be the set of interior faces. For each interior face 𝑒 ∈ Γℎ shared by cells 𝐾𝑖−223

and 𝐾𝑖+ , with 𝑖− < 𝑖+, we define a unit normal vector 𝒏𝑒 that points from 𝐾𝑖− into 𝐾𝑖+ . For a boundary face224

𝑒 = 𝜕𝐾𝑖− ∩ 𝜕Ω, the normal 𝒏𝑒 is taken to be the unit outward vector to 𝜕Ω.225

Let Q𝑘(𝐾) be the space of polynomials of order at most 𝑘 for each variable defined on a cell 𝐾. Define226

the following piecewise polynomial spaces:227

𝑀𝑘
ℎ
=

{
𝜒ℎ ∈ 𝐿2(Ω) : ∀𝐾 ∈ 𝒯ℎ , 𝜒ℎ |𝐾 ∈ Q𝑘(𝐾)

}
,

X𝑘
ℎ
=

{
𝜽ℎ ∈ 𝐿2(Ω)𝑑 : ∀𝐾 ∈ 𝒯ℎ , 𝜽ℎ |𝐾 ∈ Q𝑘(𝐾)𝑑

}
.

On a reference element 𝐾̂ = [− 1
2 ,

1
2 ]𝑑, we use (𝑘 + 1)𝑑 Gauss–Lobatto points to construct Lagrange inter-228

polation polynomials 𝜑̂ 𝑗 . The basis functions on each cell 𝐾𝑖 ∈ 𝒯ℎ are defined by 𝜑𝑖 𝑗 = 𝜑̂ 𝑗 ◦ 𝑭−1𝑖 , where229

𝑭𝑖 : 𝐾̂ → 𝐾 is an invertible mapping from the reference element to 𝐾𝑖 . These basis are numerically orthogonal230

with respect to the (𝑘 + 1)𝑑-point Gauss–Lobatto quadrature rule.231

We summarize the quadrature rules employed in solving the hyperbolic and parabolic subproblems as232

well as the points to be used in the positivity-preserving limiter as follows:233

1. For face and volume integrals in (H), we utilize a quadrature rule that is constructed by the tensor234

product of (𝑘 + 1)-point Gauss quadrature. Denote the set of associated quadrature points here by 𝑆H,int
𝐾

235

on a cell 𝐾.236

2. For face and volume integrals in (P), we utilize a quadrature rule that is constructed by the tensor237

product of (𝑘 + 1)-point Gauss–Lobatto quadrature. Denote the set of associated quadrature points here238

by 𝑆P
𝐾

on a cell 𝐾.239
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3. The points for weak positivity of (H) are constructed by (𝑘 + 1)-point Gauss quadrature tensor product240

with 𝐿-point Gauss–Lobatto quadrature in both 𝑥 and 𝑦 directions and we request 2𝐿 − 3 ≥ 𝑘 [5].241

Denote the set of associated quadrature points here by 𝑆H,aux
𝐾

on a cell 𝐾. Though these points form a242

quadrature, we do not use them for computing any integrals. Instead, they are the points to be used in243

the positivity-preserving limiter [3, 23, 5].244

See Figure 1 for an illustration the location of these quadrature points in the Q4 scheme.

Figure 1: An illustration of the quadratures used in the Q4 scheme. From left to right: the quadrature points for face integrals
in (H), volume integrals in (H), face integrals in (P), volume integrals in (P), and the quadrature points for weak positivity.
The black points are used only in defining the positivity-preserving limiter, and they are not used in calculating any numerical
integration.

245

Hyperbolic subproblem. One of the most popular high order accurate positivity-preserving approaches246

for solving compressible Euler equations 𝜕𝑡𝑼 + ∇ · 𝑭a(𝑼 ) = 0 was introduced by Zhang and Shu in [3], also247

see [5]. We utilize the same scheme to solve (H), which is defined as follows. For any piecewise polynomial248

test function 𝛹ℎ , find the piecewise polynomial solution 𝑼ℎ , such that249

d

d𝑡
(𝑼ℎ ,𝛹ℎ) = (𝑭a(𝑼ℎ),∇𝛹ℎ) −

∫
𝜕𝐾

�𝑭a · 𝒏𝐾(𝑼−ℎ ,𝑼
+
ℎ
)𝛹ℎ , (10)

where �𝑭a · 𝒏𝐾 is any monotone flux for 𝑭a, e.g., a Lax–Friedrichs type flux. On a face 𝑒 ⊂ 𝜕𝐾, the local250

Lax–Friedrichs flux is defined by251

�𝑭a · 𝒏𝐾(𝑼−ℎ ,𝑼
+
ℎ
) =

𝑭a(𝑼−
ℎ
) + 𝑭a(𝑼+

ℎ
)

2
· 𝒏𝐾 −

𝛼𝑒
2
(𝑼+

ℎ
−𝑼−ℎ ),

where the 𝑼−
ℎ

(resp. 𝑼+
ℎ
) denotes the trace of 𝑼ℎ on the face 𝜕𝐾 coming from the interior (resp. exterior)252

of 𝐾. The factor 𝛼𝑒 denotes the maximum wave speed with maximum taken over all 𝑼−
ℎ

and 𝑼+
ℎ

along the253

face 𝑒, namely the largest magnitude of the eigenvalues of the Jacobian matrix 𝜕𝑭a

𝜕𝑼 , which equals to the254

wave speed |𝒖 · 𝒏𝐾 | +
√
𝛾
𝑝

𝜌 for ideal gas equation of state.255

By convention, we replace 𝑼+
ℎ

by an appropriate boundary function which realizes the boundary condi-256

tions when 𝜕𝐾 ∩ 𝜕Ω ≠ ∅. For instance, if purely inflow condition 𝑼 = 𝑼D is imposed on 𝜕𝐾, then 𝑼+
ℎ

is257

replaced by 𝑼D; if purely outflow condition is imposed on 𝜕𝐾, then set 𝑼+
ℎ
= 𝑼−

ℎ
; and if reflective boundary258

condition for fluid–solid interfaces is imposed on 𝜕𝐾, then set 𝑼+
ℎ
= [𝜌−

ℎ
,𝒎−

ℎ
− 2(𝒎−

ℎ
· 𝒏𝐾)𝒏𝐾 , 𝐸−ℎ ]

T.259

Parabolic subproblem. We use the interior penalty DG method for discretizing (P). For convenience of260

introducing discrete forms in parabolic subproblem, we partition the boundary of the domain Ω into the261

union of two disjoint sets, namely 𝜕Ω = 𝜕ΩD ∪ 𝜕ΩN, where the Dirichlet boundary conditions (𝒖 = 𝒖D and262

𝑒 = 𝑒D) are applied on 𝜕ΩD and the Neumann-type boundary conditions (𝝉(𝒖) · 𝒏 = 0 and ∇𝑒 · 𝒏 = 0) are263

applied on 𝜕ΩN. Here, 𝒏 denotes the unit outer normal of domain Ω.264
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The average and jump operators of any vector quantity 𝒖 on a boundary face coincide with its trace;265

and on interior faces they are defined by266

{|𝒖 |}|𝑒 =
1

2
𝒖 |𝐾𝑖− +

1

2
𝒖 |𝐾𝑖+ , ⟦𝒖⟧ |𝑒 = 𝒖 |𝐾𝑖− − 𝒖 |𝐾𝑖+ , 𝑒 = 𝜕𝐾𝑖− ∩ 𝜕𝐾𝑖+ .

The related definitions of any scalar quantity are similar. For more details see [56]. We employ the non-267

symmetric interior penalty DG (NIPG) method to discretize the terms −2∇ · 𝜺(𝒖) and ∇ · ((∇ · 𝒖)I). The268

associated bilinear forms 𝑎𝜺 and 𝑎𝜆 are defined as follows:269

𝑎𝜺(𝒖 , 𝜽) = 2
∑
𝐾∈𝒯ℎ

∫
𝐾

𝜺(𝒖) : 𝜺(𝜽) − 2
∑

𝑒∈Γℎ∪𝜕ΩD

∫
𝑒

{|𝜺(𝒖) 𝒏𝑒 |} · ⟦𝜽⟧

+ 2
∑

𝑒∈Γℎ∪𝜕ΩD

∫
𝑒

{|𝜺(𝜽) 𝒏𝑒 |} · ⟦𝒖⟧ +
𝜎
ℎ

∑
𝑒∈Γℎ∪𝜕ΩD

∫
𝑒

⟦𝒖⟧ · ⟦𝜽⟧ ,

𝑎𝜆(𝒖 , 𝜽) = −
∑
𝐾∈𝒯ℎ

∫
𝐾

(∇ · 𝒖)(∇ · 𝜽) +
∑

𝑒∈Γℎ∪𝜕ΩD

∫
𝑒

{|∇ · 𝒖 |} ⟦𝜽 · 𝒏𝑒⟧ −
∑

𝑒∈Γℎ∪𝜕ΩD

∫
𝑒

{|∇ · 𝜽 |} ⟦𝒖 · 𝒏𝑒⟧ .

And the linear form 𝑏𝝉 associated with term −∇ · 𝝉(𝒖) for the Dirichlet boundary 𝜕ΩD in (9a) is defined by270

𝑏𝝉(𝜽) = 2
∑
𝑒∈𝜕ΩD

∫
𝑒

(𝜺(𝜽) 𝒏) · 𝒖D +
𝜎
ℎ

∑
𝑒∈𝜕ΩD

∫
𝑒

𝒖D · 𝜽 −
2

3

∑
𝑒∈𝜕ΩD

∫
𝑒

∇ · 𝜽 (𝒖D · 𝒏).

We employ the incomplete interior penalty DG (IIPG) method to discretize the term −Δ𝑒 in (9b). The271

bilinear form 𝑎𝒟 and the linear form 𝑏𝒟 for term −Δ𝑒 are defined as follows:272

𝑎𝒟(𝑒 , 𝜒) =
∑
𝐾∈𝒯ℎ

∫
𝐾

∇𝑒 · ∇𝜒 −
∑

𝑒∈Γℎ∪𝜕ΩD

∫
𝑒

{|∇𝑒 · 𝒏𝑒 |} ⟦𝜒⟧ +
𝜎̃
ℎ

∑
𝑒∈Γℎ∪𝜕ΩD

∫
𝑒

⟦𝑒⟧ ⟦𝜒⟧ ,

𝑏𝒟(𝜒) =
𝜎̃
ℎ

∑
𝑒∈𝜕ΩD

∫
𝑒

𝑒D𝜒.

