MA/CS 615 Spring 2024 Homework #2

Due on 11:59pm on March 5. Submit both report (as PDF, handwritten is
OK) and codes (as a zip file) to gradescope. Late homework will not be given
any credit. Collaboration is OK but not encouraged. Indicate on your report
whether you have collaborated with others and whom you have collaborated
with.

1. (20 points) Analyze the wellposedness of the initial value problem

Up = QUgy + Plgzze, u(z,0) = f(2)
for four different cases:
e a>0,52>0.
e >0, 5<0.
e a<0,5>0.
e <0, 5<0.

2. (30 pts) The explicit third order strong stability preserving (SSP) Runge-Kutta method
can be written as
UM = Ur + ALf(U™),
U® =3un 4+ LU0 + ALf(UM)), (0.1)
U = LU 4 2(U@) 4 ALF(U®@)).

in which U® and U® are obviously different from those in a standard form. The strong
stability here (different from what we defined for LMM) refers to the feature that U"*! can
be written as a convex combination of several formal forward Euler steps, which is useful in
enforcing nonlinear stability for high order Runge-Kutta methods.

(a) (10 pts) Rewrite it in the standard form and find its Butcher tableau (c can be found
as the sum of each row in A).

cl| A
b

(b) (10 pts) Show that its local truncation error is third order for solving u'(t) = f(u)
(here we consider a simpler case in which f is a function of u only).

(c) (10 pts) After eliminating inner stages, any explicit 3-stage Runge-Kutta method can
be written as U™ = R(2)U™ where R(z) = 1+2zb? (I +2A+22A%)e with z = At\ and
e=[1,---,1]T. Verify that R(z) = 142+ 22/2+23/6 for this third order Runge-Kutta
by plugging in A and b. So this scheme has the same region of absolute stability as
any other explicit 3-stage Runge-Kutta of order 3.



3. (20 pts) The explicit 4-stage fourth order Runge-Kutta for solving v’ = f(u,t) can also
be written/implemented as

F(l) _ f(Un,tn)
1 1
F@ = fU"+ §AtF(1), " + A

1 1
FO® = f(U™ + §AtF(2), "+ 5 A1)
FW = f(U" + AtF® " + At)
1
UMt = U+ CAHFY + 2P +2F@ 4 FW)

thus it requires four extra storage F¥, i = 1,2,3,4 (or UV, i = 1,2,3,4 if implemented
in the standard form). In the context of solving time-dependent PDEs by an explicit ODE
solver, each F'®) or U™ could be huge (think about solving the 3D Maxwell’s equation). As
an alternative, a low storage explicit 5-stage fourth order Runge-Kutta (LSERK) method is
given by

v =y, vO =g

v — aiv(ifl) + Atf(U(’;l),t" +eAt), i=1,---,5

UO =y 4 pv®  i=1....5

Un+1 _ U(S)

with the coefficients given by

rkda = [

0.0 ...
-567301805773.0/1357537059087.0 ...
-2404267990393.0/2016746695238.0 ...
-3550918686646.0/2091501179385.0 ...
-1275806237668.0/842570457699.017;
rkdb = [ 1432997174477.0/9575080441755.0 ...
5161836677717.0/13612068292357.0 ...
1720146321549.0/2090206949498.0 ...
3134564353537.0/4481467310338.0 ...
2277821191437.0/14882151754819.0];
rkdc = |

0.0 ...
1432997174477.0/9575080441755.0 ...
2526269341429.0/6820363962896.0 ...
2006345519317.0/3224310063776.0 ...
2802321613138.0/2924317926251.017;

In each time step, it requires to evaluate the function f five times whereraz the explicit
4-stage fourth order Runge-Kutta only needs four times. In general, evaluating a nonlinear
function f (or nonlinear/linear operator f in solving PDEs) is the most computationally
expensive part. However, this does not necessarily mean that LSERK is more expensive




than the 4-stage fourth order RK. For instance, if LSERK has a larger stability region then
it may allow larger time steps to offset extra cost in one time step.

(a) (10 pts) The LSERK solving v’ = Au can be written as U""! = R(2)U". Find what
R(z) is in terms of a, b and ¢. (Hint: The first five terms in R(z) are very easy to find
(why?). Once you know the first five terms, it becomes much simpler to find other
higher order terms because you can ignore lower order terms of z when finding the
coefficients for higher ones. There is no need to plug in the values of a, b and c¢. But
we need to use the fact that a; = 0.)

