Math 111
Exam #2
Spring, 2002

Name: __________________________________
Place your answer in the spaces provided. You must show your work to receive credit.

(8 pts) 1. The function \(C \) described by \(C(F) = \frac{5}{9}(F - 32) \) gives the Celsius temperature, \(C \), corresponding to the Fahrenheit temperature \(F \). Find the Celsius temperature equivalent to \(-4^\circ F\).

(10 pts) 2. Determine the slope and \(y \)-intercept of this equation.

\[4x - 3y = -6 \]

\[\text{slope} = \]
\[\text{y-intercept} = \]

(8 pts) 3. For the given function, find:

(4 pts) a. \(f(2) \).

(4 pts) b. all \(x \)-values for which \(f(x) = 1 \).
Name: ________________________________
Place your answer in the spaces provided. You must show your work to receive credit.

a. \(f(2) = \)

\(x = \)

(10 pts) 4. Find the value of \(k \) so that the line \(y = kx + 7 \) is parallel to the line \(3x - 2y = 4 \).

\(k = \)

(10 pts) 5. Let \(f(x) = -2x + 4 \) and \(g(x) = x^2 - 1 \). Find and simplify each of the following:

(5 pts) a. \((f - g)(-1) = \)

(5 pts) b. \(f(3) \cdot g(3) = \)
(10 pts) 6. Solve the following system of equations. Express your answer as an ordered pair.

\[\begin{align*}
2x - y &= -4 \\
3y - 11 &= 4x
\end{align*} \]

(12 pts) 7. Find the x- and y-intercepts for the equation \(3x - 4y = 12 \). Draw the graph. Label all the intercepts and at least one other point on the graph.
(10 pts) 8. Frank bought a new Honda Civic for $15,000. If Civics depreciate at a rate of $3,000/yr,
(5 pts) a. find a function V that can be used to determine the value of the car t years after purchase.

$$V(t) =$$

(5 pts) b. Use part (a) to find the domain of V.

domain =

(10 pts) 9. Tickets for the Pickled Lemon concert at Memorial Hall were $12 for students and $15 general admission. There were 950 tickets sold and the revenue from their sale was $11,634. Name the variables and translate this information into a system of equations, but do not solve.
10. According to the Almanac, the cost of mailing a letter to Canada in 1999 was 51 cents for 1 oz and 95 cents for 3 oz.

a. Find a linear function that expresses the cost C of postage as a function of the weight w.

$$C(w) = \boxed{\text{ }}$$

b. Use the function of part (a) to determine the cost of mailing a letter that weighs 4 oz.

$$\boxed{\text{ }}$$