For the sake of global conservation of total energy, to discrete term 𝝉(𝒖) : ∇𝒖 = 2𝜺(𝒖) : ∇𝒖 − 2
3 ((∇ · 𝒖)I) : ∇𝒖273

in (9b), by using the tensor identity 𝜺(𝒖) : ∇𝒖 = 𝜺(𝒖) : 𝜺(𝒖), the DG forms 𝑏𝜺 and 𝑏𝜆 are designed for terms274

2𝜺(𝒖) : ∇𝒖 and −((∇ · 𝒖)I) : ∇𝒖, respectively.275

𝑏𝜺(𝒖 , 𝜒) = 2
∑
𝐾∈𝒯ℎ

∫
𝐾

𝜺(𝒖) : 𝜺(𝒖)𝜒 + 𝜎
ℎ

∑
𝑒∈Γℎ

∫
𝑒

⟦𝒖⟧ · ⟦𝒖⟧ {|𝜒 |} + 𝜎
ℎ

∑
𝑒∈𝜕ΩD

∫
𝑒

(𝒖 − 𝒖D) · (𝒖 − 𝒖D)𝜒,

𝑏𝜆(𝒖 , 𝜒) = −
∑
𝐾∈𝒯ℎ

∫
𝐾

(∇ · 𝒖)(∇ · 𝒖)𝜒.

Above DG forms employ penalty parameters 𝜎 and 𝜎̃. For any 𝜎 ≥ 0, the NIPG bilinear form is coercive.276

In particular, NIPG0 refers to the choice 𝜎 = 0, e.g., the penalty term is removed. The NIPG0 method is277

convergent for polynomial degrees greater than or equal to two in two dimension [56]. And more importantly,278

the NIPG0 method eliminates the face penalties, thereby reducing the numerical viscosity. For IIPG method,279

the penalty 𝜎̃ needs to be large enough to achieve coercivity.280

2.3. The simple positivity-preserving limiter281

The Zhang–Shu limiter [22, 3] is a simple limiter for enforcing positivity of the approximation polynomial282

on a finite set 𝑆 when the polynomial cell average is positive. Let 𝑼𝐾(𝒙) = [𝜌𝐾 ,𝒎𝐾 , 𝐸𝐾]T be the DG283

polynomial of on cell 𝐾. A simplified version of the limiter [5] modifies the DG polynomial 𝑼𝐾(𝒙) with the284

following steps under the assumption that 𝑼𝐾 = 1
|𝐾 |

∫
𝐾
𝑼𝐾 ∈ 𝐺𝜖.285
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1. First enforce positivity of density by286

𝜌̂𝐾 = 𝜃𝜌(𝜌𝐾 − 𝜌𝐾) + 𝜌𝐾 , 𝜃𝜌 = min

{
1,

𝜌𝐾 − 𝜖

𝜌𝐾 − min
𝒙𝑞∈𝑆𝐾

𝜌𝐾(𝒙𝑞)

}
,

where 𝜌𝐾 denotes the cell average of 𝜌𝐾 on cell 𝐾. Notice that 𝜌̂𝐾 and 𝜌𝐾 have the same cell average,287

and 𝜌̂𝐾 = 𝜌𝐾 if min
𝒙𝑞∈𝑆𝐾

𝜌𝐾(𝒙𝑞) ≥ 𝜖.288

2. Define 𝑼ℎ = [𝜌̂ℎ ,𝒎ℎ , 𝐸ℎ]T and enforce positivity of internal energy by289

𝑼𝐾 = 𝜃𝑒(𝑼𝐾 −𝑼𝐾) +𝑼𝐾 , 𝜃𝑒 = min

{
1,

𝜌𝑒𝐾 − 𝜖

𝜌𝑒𝐾 − min
𝒙𝑞∈𝑆𝐾

𝜌𝑒𝐾(𝒙𝑞)

}
,

where 𝜌𝑒𝐾 = 𝐸𝐾 − ∥𝒎𝐾 ∥2
2𝜌𝐾

and 𝜌𝑒𝐾(𝒙𝑞) = 𝐸𝐾(𝒙𝑞) −
∥𝒎𝐾(𝒙𝑞 )∥2
2𝜌𝐾(𝒙𝑞 ) . Notice that 𝑼𝐾 has the same cell average, the290

positivity is implied by the Jensen’s inequality satisfied by the concave internal energy function [5].291

We refer to [3, 5, 57] on the justification of its high order accuracy.292

2.4. The fully discrete scheme293

Let (·, ·) denote the 𝐿2 inner product over domain Ω evaluated by Gauss quadrature in (H) and ⟨·, ·⟩294

denote the 𝐿2 inner product over domain Ω evaluated by Gauss–Lobatto quadrature in (P).295

Given the DG solution 𝑼𝑛
ℎ

at time 𝑡𝑛 (𝑛 ≥ 0), a schematic flowchart for evolving to time 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡296

is given as:297

𝑼𝑛
ℎ

solve (H)
−−−−−−−−−→
step size Δ𝑡

2

𝑼H
ℎ

𝐿2 proj.−−−−−−→ (𝒖H
ℎ , 𝑒

H
ℎ )

solve (P)
−−−−−−−−−→
step size Δ𝑡

(𝒖P
ℎ , 𝑒

P
ℎ )

𝐿2 proj.−−−−−−→ 𝑼P
ℎ

solve (H)
−−−−−−−−−→
step size Δ𝑡

2

𝑼𝑛+1
ℎ

.

For any 𝑛 ≥ 0, our fully discrete scheme for solving (3) in one step consists of the following steps.298

Step 1. Given 𝑼𝑛
ℎ
∈ 𝑀𝑘

ℎ
× X𝑘

ℎ
× 𝑀𝑘

ℎ
, compute 𝑼H

ℎ
∈ 𝑀𝑘

ℎ
× X𝑘

ℎ
× 𝑀𝑘

ℎ
by the DG method (10) with the299

positivity-preserving SSP Runge–Kutta (8) [3, 5] using step size Δ𝑡
2 . After each Runge–Kutta stage,300

apply the Zhang–Shu positivity-preserving limiter to ensure that all point values at 𝑆H,int
𝐾

and 𝑆H,aux
𝐾

301

have positive density and internal energy.302

Step 2. Use the Zhang–Shu positivity-preserving limiter to ensure that all point values at 𝑆P
𝐾

have positive303

density and internal energy. Given 𝑼H
ℎ
∈ 𝑀𝑘

ℎ
×X𝑘

ℎ
×𝑀𝑘

ℎ
, compute (𝒖H

ℎ
, 𝑒H
ℎ
) ∈ X𝑘

ℎ
×𝑀𝑘

ℎ
by 𝐿2 projection304

⟨𝒎H
ℎ , 𝜽ℎ⟩ = ⟨𝜌

H
ℎ 𝒖

H
ℎ , 𝜽ℎ⟩, ∀𝜽ℎ ∈ X

𝑘
ℎ

and ⟨𝐸H
ℎ , 𝜒ℎ⟩ = ⟨𝜌

H
ℎ 𝑒

H
ℎ , 𝜒ℎ⟩ + ⟨

𝒎H
ℎ

2𝜌H
ℎ

,𝒎H
ℎ 𝜒ℎ⟩, ∀𝜒ℎ ∈ 𝑀

𝑘
ℎ
. (11)

Step 3. Given (𝜌H
ℎ
, 𝒖H

ℎ
) ∈ 𝑀𝑘

ℎ
×X𝑘

ℎ
, set 𝜌P

ℎ
= 𝜌H

ℎ
and solve (𝒖∗

ℎ
, 𝒖P

ℎ
) ∈ X𝑘

ℎ
×X𝑘

ℎ
, such that for all 𝜽ℎ ∈ X𝑘

ℎ
305

⟨𝜌P
ℎ 𝒖
∗
ℎ , 𝜽ℎ⟩ +

Δ𝑡

2Re
𝑎𝜺(𝒖∗ℎ , 𝜽ℎ) +

Δ𝑡

3Re
𝑎𝜆(𝒖∗ℎ , 𝜽ℎ) = ⟨𝜌

H
ℎ 𝒖

H
ℎ , 𝜽ℎ⟩ +

Δ𝑡

2Re
𝑏𝝉(𝜽ℎ), (12a)

𝒖P
ℎ = 2𝒖∗ℎ − 𝒖H

ℎ . (12b)

Then given (𝜌H
ℎ
, 𝜌P

ℎ
, 𝒖∗

ℎ
, 𝑒H
ℎ
) ∈ 𝑀𝑘

ℎ
×𝑀𝑘

ℎ
×X𝑘

ℎ
×𝑀𝑘

ℎ
, solve for (𝑒∗

ℎ
, 𝑒P
ℎ
) ∈ 𝑀𝑘

ℎ
×𝑀𝑘

ℎ
, such that for all 𝜒ℎ ∈ 𝑀𝑘

ℎ
306

⟨𝜌P
ℎ 𝑒
∗
ℎ , 𝜒ℎ⟩ +

𝜃Δ𝑡𝜆
Re

𝑎𝒟(𝑒∗ℎ , 𝜒ℎ) = ⟨𝜌
H
ℎ 𝑒

H
ℎ , 𝜒ℎ⟩ +

𝜃Δ𝑡
Re

𝑏𝜺(𝒖∗ℎ , 𝜒ℎ) +
2𝜃Δ𝑡
3Re

𝑏𝜆(𝒖∗ℎ , 𝜒ℎ) +
𝜃Δ𝑡𝜆
Re

𝑏𝒟(𝜒ℎ), (12c)

𝑒Pℎ =
1

𝜃
𝑒∗ℎ + (1 −

1

𝜃
)𝑒Hℎ . (12d)
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Step 4. Given (𝜌P
ℎ
, 𝒖P

ℎ
, 𝑒P
ℎ
) ∈ 𝑀𝑘

ℎ
×X𝑘

ℎ
×𝑀𝑘

ℎ
, compute (𝒎P

ℎ
, 𝐸P

ℎ
) ∈ X𝑘

ℎ
×𝑀𝑘

ℎ
by 𝐿2 projection307

⟨𝒎P
ℎ , 𝜽ℎ⟩ = ⟨𝜌

P
ℎ 𝒖

P
ℎ , 𝜽ℎ⟩, ∀𝜽ℎ ∈ X

𝑘
ℎ

and ⟨𝐸P
ℎ , 𝜒ℎ⟩ = ⟨𝜌

P
ℎ 𝑒

P
ℎ , 𝜒ℎ⟩ + ⟨

𝒎P
ℎ

2𝜌P
ℎ

,𝒎P
ℎ 𝜒ℎ⟩, ∀𝜒ℎ ∈ 𝑀

𝑘
ℎ
. (13)

Postprocess 𝑼P
ℎ

by the constraint optimization-based limiting strategy, see Section 3. Then the cell308

averages have positive states, and we can apply the Zhang–Shu positivity-preserving limiter to ensure309

that all point values at 𝑆H,int
𝐾

and 𝑆H,aux
𝐾

have positive density and internal energy.310

Step 5. Given 𝑼P
ℎ
∈ 𝑀𝑘

ℎ
× X𝑘

ℎ
× 𝑀𝑘

ℎ
, compute 𝑼𝑛+1

ℎ
∈ 𝑀𝑘

ℎ
× X𝑘

ℎ
× 𝑀𝑘

ℎ
by the DG method (10) with311

the positivity-preserving SSP Runge–Kutta (8) [3, 5] using step size Δ𝑡
2 . After each Runge–Kutta stage,312

apply the Zhang–Shu positivity-preserving limiter to ensure that all point values at 𝑆H,int
𝐾

and 𝑆H,aux
𝐾

313

have positive density and internal energy.314

The 𝑼0
ℎ

is obtained through the 𝐿2 projection of the initial data 𝑼0, followed by postprocessing it with the315