(b) (10 pts) Plot the stability regions of LSERK and the 4-stage fourth order RK. Which
one is larger? Suppose we want solve the semidiscrete scheme U’(t) = — x5 KU (K is
the tridiagonal —1,2, —1 matrix) for the heat equation using these two Runge-Kutta
methods (with the largest possible stable time step), then for a given final time T =

1 which Runge-Kutta is more efficient (less number of matrix-vector multiplications
KU)?

4. (30-35 pts) Consider the Kepler problem:

q/ = Hpa p/ = _Hq>

where p = (i 1), q= (Zl) and the Hamiltonian is given by
2 2

_pi4ps 1001

2 r 2r3

and r = \/¢} + ¢5. The initial conditions are

¢1(0) =1 — 3,¢2(0) = 0,p1(0) = 0,p2(0) = /(1 + B)/(1 = B), 8 = 0.6.

Clearly, H' = Hyq' + Hpp’ = 0, so H(q(t),p(t)) = H(q(0),p(0)). Thus [H(q(t),p(t)) —
H(q(0),p(0))| could be a simple error indicator, which underestimates the true error. The
solution can be visualized by plotting g(t) vs. ¢i1(¢) in the go-¢; plane (phase plane portrait),
which looks like curves on a torus. Download Kepler_reference_q.m and run the following
script in MATLAB to plot a reference solution in Figure 0.1

H(q,p)

load('Kepler_ reference. g.mat');plot (gq(l,:),q(2,:));
axis equal;xlabel ('gl'");ylabel('g2");

(a) Use the fourth-order Runge-Kutta to solve this ODE system with At = 0.0005 to the
final time 7" = 500 as a reference solution.

(b) Consider the second-order accurate A-stable implicit midpoint method

un-i—l — _ f un-l—l + u” tn—&-%
At 2 ’

3




Figure 0.1: phase plane portrait

for the ODE « = f(u,t). Implement the midpoint method for the ODE system. Use
Newton’s iteration to solve the nonlinear equations.

Remark: The Newton’s iteration for finding a root to F'(x) = 0 for a single variable
scalar-valued function F(z) is given by

I+l = Tn — 777~

f(wn)

For a vector valued function F' and multivariable x (assume F and x are the same
size), the Newton’s iteration is given by

-1
OF
Xk+1 = X — | =— Xk FXk
. S| Fee),
where ‘g—i(xk) is the Jacobian matrix. For solving u"™!, you can use u™ as initial guess

in Newton’s iteration.

(¢) (30 points) Run the fourth-order Runge-Kutta and the midpoint method with At = 0.1
and At = 0.01 to the final time 7" = 500 (four runs in total). Plot the phase plane
portraits (four figures with the same scale). Monitor the maximum of |H (¢(t), p(t)) —
H(q(0),p(0))|. Let u(t) denote the reference solution (v = (¢q,p) and you need to
generate this reference using 4th order RK). Define the true error as e(t) = |u(t) —u(t)|.
Plot loge(t) vs. t (four curves in total).

(d) (Bonus 5 points) What are your observations and conclusions for this particular prob-
lem?

For instance, a forward Euler method to solve it can be implemented as (it will not
generate an accurate solution with At = 0.001):

4



function Kepler_forwardEuler

T=500;
dt=0.001;
Nt=T/dt;
$ u(:,1) 1is a vector of size 4 at time (i-1)*dt
% u(l)=gl, u(2)=9g2, u(3)=pl, u(4d)=p2
u=zeros (4,Nt+1);
¥ The initial condition
beta=0.6;
u(l,1l)=1-beta;
u(4,1)=sqgrt ((l+beta)/ (1-beta));
% forward Euler
for i=1:Nt

u(:,i+l)=u(:,1i) +dt*RHS_Kepler(u(:,1));
end
% Phase Portrait of gl-g2
plot(u(l,:),u(2,:));axis equal
xlabel('gl');ylabel('g2")

\o

set (0, 'DefaultTextFontSize', 18, 'DefaultAxesFontSize',

function f = RHS_Kepler (u)

The right hand side functiosn

H.p and -H_.g for the modified Kepler problem
u(l)=gl, u(2)=92, u(3)=pl, u(é)=p2

r = sqgrt(u(l)"2+u(2)"°2);

f=zeros(size(u));

o\

o° o

f(1)=u(3);
f(2)=u(4);
£f(3)=—u(l)/r"3-0.015*u(l)/r"5;
f(4)=-u(2)/r"3-0.015*u(2)/r"5;

18)




