1. A ladder 10 feet long is leaning against a wall. The foot of the ladder is being pulled away from the wall at 3 feet per second. How fast, in feet per second, is the top of the ladder sliding down the wall when the foot of the ladder is 8 feet from the wall?

 A. 1
 B. 2
 C. 3
 D. 4
 E. 5

2. A spherical tank has radius equal to 10 feet (= 120 inches). Use differentials to estimate, in cubic inches, the amount of paint needed to cover the surface with a layer \(\frac{1}{100} \) of an inch thick. \(V = \frac{4}{3} \pi r^3 \).

 A. \(288\pi \)
 B. \(480\pi \)
 C. \(576\pi \)
 D. \(640\pi \)
 E. \(960\pi \)

3. Find the absolute minimum of the function

 \[f(x) = 4x^3 - 15x^2 + 12x + 7 \]

 on the closed interval \([0, 3]\).

 A. 0
 B. 1
 C. 3
 D. 5
 E. 7
4. How many real roots does the equation \(x^7 + x + 1 = 0 \) have?

A. 1
B. 2
C. 3
D. 5
E. 7

5. Find the largest interval on which the function \(f(x) = x \sin x + \cos x \), \(0 \leq x \leq \pi \), is increasing.

A. \((0, \pi)\)
B. \((0, \frac{\pi}{2})\)
C. \((\frac{\pi}{2}, \pi)\)
D. \((0, \frac{\pi}{3})\)
E. \((\frac{\pi}{3}, \frac{5\pi}{3})\)

6. What is the length of the largest interval on which the function \(f(x) = x^3 - 3x^2 - 9x \) is decreasing?

A. 1
B. 2
C. 3
D. 4
E. \(\infty\)
7. On what interval is the graph of the function
\[f(x) = 1 - \frac{2}{x} + \frac{1}{x^2} \]
concave downward?

A. \((\frac{3}{2}, \infty)\)
B. \((1, \frac{3}{2})\)
C. \((\infty, 0)\)
D. \((0, 1)\)
E. \((1, \infty)\)

8. \(\lim_{x \to \infty} \frac{(\ln x)^3}{x^2} = \)

A. 0
B. 1
C. \(\frac{3}{2}\)
D. \(\frac{9}{4}\)
E. \(\infty\)

9. Given the following information about limits, select the graph that could be the graph of \(y = f(x)\).

\[\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0, \quad \lim_{x \to -1^-} f(x) = \lim_{x \to 1^+} f(x) = \infty \]

\[\lim_{x \to -1^+} f(x) = \lim_{x \to 1^-} f(x) = -\infty \]

A.

B.

C.

D.

E.

10. The function \(f(x) = x^4 - 3x^3 + 3x^2 - x \) has critical numbers \(c = \frac{1}{4}, 1 \); indeed \(f'(x) = (4x - 1)(x - 1)^2 \). At these critical numbers \(f \) has

A. a local max. at \(\frac{1}{4} \), a local min. at 1
B. a local max. at 1, a local min. at \(\frac{1}{4} \)
C. a local max. at 1, neither a local max. nor a local min. at \(\frac{1}{4} \)
D. a local min. at \(\frac{1}{4} \), neither a local max. nor a local min. at 1
E. neither a local max. nor a local min. at either \(\frac{1}{4} \) or 1

11. Find the maximum value of the function \(\frac{x^2 + 2x - 4}{x^2} \).

A. \(\frac{1}{4} \)
B. \(\frac{9}{4} \)
C. \(\frac{7}{4} \)
D. \(\frac{3}{4} \)
E. \(\frac{5}{4} \)

12. A rectangular cardboard box of 32 in\(^3\) volume with a square base and an open top is to be constructed. Neglecting waste, find the minimum area of cardboard needed.

A. 54 in\(^2\)
B. 48 in\(^2\)
C. 46 in\(^2\)
D. 42 in\(^2\)
E. 40 in\(^2\)
13. Given the graph of \(y = f'(x) \) below, select a graph which could be the graph of \(y = f(x) \).

\[\frac{y}{x} \]

A. \[\frac{y}{x} \]
B. \[\frac{y}{x} \]
C. \[\frac{y}{x} \]
D. \[\frac{y}{x} \]
E. \[\frac{y}{x} \]

14. If \(f''(x) = 12x^2 + 2 \), \(f(0) = 2 \) and \(f'(0) = 3 \), find \(f(1) \).

A. 3
B. 4
C. 5
D. 6
E. 7