Zhang–Shu limiter [3]. Thus, 𝑼0
ℎ

belongs to the set of admissible states. In addition, we highlight in each316

time step only two decoupled linear systems (12a) and (12c) need to be solved sequentially.317

Remark 1. For Q𝑘 scheme, the Q𝑘 Lagrangian basis functions defined at Gauss–Lobatto points are orthog-318

onal at the (𝑘 + 1)𝑑-point Gauss–Lobatto quadrature points. Thus, in Step 2 and Step 4, no linear systems319

need to be solved for computing the 𝐿2 projection.320

2.5. Global conservation of the fully discrete scheme321

We first discuss the global conservation of momentum and total energy. Notice that the local conservation322

for mass is naturally inherited from the Runge–Kutta DG method solving compressible Euler equations. For323

simplicity, we only discuss conservation in the context of periodic boundary conditions. It is straightforward324

to extend the discussion to many other types of boundary conditions, such as the ones implemented in the325

numerical tests in this paper.326

The following result is essentially the same as [7, Theorem 1]. However, the time discretization used in327

this paper is the 𝜃-scheme for the internal energy equation, whereas the time discretization in [7, Theorem328

1] is the backward Euler scheme. In addition, the spatial discretization in this paper is a DG scheme, while329

the spatial discretization in [7] is a combination of DG and continuous finite element method. Thus, for330

completeness, we include the proof of the global conservation.331

Theorem 1. Assume 𝑼P
ℎ
(𝒙𝑞) belongs to the set of admissible states for all 𝒙𝑞 ∈ 𝑆ℎ, then the fully discrete332

scheme conserves density, momentum, and total energy. We have333

(𝜌𝑛
ℎ
, 1) = (𝜌𝑛+1

ℎ
, 1), (𝒎𝑛

ℎ
, 1) = (𝒎𝑛+1

ℎ
, 1), (𝐸𝑛

ℎ
, 1) = (𝐸𝑛+1

ℎ
, 1).

Proof. Both the explicit Runge–Kutta DG method for hyperbolic subproblem (H) and the Zhang–Shu limiter334

conserve mass, momentum, and total energy [3, 5]. We have335

(𝜌𝑛
ℎ
, 1) = (𝜌H

ℎ , 1), (𝒎
𝑛
ℎ
, 1) = (𝒎H

ℎ , 1), (𝐸
𝑛
ℎ
, 1) = (𝐸H

ℎ , 1).

It is easy to verify the discrete mass conservation, since (𝜌𝑛+1
ℎ

, 1) = (𝜌P
ℎ
, 1) and we set 𝜌H

ℎ
= 𝜌P

ℎ
in Step 3.336

For the discrete momentum conservation, we have (𝒎𝑛
ℎ
, 1) = (𝒎H

ℎ
, 1) and (𝒎𝑛+1

ℎ
, 1) = (𝒎P

ℎ
, 1). For Q𝑘

337

scheme, the quadrature rules in subproblems (H) and (P) are both exact for integrating polynomials of338

degree 𝑘, Thus, we also have (𝒎H
ℎ
, 1) = ⟨𝒎H

ℎ
, 1⟩ and (𝒎P

ℎ
, 1) = ⟨𝒎P

ℎ
, 1⟩. Take 𝜽ℎ = 1 in (11) and (13), we339

get ⟨𝒎H
ℎ
, 1⟩ = ⟨𝜌H

ℎ
𝒖H
ℎ
, 1⟩ and ⟨𝒎P

ℎ
, 1⟩ = ⟨𝜌P

ℎ
𝒖P
ℎ
, 1⟩. The above identities indicate (𝒎𝑛

ℎ
, 1) = ⟨𝜌H

ℎ
𝒖H
ℎ
, 1⟩ and340

(𝒎𝑛+1
ℎ

, 1) = ⟨𝜌P
ℎ
𝒖P
ℎ
, 1⟩. By selecting 𝜽ℎ = 1 in (12a), we obtain ⟨𝜌H

ℎ
𝒖H
ℎ
, 1⟩ = ⟨𝜌P

ℎ
𝒖P
ℎ
, 1⟩, namely (𝒎𝑛

ℎ
, 1) =341

(𝒎𝑛+1
ℎ

, 1) holds.342
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For the discrete energy conservation, notice the basis are numerically orthogonal and similar to above,343

we have (𝐸𝑛
ℎ
, 1) = ⟨𝜌H

ℎ
𝑒H
ℎ
, 1⟩ + 1

2 ⟨𝜌H
ℎ
𝒖H
ℎ
, 𝒖H

ℎ
⟩ and (𝐸𝑛+1

ℎ
, 1) = ⟨𝜌P

ℎ
𝑒P
ℎ
, 1⟩ + 1

2 ⟨𝜌P
ℎ
𝒖P
ℎ
, 𝒖P

ℎ
⟩. Recall that 𝑏𝝉(𝜽) = 0344

and 𝑏𝒟(𝜒) = 0 for periodic boundary conditions, thus by (12b) and 𝜌H
ℎ
= 𝜌P

ℎ
, the (12a) can be written as345

⟨𝜌P
ℎ 𝒖

P
ℎ , 𝜽ℎ⟩ +

Δ𝑡

Re
𝑎𝜺(𝒖∗ℎ , 𝜽ℎ) +

2Δ𝑡

3Re
𝑎𝜆(𝒖∗ℎ , 𝜽ℎ) = ⟨𝜌

H
ℎ 𝒖

H
ℎ , 𝜽ℎ⟩.

Plugging in 𝜽ℎ = (𝒖P
ℎ
+ 𝒖H

ℎ
)/2 = 𝒖∗

ℎ
, we have346

1

2
⟨𝜌P

ℎ 𝒖
P
ℎ , 𝒖

P
ℎ ⟩ +

Δ𝑡

Re
𝑎𝜺(𝒖∗ℎ , 𝒖

∗
ℎ) +

2Δ𝑡

3Re
𝑎𝜆(𝒖∗ℎ , 𝒖

∗
ℎ) =

1

2
⟨𝜌H

ℎ 𝒖
H
ℎ , 𝒖

H
ℎ ⟩. (14)

Taking 𝜒ℎ = 1 in (12c), we have347

⟨𝜌P
ℎ 𝑒
∗
ℎ , 1⟩ +

𝜃Δ𝑡𝜆
Re

𝑎𝒟(𝑒∗ℎ , 1) = ⟨𝜌
H
ℎ 𝑒

H
ℎ , 1⟩ +

𝜃Δ𝑡
Re

𝑏𝜺(𝒖∗ℎ , 1) +
2𝜃Δ𝑡
3Re

𝑏𝜆(𝒖∗ℎ , 1).

Recall that 𝑒∗ = 𝜃𝑒P + (1 − 𝜃)𝑒H, we have348

⟨𝜌P
ℎ 𝑒

P
ℎ , 1⟩ +

Δ𝑡𝜆
Re

𝑎𝒟(𝑒∗ℎ , 1) = ⟨𝜌
H
ℎ 𝑒

H
ℎ , 1⟩ +

Δ𝑡

Re
𝑏𝜺(𝒖∗ℎ , 1) +

2Δ𝑡

3Re
𝑏𝜆(𝒖∗ℎ , 1). (15)

Adding two equations (14) and (15), with the fact that 𝑎𝒟(𝑒∗ℎ , 1) = 0 and the identities 𝑎𝜺(𝒖∗ℎ , 𝒖
∗
ℎ
) = 𝑏𝜺(𝒖∗ℎ , 1)349

and 𝑎𝜆(𝒖∗ℎ , 𝒖
∗
ℎ
) = 𝑏𝜆(𝒖∗ℎ , 1), we obtain350

⟨𝜌H
ℎ 𝑒

H
ℎ , 1⟩ +

1

2
⟨𝜌H

ℎ 𝒖
H
ℎ , 𝒖

H
ℎ ⟩ = ⟨𝜌

P
ℎ 𝑒

P
ℎ , 1⟩ +

1

2
⟨𝜌P

ℎ 𝒖
P
ℎ , 𝒖

P
ℎ ⟩.

Therefore, we obtain (𝐸𝑛
ℎ
, 1) = (𝐸𝑛+1

ℎ
, 1). □351

3. A globally conservative and positivity-preserving postprocessing procedure352

For Runge–Kutta DG method solving the hyperbolic subproblem (H), i.e., compressible Euler equations,353

it is well understood that the simple Zhang–Shu limiter can preserve the positivity without destroying354

conservation and high order accuracy [3, 5]. Let 𝑆ℎ be the union of sets 𝑆H,int
𝐾

and 𝑆H,aux
𝐾

for all 𝐾 ∈ 𝒯ℎ . By355

the results in [3, 5], for Step 1 and Step 5 in the fully discrete scheme in Section 2.4, we have356

1. The DG polynomial 𝑼𝑛
ℎ
(𝒙𝑞) ∈ 𝐺 for all 𝒙𝑞 ∈ 𝑆ℎ gives 𝑼H

ℎ
(𝒙𝑞) ∈ 𝐺 for all 𝒙𝑞 ∈ 𝑆ℎ .357

2. If 𝑼P
ℎ
(𝒙𝑞) ∈ 𝐺 for all 𝒙𝑞 ∈ 𝑆ℎ , then the DG polynomial 𝑼𝑛+1

ℎ
(𝒙𝑞) ∈ 𝐺 for all 𝒙𝑞 ∈ 𝑆ℎ .358

Moreover, by [7, Lemma 1], the 𝐿2 projection step (11) in Step 2 does not affect the positivity, i.e., the359

positivity of 𝑒H
ℎ

is ensured if conserved variables are in the invariant domain. Therefore, in order to construct360

a conservative and positivity-preserving scheme, we only need to enforce 𝑼P
ℎ
(𝒙𝑞) ∈ 𝐺𝜖 for all 𝒙𝑞 ∈ 𝑆ℎ in361

Step 4 without affecting the global conservation in the fully discrete scheme in Section 2.4.362

When using the backward Euler time discretization (e.g., 𝜃 = 1) in Step 3, positivity can be achieved if363

the discrete Laplacian is monotone [7]. For example, the discrete Laplacian from Q1 IIPG forms an M-matrix364

unconditionally. Moreover, the monotonicity of Q𝑘 spectral element method (continuous finite element with365

