1. CIRCLE: \[(x-h)^2+(y-k)^2=r^2\]

2. PARABOLA: \[y-k=a(x-h)^2\]
 \[y=f(x)=ax^2+bx+c \quad (a \neq 0) \quad \text{vertex at: } \left(-\frac{b}{2a}, c-\frac{b^2}{4a}\right)\]

For the following formulas, \(r\) is the annual interest rate, \(n\) is the number of years, \(k\) is the frequency of compounding, and \(i\) is the periodic rate \((i = \frac{r}{k})\).

3. COMPOUND INTEREST FORMULA
 A principal \(P\), earning compound interest will grow to a future value \(FV\) according to the formula
 \[FV = P(1+i)^{kn}\]

4. EFFECTIVE RATE OF INTEREST
 The effective rate of interest \(R\) for an account is given by the formula \(R=(1+i)^k-1\)

5. PRESENT VALUE
 The present value \(PV\) that must be deposited now to provide a future value \(FV\) is given by the formula
 \[PV = FV(1+i)^{-kn}\]

6. FUTURE VALUE OF AN ANNUITY
 The future value \(FV\) of an ordinary annuity with deposits of \(P\) dollars is given by the formula
 \[FV = \frac{P((1+i)^{kn}-1)}{i}\]

7. SINKING FUND PAYMENT
 For an annuity to provide a future value \(FV\), the regular payment \(P\) is given by the formula
 \[P = \frac{FVi}{(1+i)^{kn}-1}\]

8. PRESENT VALUE OF AN ANNUITY
 The present value \(PV\) of an annuity with payments of \(P\) dollars is given by the formula
 \[PV = \frac{P[1-(1+i)^{-kn}]}{i}\]

9. INSTALLMENT PAYMENTS
 The periodic payment \(P\) required to repay an amount \(A\) is given by
 \[P = \frac{Ai}{1-(1+i)^{-kn}}\]