Theorem 1 (Stone-Weierstrass). Let A be an algebra as a subset of $C(X)$ where X is a compact space. If A separates points in X and contains the constant functions, then $\overline{A} = C(X)$ in the uniform metric $\rho(f,g) = \| f - g \|$ where $\| f \| = \max_{x \in X} |f(x)|$.

We do some foundational works before proving Theorem 1.

Proposition 2. Let L be a sublattice of $C(X)$ where X is compact. Suppose the function h defined by $h(x) = \inf_{f \in L} f(x)$ is continuous and finite, then given any $\epsilon > 0$, there is $g \in L$ such that $0 \leq g(x) - h(x) < \epsilon/3$.

Proof. Let $\epsilon > 0$ and let $x \in X$. By the definition of h, there is $f_x \in L$ such that $0 \leq f_x(x) - h(x) < \epsilon/3$. But both f_x and h are continuous. So there is open O_x containing x such that if $y \in O_x$, then $|f_x(y) - f_x(x)| < \epsilon/3$ and $|h(x) - h(y)| < \epsilon/3$. Hence, for each $y \in O_x$, we have $0 \leq f_x(y) - h(y) = |f_x(y) - h(y)| \leq |f_x(x) - h(x)| + |f_x(h) - h(x)| < \epsilon/3$. We have for each $x \in X$ the associated f_x and O_x. So $\{O_x\}_{x \in X}$ is an open covering of X. By compactness, there is a finite subcovering $\{O_{x_1}, \ldots, O_{x_N}\}$ of X. Let $g = f_{x_1} \wedge \cdots \wedge f_{x_N}$. So $g \in L$. And we know that for any $y \in X$, there is O_x containing y such that $0 \leq g(y) - h(y) \leq f_x(y) - h(y) < \epsilon$, as desired. □

Remark:
1. We don’t use uniform continuity in the proof but to use the definition of compactness directly.
2. In the proof of the Proposition 3 we will first have a continuous function h and then show that h can be acquired by the above means (h is the pointwise infimum of functions in a subsublattice) so as to get the desired approximation property.

Proposition 3. Let X be a compact space and L a sublattice of $C(X)$ such that it has the following two properties: (i) L separates points and (ii) for any $c \in \mathbb{R}$ and $f \in L$ we have $c + f \in L$ and $cf \in L$.

Then for any $h \in C(X)$ and any $\epsilon > 0$, there is $g \in L$ such that for all $x \in X$, $0 \leq g(x) - h(x) < \epsilon$ and thus $\overline{L} = C(X)$.

We prove two lemmas first.

Lemma 4. Let $L \subset C(X)$. If f has property (i) and (ii), then given any $a, b \in \mathbb{R}$ and distinct $x, y \in X$, there is $f \in L$ such that $f(x) = a$ and $f(y) = b$.

Proof. Since L separates points, there is $g \in L$ such that $g(x) - g(y) \neq 0$. So f defined by

$$f(t) = \frac{a(g(t) - g(y)) + b(g(x) - g(t))}{g(x) - g(y)}$$

is well-defined and $f \in L$ by property (i) and (ii). Notice that $f(x) = a$ and $f(y) = b$. □

Lemma 5. Let L be a sublattice of $C(X)$ where X is compact and L satisfies (i) and (ii). Then given $a, b \in \mathbb{R}$ with $a \leq b$, F a closed subset of X and $p \notin F$, there is $f \in L$ such that $f \geq a$, $f(p) = a$ and $f(x) > b$ for all $x \in F$.

Proof. For any $x \in F$, $x \neq p$. So by Lemma 4, there is $f_x \in L$ such that $f_x(p) = a$ and $f_x(x) = b + 1$. Notice that since f_x is continuous, there is open O_x containing x such that for all $y \in O_x$, $f_x(y) - f_x(x) \geq -\frac{1}{2}$ and hence $f_x(y) \geq f_x(x) - \frac{1}{2} = b + \frac{1}{2} > b$. For each $x \in F$, let O_x and f_x be the
associated open set and function satisfying the previous condition. Then \(\{O_x\}_{x \in F} \) covers \(F \). But \(F \) is compact being a closed subset of a compact set. So there is a finite subcovering \(\{O_x, \ldots, O_{x_N}\} \) of \(F \). Let \(g = f_{x_1} \lor \cdots \lor f_{x_N} \). So \(g(p) = a \) and for any \(y \in F \), there is \(O_x \) containing \(y \) so that \(g(y) \geq f_x(y) > b \). Finally, let \(f = a \lor g \) and this is the desired function (\(f \geq a, f(p) = a, f > b \) on \(F \)).