Gauss–Lobatto quadrature) for 𝑘 = 1, 2, 3 is proven in [42, 43, 44], see also [9, 8, 10], and such a result was366

used in [7] for solving (3).367

To improve the time accuracy, the Crank–Nicolson scheme with 𝜃 = 1
2 can be used in Step 3. However,368

in this case, a monotone system matrix no longer implies the positivity of internal energy, which poses a sig-369

nificant challenge, though positivity might still be ensured under a small time step Δ𝑡 = 𝒪(ReΔ𝑥2). Instead,370

we consider a postprocessing procedure based on constraint optimization to ensure global conservation and371

positivity. The constraint optimization-based cell average limiter can be formulated as a nonsmooth convex372

minimization problem and efficiently solved by utilizing the generalized Douglas–Rachford splitting method373

[50].374
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3.1. A cell average postprocessing approach375

By Theorem 1, the DG polynomial 𝑼P
ℎ

preserves the global conservation. But it may violate the positivity376

of internal energy. The following two-stage limiting strategy can be employed to enforce 𝑼P
ℎ
(𝒙𝑞) in the set377

of admissible states for any quadrature points 𝒙𝑞 ∈ 𝑆ℎ without losing high order accuracy and conservation.378

Step 1. Given 𝑼P
ℎ
, if any cell average has negative internal energy, then post process all cell averages379

of the total energy variable without losing global conservation such that each cell average of the DG380

polynomial 𝑼P
ℎ

stays in the admissible state set 𝐺𝜖.381

Step 2. Apply the Zhang–Shu limiter to the postpocessed DG polynomial to ensure internal energy at382

any quadrature points in 𝑆ℎ is positive.383

For a postprocessing procedure, minimal modifications to the original DG polynomial is often preferred.384

In our scheme, the density 𝜌P
ℎ
= 𝜌H

ℎ
is already positive, ensured by a high order accurate positivity-preserving385

compressible Euler solver. Consider the scheme for solving the subproblem (P), which is fully decoupled.386

The momentum 𝒎P
ℎ

or velocity 𝒖P
ℎ

is stably approximated. With the given 𝜌P
ℎ

and 𝒖P
ℎ
, when solving (5c),387

which is a heat equation in the parabolic subproblem, a high order scheme may not preserve positivity in388

general. To this end, we consider a simple approach by only post processing the total energy variable 𝐸P
ℎ

to389

enforce the positivity of internal energy, without losing conservation for 𝐸P
ℎ
.390

Let 𝐾𝑖 (𝑖 = 1, · · · , 𝑁) be all the cells and 𝑼P
𝑖
= [𝜌P

𝑖
,𝒎P

𝑖
, 𝐸P

𝑖
]
T

be a vector denoting the cell average of391

the DG polynomial 𝑼P
ℎ

on the 𝑖-th cell 𝐾𝑖 , namely 𝑼P
𝑖
= 1
|𝐾𝑖 |

∫
𝐾𝑖
𝑼P
ℎ
.392

Then we apply the globally conservative postprocessing procedure (6) only to the total energy DG393

polynomial such that the modified DG polynomials have good cell averages, which have positive internal394

energy.395

3.2. The accuracy of the postprocessing396

It is obvious that the minimizer to (6a) preserves the global conservation of total energy and the positivity397

of internal energy, since these two are the constraints. Next, we discuss the accuracy of the postprocessing398

step (6a).399

To understand how (6a) affects accuracy, consider evolving (5c) with given 𝜌(𝒙 , 𝑡) = 𝜌P
ℎ
(𝒙) and 𝒖(𝒙 , 𝑡) =400

𝒖∗
ℎ
(𝒙), ∀𝑡 by one time step in the Strang splitting (7), i. e., we consider the initial value problem401 {

𝜌P
ℎ
𝜕𝑡 𝑒 − 𝜆

ReΔ𝑒 =
1
Re𝝉(𝒖∗ℎ) : ∇𝒖

∗
ℎ
, 𝑡 ∈ (𝑡𝑛 , 𝑡𝑛 + Δ𝑡),

𝑒(𝒙 , 𝑡𝑛) = 𝑒H
ℎ
(𝒙).

(16)

Due to the tensor inequality 𝜺(𝒖) : 𝜺(𝒖) ≥ 1
𝑑
(∇ · 𝒖)2, we know 𝝉(𝒖∗

ℎ
) : ∇𝒖∗

ℎ
= 2

(
𝜺(𝒖∗

ℎ
) : 𝜺(𝒖∗

ℎ
) − 1

3 (∇ · 𝒖∗ℎ)
2
)
≥ 0.402

We mention that a similar property also holds for the interior penalty DG scheme at the discrete level, i. e.,403

the right hand side of (12c) is also positive, see [7, Lemma 3]. Let 𝑒 denote the exact solution to (16). Since404

the right-hand side of (16) is non-negative, the exact solution to (16) with an initial condition 𝑒H
ℎ

> 0 is405

positive, thus we assume 𝑒(𝒙 , 𝑡) ≥ 𝜖2 > 0.406

Notice 𝜌P
ℎ

is time independent, we have 𝜌P
ℎ
𝜕𝑡 𝑒 = 𝜕𝑡(𝜌P

ℎ
𝑒). Integrate (16) over the spatial domain Ω and407

use boundary condition ∇𝑒 · 𝒏 = 0, we get408

d

d𝑡

(∫
Ω

𝜌P
ℎ 𝑒d𝒙

)
=

1

Re

∫
Ω

𝝉(𝒖∗ℎ) : ∇𝒖
∗
ℎd𝒙.

Integrate the equation above over the time interval [𝑡𝑛 , 𝑡𝑛 + Δ𝑡], we have409 ∫
Ω

𝜌P
ℎ (𝒙)𝑒(𝒙 , 𝑡

𝑛 + Δ𝑡)d𝒙 =

∫
Ω

𝜌H
ℎ 𝑒

H
ℎ d𝒙 +

Δ𝑡

Re

∫
Ω

𝝉(𝒖∗ℎ) : ∇𝒖
∗
ℎd𝒙. (17)
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Consider the NIPG0 method for velocity, i. e., the NIPG method with zero penalty, which is the scheme410

(12c) we utilized in our numerical experiments. Recall (𝑘 + 1)𝑑 Gauss–Lobatto quadrature is accurate for411

(2𝑘 − 1)-order polynomial. Taking 𝜒ℎ = 1 in (12c), with (17) and the quadrature error for integrals, we have412 ∫
Ω

𝜌P
ℎ (𝒙)𝑒(𝒙 , 𝑡

𝑛 + Δ𝑡)d𝒙 = ⟨𝜌P
ℎ 𝑒

P
ℎ , 1⟩ + 𝐶ℎ

2𝑘 .

Let 𝑒𝐼(𝒙) be the piecewise Q𝑘 interpolation polynomial of the exact solution 𝑒(𝒙 , 𝑡𝑛 +Δ𝑡) at (𝑘 + 1)𝑑 Gauss–413

Lobatto points at each cell. We have414

⟨𝜌P
ℎ 𝑒𝐼 , 1⟩ =

∫
Ω

𝜌P
ℎ (𝒙)𝑒(𝒙 , 𝑡

𝑛 + Δ𝑡)d𝒙 + 𝐶ℎ2𝑘 = ⟨𝜌P
ℎ 𝑒

P
ℎ , 1⟩ + 𝐶ℎ

2𝑘 .

Let 𝑒ℎ(𝒙) = 𝑒𝐼(𝒙) − 𝐶
⟨𝜌P

ℎ
,1⟩ ℎ

2𝑘 , then 𝑒ℎ(𝒙) = 𝑒(𝒙) + 𝒪(ℎ𝑘+1) and ⟨𝜌P
ℎ
𝑒ℎ , 1⟩ = ⟨𝜌P

ℎ
𝑒P
ℎ
, 1⟩. Define (𝒎P

ℎ
, 𝐸

Interp

ℎ
) ∈415

X𝑘
ℎ
×𝑀𝑘

ℎ
as an 𝐿2 projection of (𝜌P

ℎ
, 𝒖P

ℎ
, 𝑒ℎ) ∈ 𝑀𝑘

ℎ
×X𝑘

ℎ
×𝑀𝑘

ℎ
:416

⟨𝒎P
ℎ , 𝜽ℎ⟩ = ⟨𝜌

P
ℎ 𝒖

P
ℎ , 𝜽ℎ⟩, ∀𝜽ℎ ∈ X

𝑘
ℎ

and ⟨𝐸Interp

ℎ
, 𝜒ℎ⟩ = ⟨𝜌P

ℎ 𝑒ℎ , 𝜒ℎ⟩ + ⟨
𝒎P
ℎ

2𝜌P
ℎ

,𝒎P
ℎ 𝜒ℎ⟩, ∀𝜒ℎ ∈ 𝑀

𝑘
ℎ
. (18)

Notice that 𝒎P
ℎ

in (18) is exactly the same as 𝒎P
ℎ

in (13), and only 𝐸Interp

ℎ
is different.417

Let 𝐸Interp

𝑖
be the cell average of 𝐸Interp

ℎ
at the 𝑖-th cell and 𝐸Interp

ℎ
= [𝐸Interp

1 , 𝐸
Interp
2 , · · · , 𝐸Interp

𝑁
]
T

. Next,418

we verify that 𝐸Interp

ℎ
satisfies both constraints in (6a), when the mesh size ℎ is small.419

• First, by taking 𝜒ℎ = 1 in (13) and (18), we obtain the global conservation of total energy:420

𝑁∑
𝑖=1

𝐸
Interp

𝑖
|𝐾𝑖 | = ⟨𝐸Interp

ℎ
, 1⟩ = ⟨𝐸P

ℎ , 1⟩ =
𝑁∑
𝑖=1

𝐸P
𝑖
|𝐾𝑖 |.

• Second, for small enough ℎ such that |𝐶 |
⟨𝜌P

ℎ
,1⟩ ℎ

2𝑘 ≤ 1
2 𝜖2, we can take 𝜖 ≤ 1

2 𝜖2𝜌
P
ℎ

to have(
𝜖2 −

|𝐶 |
⟨𝜌P

ℎ
, 1⟩

ℎ2𝑘

)
𝜌P
ℎ ≥

1

2
𝜖2𝜌

P
ℎ ≥ 𝜖.

Then following the proof of Lemma 2 in [7, Section 3.2], we have421

𝐸
Interp

𝑖
− 1

2

∥𝒎P
𝑖
∥

𝜌P
𝑖

≥ 𝜖.

