1) Let G and H be the indicated graphs.
 1A) Prove G and H are not isomorphic.
 1B) Find $\tau(G)$ and $\tau(H)$.
 1C) Find $\chi(G;k)$ and $\chi(H;k)$.

2) Find the maximal flow in the network at left.
 Indicate the minimal cut that validates your answer.

3) Given 6 messages with relative frequencies 1,3,4,6,7,9, compute a code with minimum expected length, and what is the expected length of a message in this optimal code?

4A) IF G is a planar connected graph, prove or display a counter example to the following statement: $\chi'(G) = \chi'(G^*)$.
 4B) Let $G = K_{r,s}$ ($r \geq s$). Prove (by finding an explicit coloring) $\chi'(G) = \Delta(G)$.

5) Prove that G has a Hamiltonian path ONLY IF for every set S of p vertices of G, the number of components of $G - S$ is at most $p + 1$.

6) Let C and C' be cycles in a graph G. Prove that the symmetric difference $C \Delta C'$ decomposes into cycles.

7) Let G be a k-connected graph and let S and T be disjoint subsets of $V(G)$ of size at least k. Prove G contains k pairwise disjoint S,T-paths.