(8 pts.) 1. Find the linear function \(f \) that satisfies the given conditions.
\[f(-3) = 5 \text{ and } f(4) = 2 \]

(8 pts.) 2. Express \(f(x) \) in the form \(a(x - h)^2 + k \)
\[f(x) = -5x^2 + 10x - 7 \]

(8 pts.) 3. Find the inverse function of \(f(x) = \frac{2}{x - 5} \)

\[f^{-1}(x) = \]
4. Given that $f(x) = 3x^2 + 7$ and $g(x) = x - 5$, find and simplify each of the following:
 a) $(fg)(2) =$
 b) $(f \circ g)(x) =$

5. On what interval(s) is $f(x) = x^3 - x^2 - 6x$ negative? Give your answer in interval notation.

6. Solve the system. Give your answer(s) as ordered pair(s).

 \[
 \begin{align*}
 3x - 4y &= -26 \\
 5x + 6y &= 1
 \end{align*}
 \]
7. Find the domain of $f(x) = \frac{\sqrt{3-x}}{x+5}$. Express your answer in interval notation.

8. Sketch the graph. Label two points on the graph of each piece of the function.

$$f(x) = \begin{cases}
-3 & \text{if } x \leq -2 \\
 x + 1 & \text{if } -2 < x \leq 2 \\
-2x + 7 & \text{if } x > 2
\end{cases}$$
(12 pts) 9. A movie theater charges $7.00 for adult tickets $4.00 for children tickets. One night, they sold 500 tickets and had receipts totaling $2963.00. How many of each type of ticket was sold? (Name your variable(s), set up an equation(s), and solve)

\[\text{Number of children tickets} = \]

\[\text{Number of adult tickets} = \]

(12 pts) 10. A history class determined that the total number of points, \(P \), earned is directly proportional to the number of hours, \(h \), spent studying and inversely proportional to the square of the number of classes, \(c \), skipped.

(4 pts.) a) Assuming \(c \neq 0 \), express \(P \) in terms of \(h \), and \(c \), and a constant of proportionality \(k \).

(4 pts.) b) A student earned 504 points having spent 72 hours studying and skipping 4 classes. Find the value of \(k \) in part (a).

(4 pts.) c) How many points are earned if a student spends 121.5 hours studying and skips 9 classes?