Since 𝐸
∗
ℎ is the minimizer to (6a) and [𝜌P

𝑖 ,𝒎
P
𝑖 , 𝐸

Interp

𝑖
]
T

satisfies the constraints of (6a), we have422 


𝐸 ∗ℎ − 𝐸Interp

ℎ




 ≤ 


𝐸 ∗ℎ − 𝐸P
ℎ




 + 


𝐸P
ℎ
− 𝐸Interp

ℎ




 ≤ 2



𝐸P

ℎ
− 𝐸Interp

ℎ




 . (19)

To summarize the discussion for accuracy, we conclude that the accuracy of the postprocessing (6a) can423

be understood in the sense of (19). In other words, if considering the error approximating the exact solution424

of (16) in Strang splitting, then the minimizer to (6a) is not significantly worse than the DG solution 𝐸P
ℎ
.425
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3.3. An efficient solver by Douglas–Rachford splitting with nearly optimal parameters426

The key computational issue here is how to solve (6a) efficiently, and the same approach in [50] can427

be used. For completeness, we briefly describe the main algorithm and result in [50]. For convenience, we428

rewrite the minimization problem (6a) in matrix-vector form using different names for variables.429

For simplicity, we only consider a uniform mesh with |𝐾𝑖 | = ℎ𝑑. Extensions to non-uniform430

meshes are straightforward. Thus we define a matrix A = [1, 1, · · · , 1] ∈ R1×𝑁 , where 𝑁 is the total number431

of cells. A vector 𝒘 ∈ R𝑁 is introduced to store the cell average of DG polynomial 𝐸P
ℎ
, namely the 𝑖th entry432

of 𝒘 equals 𝐸P
𝑖
. The indicator function in constraint optimization is defined as 𝜄Λ for a set Λ: 𝜄Λ(𝒙) = 0 if433

𝒙 ∈ Λ and 𝜄Λ(𝒙) = +∞ if 𝒙 ∉ Λ. Then (6a) is equivalent to the following minimization:434

min
𝒙∈R𝑁

𝛼
2
∥𝒙 −𝒘∥22 + 𝜄Λ1

(𝒙) + 𝜄Λ2
(𝒙). (20)

where 𝛼 > 0 is a constant, and the conservation constraint and the positivity-preserving constraint give two435

sets436

Λ1 = {𝒙 : A𝒙 = 𝑏} and Λ2 = {𝒙 : 𝑥𝑖 −
∥𝒎 𝑖 ∥2
2𝜌𝑖

≥ 𝜖, ∀𝑖 = 1, · · · , 𝑁}.

Splitting algorithms naturally arise when solving minimization problem of the form min𝒙 𝑓 (𝒙) + 𝑔(𝒙),437

where functions 𝑓 and 𝑔 are convex, lower semi-continuous (but not otherwise smooth), and have simple438

subdifferentials and resolvents. Let 𝐹 = 𝜕 𝑓 and 𝐺 = 𝜕𝑔 denote the subdifferentials of 𝑓 and 𝑔. Then, a439

sufficient and necessary condition for 𝒙 being a minimizer is 0 ∈ 𝐹(𝒙)+𝐺(𝒙). The resolvents J𝛾𝐹 = (I+𝛾𝐹)−1440

and J𝛾𝐺 = (I + 𝛾𝐺)−1 are also called proximal operators, as J𝛾𝐹 maps 𝒙 to argmin𝒛𝛾 𝑓 (𝒛) + 1
2 ∥𝒛 − 𝒙∥22 and441

J𝛾𝐺 is defined similarly. The reflection operators are defined as R𝛾𝐹 = 2J𝛾𝐹 − I and R𝛾𝐺 = 2J𝛾𝐺 − I, where I442

is the identity operator.443

The generalized Douglas–Rachford splitting method for solving the minimization problem min𝒙 𝑓 (𝒙)+𝑔(𝒙)444

can be written as:445  𝒚𝑘+1 = 𝜆
R𝛾𝐹R𝛾𝐺 + I

2
𝒚𝑘 + (1 − 𝜆)𝒚𝑘 ,

𝒙𝑘+1 = J𝛾𝐺(𝒚𝑘+1),
(21)

where 𝒚 is an auxiliary variable, 𝜆 belongs to (0, 2] is a parameter, and 𝛾 > 0 is step size. We get the446

Douglas–Rachford splitting when take 𝜆 = 1 in (21). In the limiting case 𝜆 = 2 is the Peaceman–Rachford447

splitting. For two convex functions 𝑓 (𝒙) and 𝑔(𝒙), the (21) converges for any positive step size 𝛾 and any448

fixed 𝜆 ∈ (0, 2), see [51]. If one function is strongly convex, then 𝜆 = 2 also leads to converges. Using the449

definition of reflection operators, the (21) can be expressed as follows:450 {
𝒚𝑘+1 = 𝜆J𝛾𝐹(2𝒙𝑘 − 𝒚𝑘) + 𝒚𝑘 − 𝜆𝒙𝑘 ,
𝒙𝑘+1 = J𝛾𝐺(𝒚𝑘+1).

(22)

We split the objective function in (20) into451

𝑓 (𝒙) = 𝛼
2
∥𝒙 −𝒘∥2 + 𝜄Λ1

(𝒙) and 𝑔(𝒙) = 𝜄Λ2
(𝒙).

It is obvious that the set Λ1 is convex. With ideal gas equation of state, the function 𝜌𝑒 is concave, see452

[3, 5] and references therein. Thus, by Jensen’s inequality, the set Λ2 is also convex. Therefore, the function453

𝑓 is strongly convex and the function 𝑔 is convex, given that (22) converges to the unique minimizer. After454

applying (22) solving the minimization to machine precision, the positivity constraint is strictly satisfied and455

the conservation constraint is enforced up to the round-off error. The subdifferentials and the associated456

resolvents are given as follows:457
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• The subdifferential of function 𝑓 is458

𝜕 𝑓 (𝒙) = 𝛼(𝒙 −𝒘) + ℛ(AT),

where ℛ(AT) denotes the range of the matrix AT.459

• The subdifferential of function 𝑔 is460

[𝜕𝑔(𝒙)]𝑖 =
{
0, if 𝑥𝑖 >

∥𝒎 𝑖 ∥2
2𝜌𝑖
+ 𝜖,

[−∞, 0], if 𝑥𝑖 =
∥𝒎 𝑖 ∥2
2𝜌𝑖
+ 𝜖.

• For the function 𝑓 (𝒙) = 𝛼
2 ∥𝒙 −𝒘∥22 + 𝜄Λ1

(𝒙), the associated resolvent is461

J𝛾𝐹(𝒙) =
1

𝛾𝛼 + 1
(
A+(𝑏 − A𝒙) + 𝒙

)
+ 𝛾𝛼

𝛾𝛼 + 1𝒘 , (23)

where A+ = AT(AAT)−1 denotes the pseudo inverse of the matrix A.462

• For the function 𝑔(𝒙) = 𝜄Λ2
(𝒙), the associated resolvent is J𝛾𝐺(𝒙) = S(𝒙), where S is a cut-off operator463

defined by464

[S(𝒙)]𝑖 = max
(
𝑥𝑖 ,
∥𝒎 𝑖 ∥2
2𝜌𝑖

+ 𝜖
)
, ∀𝑖 = 1, · · · , 𝑁. (24)

Define parameter 𝑐 = 1
𝛾𝛼+1 , which gives 𝛾𝛼

𝛾𝛼+1 = 1 − 𝑐. Using the expressions of resolvents in (23) and (24),465

we obtain the generalized Douglas–Rachford splitting method for solving the minimization problem (20) in466

matrix-vector form:467 
𝒛𝑘 = 2𝒙𝑘 − 𝒚𝑘 ,

𝒚𝑘+1 = 𝜆𝑐
(
A+(𝑏 − A𝒛𝑘) + 𝒛𝑘

)
+ 𝜆(1 − 𝑐)𝒘 + 𝒚𝑘 − 𝜆𝒙𝑘 ,

𝒙𝑘+1 = S(𝒚𝑘+1).
(25)

As a brief summary, after obtaining the DG polynomial 𝐸P
ℎ
, compute cell averages to generate vector 𝒘,468

where the 𝑖th entry of 𝒘 equals 𝐸P
ℎ
|𝐾𝑖 , then our cell average limiter can be implemented as follows.469

Algorithm DR. To start the generalized Douglas–Rachford iteration, set 𝒚0 = 𝒘, 𝒙0 = S(𝒘), and 𝑘 = 0.470

Compute parameters 𝑐 and 𝜆 by using formula in Remark 2. And select a small 𝜖 for numerical tolerance471

of the conservation error.472

Step 1. Compute intermediate variable 𝒛𝑘 = 2𝒙𝑘 − 𝒚𝑘 .473

Step 2. Compute auxiliary variable 𝒚𝑘+1 = 𝜆𝑐
(
A+(𝑏 − A𝒛𝑘) + 𝒛𝑘

)
+ 𝜆(1 − 𝑐)𝒘 + 𝒚𝑘 − 𝜆𝒙𝑘 .474

Step 3. Compute 𝒙𝑘+1 = S(𝒚𝑘+1).475

Step 4. It is convenient to employ the norm ∥ · ∥ℎ = ℎ𝑑/2∥ · ∥ to measure the conservation error. If476

stopping criterion ∥𝒚𝑘+1 − 𝒚𝑘 ∥ℎ < 𝜖 is satisfied, then terminate and output 𝒙∗ = 𝒙𝑘+1, otherwise set477

𝑘 ← 𝑘 + 1 and go to Step 1.478

In the algorithm above, 2𝒙𝑘 can be regarded as 𝒙𝑘 + 𝒙𝑘 ; the 𝜆(1− 𝑐)𝒘 remains unchanged during iteration;479

and each entry of A+(𝑏 −A𝒛𝑘) + 𝒛𝑘 can be computed by 𝑧𝑘
𝑖
+ 1

𝑁 (𝑏 −
∑
𝑖 𝑧

𝑘
𝑖
), thus if only counting number of480

computing multiplications and taking maximum, the computational complexity of each iteration is 3𝑁 + 1.481
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Remark 2. The analysis in [50] proves the asymptotic linear convergence and suggests a simple choice of482

nearly optimal parameters 𝑐 and 𝜆 in (25). Let 𝑟 be the number of bad cells defined by 𝑼P
𝑖

∉ 𝐺𝜖 and let483

𝜃̂ = cos−1
√

𝑟
𝑁 , then we have:484


𝑐 = 1

2 , 𝜆 = 4

2−cos (2𝜃̂) , if 𝜃̂ ∈ ( 38𝜋, 12𝜋],
𝑐 = 1

(cos 𝜃̂+sin 𝜃̂)2 , 𝜆 = 2
1+ 1

1+cot 𝜃̂−
1

(cos 𝜃̂+sin 𝜃̂)2
, if 𝜃̂ ∈ ( 14𝜋, 38𝜋],

𝑐 = 1

(cos 𝜃̂+sin 𝜃̂)2 , 𝜆 = 2, if 𝜃̂ ∈ (0, 14𝜋].
(26)

3.4. Implementation485

We provide details on implementing our scheme. The time-stepping strategy employed to solve subprob-486

lem (H) is identical to the one described in Section 3.2 of [58]. For the sake of completeness, we include a487

list of the steps below.488

Algorithm H. At time 𝑡𝑛 , select a trial hyperbolic step size Δ𝑡H. The parameter 𝜖 is a prescribed489

small positive number for numerical admissible state set 𝐺𝜖. The input DG polynomial 𝑼𝑛
ℎ

satisfies490

𝑼𝑛
ℎ
(𝒙𝑞) ∈ 𝐺𝜖, for all 𝒙𝑞 ∈ 𝑆ℎ .491

Step H1. Given DG polynomial 𝑼𝑛
ℎ
, compute the first stage to obtain 𝑼 (1)

