1. Express the following statement as an inequality:

The quotient of a and b is at most $\frac{1}{3}$.

A. $\frac{|a|}{|b|} \geq \frac{1}{3}$
B. $\frac{a}{b} \geq \frac{1}{3}$
C. $\frac{|a|}{|b|} \leq \frac{1}{3}$
D. $\frac{a}{b} \leq \frac{1}{3}$
E. None of the above

2. Simplify. Do not leave negative exponents in your answer.

$$\left(\frac{1}{3}a^8\right)(12a^{-5})(2a^{-7})$$

A. $\frac{1}{8a^4}$
B. $\frac{1}{72a^4}$
C. $\frac{8}{a^4}$
D. $\frac{a^4}{72}$
E. None of the above

$$\left(\frac{2x^8y^0}{10x^3y^4y^3}\right)^2$$
4. Simplify completely.

$$\sqrt[3]{\frac{27d^{12}}{b^{18}}}$$

A. $$\frac{3a^9}{b^{15}}$$

B. $$\frac{81a^{36}}{b^{54}}$$

C. $$\frac{9a^9}{b^{15}}$$

D. $$\frac{9a^{36}}{b^{54}}$$

E. None of the above

5. Subtract and express as a polynomial.

$$9x^5 - 4x^2 + 8 - 2(3x^5 + 5x^3 - 3x^2 + 9)$$

A. $$4x^5 + 3x^3 - 9x^2 + 15$$

B. $$3x^5 - 10x^3 + 2x^2 - 10$$

C. $$4x^5 + 3x^3 - 7x^2 - 10$$

D. $$3x^5 + 5x^3 - 7x^2 + 17$$

E. None of the above
6. Multiply and express as a polynomial.
 \((5x - 3)(x^2 + 2x - 4)\)

 \[A. \ 5x^3 + 7x^2 - 26x + 12 \]
 \[B. \ 5x^3 + 2x^2 - 26x - 7 \]
 \[C. \ 5x^3 + 4x^2 - 7 \]
 \[D. \ 5x^3 + 2x^2 - 16x + 12 \]
 \[E. \ None \ of \ the \ above \]

7. Simplify completely.

 \[
 \frac{2x^2 - 5x - 3}{x^2 - 9} \div \frac{10x^2 + x - 2}{5x^2 - 17x + 6}
 \]

 \[A. \ \frac{2}{2-5x} \]
 \[B. \ \frac{x-3}{x+3} \]
 \[C. \ \frac{2-5x}{2} \]
 \[D. \ \frac{(2x+1)^2}{(x+3)(x-3)} \]
 \[E. \ \frac{1}{x+3} \]

8. Subtract and simplify completely.

 \[
 \frac{4a}{a+3} - \frac{5}{a}
 \]

 \[A. \ \frac{2}{2-5x} \]
 \[B. \ \frac{x-3}{x+3} \]
 \[C. \ \frac{2-5x}{2} \]
 \[D. \ \frac{(2x+1)^2}{(x+3)(x-3)} \]
 \[E. \ \frac{1}{x+3} \]
9. Which of the following is a factor of \(6x^3 + x^2 - 12x\)?

A. \(x + 12\)
B. \(3x - 4\)
C. \(2x - 3\)
D. \(3x + 4\)
E. None of the above

10. Simplify completely.

A. \(1 + s\)
B. \(\frac{s}{s - r}\)
C. \(\frac{r + s}{r}\)
D. \(\frac{s}{r - 1}\)
E. \(s\)
11. Solve for x. Circle the answer that best describes the solution(s).

$$\frac{4}{2x-3} + \frac{3}{4x^2-9} = \frac{1}{2x+3}$$

A. x is between -6 and $-\frac{5}{2}$

B. x is between $-\frac{5}{2}$ and 0

C. x is between 0 and 6

D. There is no solution

E. All reals except $x = \pm\frac{3}{2}$

12. Solve $M = \frac{b^2}{a + ab}$ for a.

A. $a = \frac{b}{1+M}$

B. $a = \frac{b}{2M}$

C. $a = \frac{b^2}{1+bM}$

D. $a = \frac{b}{M}$

E. $a = \frac{b^2}{M(1+b)}$
13. The total price of a coat sold to a customer is $85. This total includes the wholesale price of the coat plus a 15% markup, and a 5% sales tax (after the markup has been added). Find the equation that would be used to compute the wholesale price of the coat assuming that \(x \) represents the wholesale price. Simplify your equation. Do not solve the equation.

\[
A. 0.2x = 85 \\
B. 1.5x = 85 \\
C. 1.2075x = 85 \\
D. 1.1575x = 85 \\
E. 1.2x = 85
\]

14. A mechanic needs 5 quarts of a 60% antifreeze solution. Unfortunately, she only has a 70% antifreeze solution and a 40% antifreeze solution available. How much of the 40% antifreeze solution should she use to get the 5 quarts of 60% antifreeze solution?

\[
A. \frac{11}{6} \text{ quarts} \\
B. \frac{26}{3} \text{ quarts} \\
C. \frac{30}{11} \text{ quarts} \\
D. \frac{5}{3} \text{ quarts} \\
E. \text{ None of the above}
\]