Now we prove Proposition 3.

Proof. We want to show \(\overline{L} = C(X) \). Given any \(h \in C(X) \), let \(l = \{f \in L : f \geq h\} \). If we can show for any \(p \in X \), \(h = \inf_{f \in l} f(p) \), by Proposition 2, given \(\epsilon > 0 \) there is \(g \in l \) and thus in \(L \) such that \(p(g, h) < \epsilon \) which shows \(h \in \overline{L} \).

We prove this by definition. Let \(p \in X \). Let \(\epsilon > 0 \). We know \(X \) is compact. Let \(m \) be the maximum of \(h \) on \(X \). Let \(M = \max\{m, h(p) + \epsilon\} \geq h(p) + \epsilon \). Let \(F = \{x \in X : h(x) \geq h(p) + \epsilon\} \). So \(p \notin F \) and \(F \) is closed because \(h \) is continuous. Thus, by Lemma 5, there is \(f \in L \) such that \(f(p) = h(p) + \epsilon, f \geq h(p) + \epsilon \) and \(f > M \) and thus \(f > h \) on \(F \). Notice that on \(\overline{F} \), \(h < h(p) + \epsilon < f \). Consequently, \(f > h \). Hence \(f \in l \). Also because \(0 \leq f - h = \epsilon \leq \epsilon \) and \(\epsilon \) is arbitrary, \(h(p) = \inf_{f \in l} f(p) \), as desired.

Before we prove the Stone-Weierstrass Theorem (Theorem 1), we still have an important polynomial approximation lemma. It builds a connection from algebras to lattices. The sequence in detail in the background of a linear function space is algebra→polynomial→absolute value function→lattice.

Lemma 6. Given \(\epsilon > 0 \), there is a polynomial \(p \) such that if \(x \in [-1, 1] \), then we have \(|p(x) - x| < \epsilon \).

Proof. Notice that the series of the function \(f(x) = (1 - x)^2 \) expanded at 0 converges uniformly on the compact set \([0, 1]\), i.e., given \(\epsilon > 0 \), there is \(N \) such that if \(n \geq N \), \(|(1 - x)^2 - f_n(x)| < \epsilon \) for all \(x \in [0, 1] \) where \(f_n \) is the partial sum of the first \(n + 1 \) terms in the series expansion. Let \(p_N(x) = f_N(1 - x^2) \).

So \(p_N \) satisfies \(|x| - p_N(x)| < \epsilon \) for all \(x \in [-1, 1] \).

Finally, we prove the Stone-Weierstrass theorem.

Proof. We want to show \(\overline{A} = C(X) \). First, given \(A \) as an algebra, we want to show \(\overline{A} \) is an algebra. Then we show that \(\overline{A} \) is a lattice. Hence \(\overline{A} = \overline{\overline{A}} = C(X) \) by Proposition 3.

First of all, let \(a, b \in \mathbb{R}, f, g \in \overline{A} \) and let \(< f_n >, < g_n > \) be in \(A \) such that \(f_n \to f \) and \(g_n \to g \) (uniformly). It is easy to see that \(af_n + bg_n \to af + bg \). Hence, \(af + bg \in \overline{A} \) which shows \(\overline{A} \) is a linear space. Furthermore, since \(f_n g_n \to fg \), we know \(\overline{A} \) is an algebra.

Let \(f = 0 \), then \(|f| = 0 \in \overline{A} \). If not, \(||f|| \neq 0 \). Consider \(g = \frac{f}{||f||} \). So \(g \in \overline{A} \). By Lemma 6, for any \(\epsilon > 0 \), there is a polynomial \(p \) such that \(||g(x)| - p(g(x))|| < \epsilon \) for all \(x \in X \). Notice that \(p \circ g \in \overline{A} \) because \(\overline{A} \) is an algebra. So \(|g| \in \overline{A} = \overline{\overline{A}} = \overline{A} \). Thus, \(|f| \in \overline{A} \).

Notice that for any \(f, g \in \overline{A} \), \(f \lor g = \frac{1}{2}(f + g) + \frac{1}{2}|f + g| \) and \(f \land g = \frac{1}{2}(f + g) - \frac{1}{2}|f + g| \). Thus, \(\overline{A} \) is a lattice, as desired.

Remark: To see \(f_n g_n \to fg \), use the inequality \(||f_n g_n - fg|| \leq ||f_n - f|| \cdot ||g_n|| + ||f|| \cdot ||g_n - g|| \) and notice that there is an \(M \) such that \(||g_n|| < M \) because of \(||g_n|| \leq ||g_n - g|| + ||g|| \) and the convergence of \(<g_n> \).