ℎ
.492

• If the cell averages 𝑼
(1)
𝐾 ∈ 𝐺𝜖, for all 𝐾 ∈ 𝒯ℎ , then apply Zhang–Shu limiter described in Section 2.3493

to obtain 𝑼 (1)
ℎ

and go to Step H2.494

• Otherwise, recompute the first stage with halved step size Δ𝑡H ← 1
2Δ𝑡

H. Notice, when Δ𝑡H satisfies495

the positivity-preserving hyperbolic CFL proven in [3] (see also [5]), the 𝑼
(1)
𝐾 ∈ 𝐺𝜖 is guaranteed.496

Step H2. Given DG polynomial 𝑼 (1)
ℎ

, compute the second stage to obtain 𝑼 (2)
ℎ

.497

• If the cell averages 𝑼
(2)
𝐾 ∈ 𝐺𝜖, for all 𝐾 ∈ 𝒯ℎ , then apply Zhang–Shu limiter to obtain 𝑼 (2)

ℎ
and go498

to Step H3.499

• Otherwise, return to Step H1 and restart the computation with halved step size Δ𝑡H ← 1
2Δ𝑡

H.500

Notice that the results proven in [3] ensure that there is not an infinite restarting loop, see [5].501

Step H3. Given DG polynomial 𝑼 (2)
ℎ

, compute the third stage to obtain 𝑼 (3)
ℎ

.502

• If the cell averages 𝑼
(3)
𝐾 ∈ 𝐺𝜖, for all 𝐾 ∈ 𝒯ℎ , then apply Zhang–Shu limiter to obtain 𝑼H

ℎ
. We503

finish the current SSP Runge–Kutta.504

• Otherwise, return to Step H1 and restart the computation with halved step size Δ𝑡H ← 1
2Δ𝑡

H.505

Notice that the results proven in [3] ensure that there is not an infinite restarting loop, see [5].506

The time-stepping strategy for solving the compressible NS equations is as follows. The initial condition507

𝑼0
ℎ

is constructed by 𝐿2 projection of 𝑼0 with Zhang–Shu limiter on 𝑆ℎ , e.g., we have 𝑼0
ℎ
(𝒙𝑞) ∈ 𝐺𝜖, for all508

𝒙𝑞 ∈ 𝑆ℎ .509

Algorithm CNS. At time 𝑡𝑛 , select a desired time step size Δ𝑡. The parameter 𝜖 is a prescribed510

small positive number for numerical admissible state set 𝐺𝜖. The input DG polynomial 𝑼𝑛
ℎ

satisfies511

𝑼𝑛
ℎ
(𝒙𝑞) ∈ 𝐺𝜖, for all 𝒙𝑞 ∈ 𝑆ℎ .512

Step CNS1. Given DG polynomial 𝑼𝑛
ℎ
, solve subproblem (H) form time 𝑡𝑛 to 𝑡𝑛 + Δ𝑡

2 .513

• Set 𝑚 = 0. Let 𝑡𝑛,0 = 𝑡𝑛 and 𝑼𝑛,0
ℎ

= 𝑼𝑛
ℎ
.514
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• Given 𝑼𝑛,𝑚
ℎ

at time 𝑡𝑛,𝑚 , solve (H) to compute 𝑼𝑛,𝑚+1
ℎ

by the Algorithm H. Let 𝑡𝑛,𝑚+1 = 𝑡𝑛,𝑚+Δ𝑡H.515

If 𝑡𝑛,𝑚+1 = 𝑡𝑛 + Δ𝑡
2 , then apply Zhang–Shu limiter for 𝑼𝑛,𝑚+1

ℎ
on all Gauss–Lobatto points in 𝑆P

𝐾
,516

for all 𝐾 ∈ 𝒯ℎ , we obtain 𝑼H
ℎ

. Go to Step CNS2. Otherwise, set 𝑚 ← 𝑚 + 1 and repeat solving517

(H) by Algorithm H until reaching 𝑡𝑛 + Δ𝑡
2 . Let 𝐿 be the smallest integer satisfying 2𝐿 − 3 ≥ 𝑘 for518

Q𝑘 basis, when using Q𝑘 DG method to compute 𝑼𝑛,𝑚+1
ℎ

, we can take519

Δ𝑡H = min

{
𝑎

1

max𝑒 𝛼𝑒

1

𝐿(𝐿 − 1)Δ𝑥, 𝑡
𝑛 + Δ𝑡

2
− 𝑡𝑛,𝑚

}
as a trial hyperbolic step size to start Algorithm H. We refer to [5] for choosing the value of520

parameter 𝑎 on above.521

Step CNS2. Given DG polynomial 𝑼H
ℎ

, take 𝐿2 projection to compute (𝒖H
ℎ
, 𝑒H
ℎ
).522

Step CNS3. Given DG polynomials (𝜌H
ℎ
, 𝒖H

ℎ
, 𝑒H
ℎ
), solve subproblem (P) form time 𝑡𝑛 to 𝑡𝑛 + Δ𝑡.523

Step CNS4. Given DG polynomials (𝜌P
ℎ
, 𝒖P

ℎ
, 𝑒P
ℎ
), take 𝐿2 projection to compute 𝑼P

ℎ
.524

• Notice that the postprocessing (6) be applied to either the whole computational domain or a large525

enough local region containing negative cells. When possible, first define a local region of trouble526

cells defined by 𝑼P
𝑖
∉ 𝐺𝜖. Let 𝑇 ⊆ {1, 2, · · · , 𝑁} be the indices of the local region containing all527

cells with negative averages 𝑼P
𝑖
∉ 𝐺𝜖, and let |𝑇 | be the number of cells in the local region marked528

by indices in the set 𝑇. Then the postprocessing on the local region is given by529

min
𝐸𝑖

∑
𝑖∈𝑇

���𝐸𝑖 − 𝐸P
𝑖

���2 subjects to
∑
𝑖∈𝑇

𝐸𝑖 |𝐾𝑖 | =
∑
𝑖∈𝑇

𝐸P
𝑖
|𝐾𝑖 | and [𝜌P

𝑖
,𝒎P

𝑖
, 𝐸𝑖]

T
∈ 𝐺𝜖 , ∀𝑖 ∈ 𝑇. (27a)

Let 𝐸
∗
ℎ = [𝐸 ∗1 , · · · , 𝐸

∗
𝑁 ]

T
be the minimizer. Then we correct the DG polynomial cell averages for530

the total energy variable by a constant531

𝐸𝑖(𝒙) = 𝐸P
𝑖 (𝒙) − 𝐸P

𝑖
+ 𝐸∗𝑖 , ∀𝑖 ∈ 𝑇. (27b)

Notice that 𝑇 cannot contain only the negative cells, which will cause the feasible set in (27a) to532

be empty, i.e., it is impossible to modify only negative cells to achieve positivity, without affecting533

conservation. If it is difficult to define such a set 𝑇, we can simply take 𝑇 = {1, 2, · · · , 𝑁}, i.e., the534

whole computational domain. For certain problems, it is straightforward to define a proper 𝑇, see535

the remark below.536

• Solve (27a) for the region defined by indices in 𝑇 by the Douglas–Rachford splitting algorithm537

(25) with nearly optimal parameters (26) using 𝜃̂ = cos−1
√

𝑟
|𝑇 | . Then update or postprocess the538

cell averages of the DG polynomial 𝑼P
ℎ

by (27b).539

• With positive cell averages 𝑼P
𝑖
∈ 𝐺𝜖 ensured by the postprocessing step (6), we can apply the540

Zhang–Shu limiter to 𝑼P
ℎ

to ensure positivity on all points in 𝑆ℎ .541

Step CNS5. Given DG polynomial 𝑼P
ℎ
, use adaptive time-stepping strategy to solve subproblem (H)542

form time 𝑡𝑛 + Δ𝑡
2 to 𝑡𝑛 + Δ𝑡.543

Remark 3. For the sake of robustness and efficiency, whenever possible, one should apply the postprocessing544

(27) to a subset of cells (i.e., 𝑇 is a strict subset of {1, 2, · · · , 𝑁}) containing all trouble cells and also some545

good cells, rather than the whole computational domain (i.e., 𝑇 = {1, 2, · · · , 𝑁}). For example, in the 2D546
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Sedov blast wave test in Section 4.5, the initial total energy is 10−12 everywhere except in the cell at the547

lower left corner, and we can define 𝑇 as548

𝑇 =

{
𝑖 : either 𝑼P

𝑖
∉ 𝐺𝜖 or 𝐸P

𝑖
− 1

2
∥𝒎P

𝑖
∥/𝜌P

𝑖
≥ 10−10

}
. (28)

By such a definition of 𝑇 for each time step, the gray region in the Figure 2 will not be modified by the549

postprocessing. Note, the number of cells contained in 𝑇 may various at each time step.

Figure 2: DG with Q2 basis for 2D Sedov blast wave test. The middle figure is the zoom view of the left figure: the shock is
marked black; the negative cells are highlighted by the red marks; by the definition (28), 𝑇 does not include cells in the gray
region in which the exact solution is supposed to be a constant. Right: the actual convergence rate of the Douglas–Rachford
splitting algorithm (25) with nearly optimal parameters (26) for solving (27a) for the 2D Sedov problem (at one particular time
step for the left figure) matches well the predicated rate from analysis (asymptotic linear convergence from analysis using the

estimated principle angle 𝜃̂ = cos−1
√

𝑟
|𝑇 | ), see [50] for more details on such a provable convergence rate.

550

4. Numerical experiments551

In this section, we validate our full numerical scheme through representative two-dimensional benchmark552

tests, including the Lax shock tube, double rarefraction, Sedov blast wave, shock diffraction, shock reflection-553

diffraction, and high Mach number astrophysical jet problems.554

For penalty parameters in interior penalty DG method for solving (P), in the Q1 scheme, we set 𝜎 = 2555

on Γℎ , 𝜎 = 4 on 𝜕Ω, and 𝜎̃ = 2; in the Q𝑘 (𝑘 ≥ 2) schemes, we set 𝜎 = 0 on all faces, namely using NIPG0556

method for the velocity, and 𝜎̃ = 2𝑘 for the internal energy. We take 𝜖 = 10−13 as the lower bound for the557

numerical admissible state set in all tests except the astrophysical jet simulations, where 𝜖 = 10−8 is used.558

The ideal gas constant is 𝛾 = 1.4 and the Prandtl number is Pr = 0.72. The Reynolds number for all559

tests is Re = 1000 unless otherwise specified.560

In all physical simulations, we use 𝜃 = 1
2 in (9), namely utilizing the second order Crank–Nicolson561

method to solve (P). The postprocessing step for total energy variable after solving (P) is only triggered in562

the accuracy test in Section 4.2, the Sedov blast wave test, and astrophysical jets test.563

4.1. Accuracy tests564

We verify the order of accuracy of our numerical scheme by utilizing the method of manufactured smooth565

solutions. Let the computational domain Ω = [0, 1]2 and select the end time 𝑇 = 0.1024. The prescribed566

non-polynomial solutions are as follows:567

𝜌 = exp (−𝑡) sin 2𝜋(𝑥 + 𝑦) + 2,

𝒖 =

[
exp (−𝑡) cos (2𝜋𝑥) sin (2𝜋𝑦) + 2
exp (−𝑡) sin (2𝜋𝑥) cos (2𝜋𝑦) + 2

]
,

𝑒 =
1

2
exp (−𝑡) cos (2𝜋(𝑥 + 𝑦)) + 1.
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Taking Reynolds number Re = 1 and parameter 𝜆 = 1 in (3), the boundary conditions and the right-hand568

side of the compressible NS equations are computed by above manufactured solutions. Define the discrete569

𝐿2
ℎ

error of density by570

∥𝜌𝑛
ℎ
− 𝜌(𝑡𝑛)∥2

𝐿2
ℎ

= Δ𝑥2
𝑁∑
𝑖=1

𝑁
H,vol
q∑
𝜈=1

𝜔𝜈

��� 𝑁loc∑
𝑗=1

𝜌𝑛𝑖𝑗 𝜑̂ 𝑗(𝒒̂𝜈) − 𝜌(𝑡𝑛) ◦ 𝑭𝑖(𝒒̂𝜈)
���2 ,

where 𝜔𝜈 and 𝒒̂𝜈 are the Gauss quadrature weights and points used in evaluating volume integrals in (H).571

The discrete 𝐿2
ℎ

errors for momentum and total energy are measured similarly. In addition, the discrete 𝐿2
ℎ

572

for 𝑼𝑛
ℎ

is defined by573

∥𝑼𝑛
ℎ
−𝑼 (𝑡𝑛)∥2

𝐿2
ℎ

= ∥𝜌𝑛
ℎ
− 𝜌(𝑡𝑛)∥2

𝐿2
ℎ

+ ∥𝒎𝑛
ℎ
−𝒎(𝑡𝑛)∥2

𝐿2
ℎ

+ ∥𝐸𝑛
ℎ
− 𝐸(𝑡𝑛)∥2

𝐿2
ℎ

.

If errΔ𝑥 denotes the error on a mesh with resolution Δ𝑥, then the rate is given by ln(errΔ𝑥/errΔ𝑥/2)/ln 2.574

For temporal convergence rate tests, we use Q3 scheme and fix the mesh resolution Δ𝑥 = 1/64 small575

enough such that the time error dominates. We choose NIPG method with 𝜎 = 0 to solve the second576

equation in subproblem (P) and choose IIPG method with 𝜎̃ = 8 to solve the third equation in subproblem577

(P). We observe the optimal temporal convergence rates, see Table 1.578

For spatial convergence rate tests, we use 𝜃 = 1
2 and fix time step size Δ𝑡 = 3.125 × 10−6 small enough579

such that the spatial error dominates and the hyperbolic CFL is satisfied. We choose NIPG method with580

𝜎 = 2 on Γℎ and 𝜎 = 4 on 𝜕Ω for Q1 scheme; and 𝜎 = 0 for Q𝑘 (𝑘 ≥ 2) scheme to solve the second equation581

in subproblem (P). We choose IIPG method with 𝜎̃ = 2𝑘 to solve the third equation in subproblem (P).582

For Q1, Q3, and Q5 schemes, we obtain the optimal spatial convergence rates, see Table 2. For Q2 and583

Q4 schemes, the convergence is suboptimal, which is as expected, since the NIPG and IIPG methods are584

suboptimal for even order spaces.

𝜃 Δ𝑡 ∥𝑼𝑁𝑇
ℎ
−𝑼 (𝑇)∥𝐿2

ℎ
Δ𝑡 ∥𝑼𝑁𝑇

ℎ
−𝑼 (𝑇)∥𝐿2

ℎ
rate Δ𝑡 ∥𝑼𝑁𝑇

ℎ
−𝑼 (𝑇)∥𝐿2

ℎ
rate

1 4 · 10−4 1.599 · 10−2 2 · 10−4 7.988 · 10−3 1.001 1 · 10−4 3.997 · 10−3 0.999
1
2 4 · 10−4 1.393 · 10−3 2 · 10−4 3.601 · 10−4 1.952 1 · 10−4 9.140 · 10−5 1.978

Table 1: Test of accuracy. The temporal error and convergence rates. 𝜃 = 1 backward Euler scheme for internal energy in
subproblem (P). 𝜃 = 1

2 Crank–Nicolson scheme for internal energy in subproblem (P).

𝑘 Δ𝑥 ∥𝑼𝑁𝑇
ℎ
−𝑼 (𝑇)∥𝐿2

ℎ
Δ𝑥 ∥𝑼𝑁𝑇

ℎ
−𝑼 (𝑇)∥𝐿2

ℎ
rate Δ𝑥 ∥𝑼𝑁𝑇

ℎ
−𝑼 (𝑇)∥𝐿2

ℎ
rate

1 1/24 1.209 · 10−1 1/25 3.071 · 10−2 1.977 1/26 7.728 · 10−3 1.991

2 1/24 5.116 · 10−2 1/25 1.413 · 10−2 1.856 1/26 3.718 · 10−3 1.926

3 1/23 4.945 · 10−3 1/24 2.974 · 10−4 4.056 1/25 1.813 · 10−5 4.036

4 1/23 3.221 · 10−4 1/24 1.677 · 10−5 4.264 1/25 1.012 · 10−6 4.051

5 1/22 7.374 · 10−4 1/23 1.387 · 10−5 5.733 1/24 2.087 · 10−7 6.054

Table 2: Test of accuracy. The spatial error and convergence rates. From top to bottom: the Q1 ,Q2 , · · · ,Q5 schemes using a
very small time step for a smooth solution.

585
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4.2. Convergence study for testing of preserving positivity586

In this part, we verify our numerical algorithm preserves positivity. Let the computational domain587

Ω = [0, 1]2 and the end time 𝑇 = 0.1024. The prescribed manufactured solutions are as follows:588

𝜌 = 1, 𝒖 =

[
0
0

]
, 𝑒 =

1

𝛾 − 1 (sin
8 (2𝜋(𝑥 + 𝑦)) + 10−12).

Taking Reynolds number Re = 1 and Prandtl number Pr = 1.4, namely with 𝛾 = 1.4 we have 𝜆 = 1. The589

boundary conditions and the system right-hand side are defined by the prescribed solutions. We utilize the590

same 𝐿2
ℎ

norm to measure error.591

We use the second order Crank–Nicolson time discretization for internal energy in parabolic sub-problem.592

Fix the time step size Δ𝑡 = 3.125 × 10−6 small enough such that the spatial error dominates. We choose593

NIPG method with 𝜎 = 2 on Γℎ and 𝜎 = 4 on 𝜕Ω for Q1 scheme; and 𝜎 = 0 for Q𝑘 (𝑘 ≥ 2) scheme to solve594

the second equation in subproblem (P). We choose IIPG method with 𝜎̃ = 2𝑘 to solve the third equation in595

subproblem (P). We obtain the expected convergence rates, see Table 3.

𝑘 Δ𝑥 ∥𝑼𝑁𝑇
ℎ
−𝑼 (𝑇)∥𝐿2

ℎ
Δ𝑥 ∥𝑼𝑁𝑇

ℎ
−𝑼 (𝑇)∥𝐿2

ℎ
rate Δ𝑥 ∥𝑼𝑁𝑇

ℎ
−𝑼 (𝑇)∥𝐿2

ℎ
rate Postprocessing

1 1/25 2.858 · 10−2 1/26 6.804 · 10−3 2.071 1/27 1.692 · 10−3 2.008 Yes

2 1/25 6.301 · 10−3 1/26 1.518 · 10−3 2.054 1/27 3.749 · 10−4 2.018 Yes

3 1/24 2.018 · 10−2 1/25 2.063 · 10−4 6.612 1/26 9.680 · 10−6 4.414 No

4 1/24 2.320 · 10−4 1/25 1.121 · 10−5 4.372 1/26 6.245 · 10−7 4.166 Yes

5 1/23 4.614 · 10−2 1/24 5.697 · 10−4 6.340 1/25 7.187 · 10−7 9.631 No

Table 3: Test of accuracy. The spatial error and convergence rates. From top to bottom: the Q1 ,Q2 , · · · ,Q5 schemes using a
very small time step for a smooth solution. In last column, “Yes” indicates the postprocesing (6) is triggered, otherwise “No”.

596

4.3. Lax shock tube problem597

We choose the computational domain Ω = [−5, 5] × [0, 2] and set the simulation end time 𝑇 = 1.3. We598

uniformly partition domain Ω by square cells with mesh resolution Δ𝑥 = 1/100. The initial conditions for599

density 𝜌0, velocity 𝒖0 = [𝑢0
𝑥 , 𝑢

0
𝑦]

T, and pressure 𝑝0 are prescribed as follows:600

[𝜌0 , 𝑢0
𝑥 , 𝑢

0
𝑦 , 𝑝

0]T =

{
[0.445, 0.698, 0, 3.528]T if 𝑥 ∈ [−5, 0),
[0.5, 0, 0, 0.571]T if 𝑥 ∈ [0, 5].

The top and bottom boundaries are set to be reflective when solving subproblem (H) and to be Neumann-601

type when solving subproblem (P). Dirichlet boundary conditions are applied to the left and right boundaries602

for both subproblems (H) and (P), with values equal to the initials before the wave reaches the boundary.603

The Figure 3 shows snapshots of the density field at the simulation final time 𝑇 = 1.3 in mountain view.604

4.4. Double rarefaction605

We choose the computational domain Ω = [−1, 1] × [0, 1] and set the simulation end time 𝑇 = 0.6. We606

uniformly partition domain Ω by square cells with mesh resolution Δ𝑥 = 1/640 for Q1 and Q2 schemes,607

Δ𝑥 = 1/480 for Q3 and Q4 schemes, and Δ𝑥 = 1/400 for Q5 and Q6 schemes. The initial conditions for608

density 𝜌0, velocity 𝒖0 = [𝑢0
𝑥 , 𝑢

0
𝑦]

T, and pressure 𝑝0 are prescribed as follows:609

[𝜌0 , 𝑢0
𝑥 , 𝑢

0
𝑦 , 𝑝

0]T =

{
[7, −1, 0, 0.2]T if 𝑥 ∈ [−1, 0),
[7, 1, 0, 0.2]T if 𝑥 ∈ [0, 1].
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Q1 scheme Q2 scheme Q3 scheme

Q4 scheme Q5 scheme Q6 scheme

Figure 3: Lax shock tube. The density field snapshots at time 𝑇 = 1.3 are displayed in the mountain view.

When solving subproblem (H), reflective boundary conditions are set for the top and bottom boundaries,610

while outflow conditions are set for the left and right boundaries. When solving subproblem (P), Neumann-611

type boundary conditions are applied to all boundaries. The Figure 4 shows snapshots of density field at612

the simulation final time 𝑇 = 0.6 in mountain view.

Q1 scheme Q2 scheme Q3 scheme

Q4 scheme Q5 scheme Q6 scheme

Figure 4: Double rarefaction. The density field snapshots at time 𝑇 = 0.6 are displayed in the mountain view.

613

4.5. Sedov blast wave614

The Sedov blast wave test is a standard benchmark in hyperbolic conservation law. It involves a blast615

wave generated by a strong explosion, which involves low density, low pressure, and a strong shock. This616

test holds great value in validating a positivity-preserving scheme.617
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Let the computational domain Ω = [0, 1.1]2 and the simulation end time 𝑇 = 1. We uniformly partition618

domain Ω by square cells with mesh resolution Δ𝑥 = 1.1/320. The initials are prescribed as piecewise619

constants: density 𝜌0 = 1 and velocity 𝒖0 = 0, for all points in Ω; the total energy 𝐸0 equals to 10−12620

everywhere except the cell at the lower left corner, where 0.244816/Δ𝑥2 is used. When solving subproblem621

(H), reflective boundary conditions are set for the left and bottom boundaries, while outflow conditions are622

set for the top and right boundaries. When solving subproblem (P), Neumann-type boundary conditions623

are applied to all boundaries.624

The Figure 5 shows snapshots of density field at the simulation final time 𝑇 = 1. The postprocessing625

(27) with (28) is used and necessary in all these tests. See Figure 6. Our numerical algorithm preserves626

conservation and the shock location is correct.

Q1 scheme Q2 scheme Q3 scheme

Q4 scheme Q5 scheme Q6 scheme

Figure 5: Sedov blast wave. The snapshots of density profile are taken at 𝑇 = 1. Plot of density: 50 exponentially distributed
contour lines of density from 0.001 to 6.

627

4.6. Shock diffraction628

In this test, we consider a right-moving high-speed shock, which is perpendicular to solid surface at initial629

and moves towards undisturbed air ahead. As the shock crosses the right corner, a region of low density630

and low pressure emerges, making this a challenging benchmark for conservation law.631

Let the computational domain Ω be the union of [0, 1]×[6, 11] and [1, 13]×[0, 11]. We set the simulation632

end time 𝑇 = 2.3. The initial condition is a pure right-moving shock of Mach number 5.09, initially located633

at {𝑥 = 0.5, 6 ≤ 𝑦 ≤ 12}, moving into undisturbed air ahead of the shock with a density of 1.4 and a pressure634

of 1. When solving subproblem (H), the left boundary is inflow, while the right and bottom boundaries635

are outflow. The fluid–solid boundaries {𝑦 = 6, 0 ≤ 𝑥 ≤ 1} and {𝑥 = 1, 0 ≤ 𝑦 ≤ 6} are reflective. In636
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Figure 6: From left to right Q2, Q4, Q6 DG schemes. Top: the number of bad cells after solving (P) at each time step (the
DG polynomial cell averages are not in the admissible set). Bottom: the number of Douglas–Rachford iterations need to reach
round-off convergence for solving (27a) with (28).

addition, the flow values on the top boundary are set to accurately depict the motion of the Mach 5.09637

shock. When solving subproblem (P), Neumann-type boundary conditions are applied to the fluid–solid638

surfaces, while Dirichlet boundary conditions are applied to the remaining boundaries. The Dirichlet data639

on the left and top boundaries are determined by the inflow data and the exact motion of the Mach 5.09640

shock. Additionally, the Dirichlet data on the right and bottom boundaries remain unchanged from their641

initial values before the shock wave reaches the boundary.642

The Figure 7 displays snapshots of density field at the simulation final time 𝑇 = 2.3. The results are643

comparable to those in [5].644

4.7. Mach 10 shock reflection and diffraction645

The high-speed shock reflection and diffraction test is a widely used benchmark [6]. We consider a Mach646

10 shock that moves to the right with a sixty-degree incident angle to the solid surface. As the shock across647

the sharp corner, areas of low density and low pressure appear. In the region of shock reflection, vortices648

are formed due to Kelvin–Helmholtz instabilities.649

Let the computational domain Ω be the union of [0, 4] × [0, 1] and [1, 4] × [−1, 0]. We set the simulation650

end time 𝑇 = 0.2. The initial condition is a right-moving shock of Mach number 10 positioned at ( 16 , 0) with651

a sixty-degree angle to the 𝑥-axis. The shock is moving into undisturbed air ahead of it, which has a density652

of 1.4 and a pressure of 1. In the post-shock region, the density is 8, the velocity is [4.125
√
3,−4.125]T, and653

the pressure is 116.5.654

When solving subproblem (H), the left boundary is inflow, while the right and bottom boundaries are655

outflow. Part of the fluid–solid boundaries {𝑦 = 0, 16 ≤ 𝑥 ≤ 1} and {𝑥 = 1,−1 ≤ 𝑦 ≤ 0} are reflective, and656

the post-shock condition is imposed at {𝑦 = 0, 0 ≤ 𝑥 ≤ 1
6 }. On the boundary with post-shock condition, the657

density, velocity, and pressure are fixed in time with the initial values to make the reflected shock stick to658

the solid wall. In addition, the flow values on the top boundary are set to accurately depict the motion of the659

Mach 10 shock. When solving subproblem (P), Neumann-type boundary conditions are applied to part of660

the fluid–solid surfaces associated with the reflective boundary in subproblem (H), while Dirichlet boundary661

conditions are applied to the remaining boundaries. The Dirichlet data on the left and top boundaries are662

determined by the inflow data and the exact motion of the Mach 10 shock. Additionally, the Dirichlet663

data on the right and bottom boundaries remain unchanged from their initial values before the shock wave664

reaches the boundary.665

From Figure 8, we see our scheme produces satisfactory non-oscillatory solutions with correct shock666
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Q1 scheme (Δ𝑥 = 1/96) Q2 scheme (Δ𝑥 = 1/96) Q3 scheme (Δ𝑥 = 1/64)

Q4 scheme (Δ𝑥 = 1/64) Q5 scheme (Δ𝑥 = 1/48) Q6 scheme (Δ𝑥 = 1/48)

Figure 7: Shock diffraction. The snapshots of density profile are taken at 𝑇 = 2.3. The gray colored region denotes solid. Plot
of density: 20 equally spaced contour lines from 0.066227 to 7.0668.

location and well-captured rollups. These test results are consistent with the observations for fully explicit667

high order accurate schemes in [5].668

4.8. High Mach number astrophysical jet669

To replicate the gas flows and shock wave patterns observed in the Hubble Space Telescope images, one670

can utilize theoretical models within a gas dynamics simulator, see [59, 60, 61]. We consider the Mach 2000671

astrophysical jets without radiative cooling to demonstrate the robustness of our scheme.672

Let the computational domain Ω = [0, 1] × [−0.5, 0.5]. We set the simulation end time 𝑇 = 0.001. In673

this example, we use the ideal gas constant 𝛾 = 5/3. The initial density 𝜌0 = 0.5, velocity 𝒖0 = 0, and674

pressure 𝑝0 = 10−6. When solving subproblem (H), the following inflow boundary conditions are set for the675

left boundary676

[𝜌, 𝑢𝑥 , 𝑢𝑦 , 𝑝]T =

{
[5, 800, 0, 0.4127]T if 𝑥 = 0 and |𝑦 | ≤ 0.05,

[0.5, 0, 0, 10−6]T if 𝑥 = 0 and |𝑦 | > 0.05,

while the outflow boundary conditions are set for the top, right, and bottom boundaries. When solving677

subproblem (P), Dirichlet boundary condition is applied to the left boundary, while Neumann-type boundary678

conditions are applied to the remaining boundaries. The Dirichlet data on the left boundary are determined679

by the inflow data of the Mach 2000 astrophysical jet.680

We take 𝜖 = 10−8 in defining 𝐺𝜖 and the Zhang–Shu limiter in Section 2.3. The postprocessing of DG681

cell averages is necessary in these simulations. For the sake of robustness and efficiency in the postprocessing682

step, we define the local region 𝑇 as the set of indices683

𝑇 =

{
𝑖 : either 𝑼P

𝑖
∉ 𝐺𝜖 or 𝐸P

𝑖
− 1

2
∥𝒎P

𝑖
∥/𝜌P

𝑖
≥ 2 ∗ 10−6

}
. (29)
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Q1 scheme (Δ𝑥 = 1/600) Q2 scheme (Δ𝑥 = 1/400) Q3 scheme (Δ𝑥 = 1/300)

Q4 scheme (Δ𝑥 = 1/240) Q5 scheme (Δ𝑥 = 1/200) Q6 scheme (Δ𝑥 = 1/180)

Figure 8: Mach 10 shock reflection and diffraction. The snapshots of density profile are taken at 𝑇 = 0.2. The gray colored
region denotes solid. Plot of density: 50 equally space contour lines from 0 to 25. Only contour lines are plotted. We can
observe that the scheme with higher order spatial accuracy indeed induces less artificial viscosity, despite that the temporal
accuracy is at most second order.

The Figure 9 shows snapshots of density field at the simulation final time 𝑇 = 0.001. See the performance684

of Douglas–Rachford splitting for solving (27a) in Figure 10.

Q1 scheme (Δ𝑥 = 1/640) Q2 scheme (Δ𝑥 = 1/640) Q3 scheme (Δ𝑥 = 1/480)

Q4 scheme (Δ𝑥 = 1/480) Q5 scheme (Δ𝑥 = 1/400) Q6 scheme (Δ𝑥 = 1/400)

Figure 9: Astrophysical jets. The snapshots of the density filed at 𝑇 = 0.001. Scales are logarithmic. We can observe that the
scheme with higher order spatial accuracy indeed induces less artificial viscosity, despite that the temporal accuracy is at most
second order.
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Figure 10: From left to right Q2, Q4, Q6 DG schemes. Top: the number of bad cells after solving (P) at each time step (the
DG polynomial cell averages are not in the admissible set). Bottom: the number of Douglas–Rachford iterations need to reach
round-off convergence for solving (27a) with (29).

5. Concluding remarks686

In this paper, we have constructed a semi-implicit DG scheme that is high order accurate in space,687

conservative, and positivity-preserving for solving the compressible NS equations. The time step constraint688

follows the standard hyperbolic CFL condition Δ𝑡 = 𝒪(Δ𝑥). Our scheme is fully decoupled, requiring689

only the sequential solving of two linear systems at each time step to achieve second order accuracy in690

time. Conservation and positivity are ensured through a postprocessing of the cell averages of total energy691

variable. A high order accurate cell average limiter can be formulated as a constraint minimization, which can692

be efficiently computed by using the generalized Douglas–Rachford splitting method with nearly optimal693

parameters. Numerical tests suggest that such a simple and efficient postprocessing of the total energy694

variable indeed renders the semi-implicit high order DG method with Strang splitting much more robust.695
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