Periodic Functions
We say \(f(x) \) is periodic with period \(m \) if \(f(x) = f(x+m) \) for all \(x \).
Usually we are given a formula for \(f \) on a single period \([a,b]\) with \(b-a=m \).
To find \(f(x) \) for \(x \) not in \([a,b]\) we first find the greatest integer multiple of \(m \) less than or equal to \(x-a \),

\[z = m \cdot \text{floor}((x-a)/m) \]

(Here \(\text{floor}(t) \) is the MATLAB function giving the greatest integer \(\leq t \).)
Now \(y = x - z \) is in \([a,b]\). The point is that \(f(y) = f(x) \) and we have a formula for \(f(y) \).

example
Let \(f(x) = \text{abs}(x) \) for \(-3 \leq x < 3\) and assume \(f(x) \) is \(3-(-3) = 6 \)-periodic.
To write a M-file for \(f \) type:

```
function w = f(x)
z = 6 * \text{floor}((x+3)/6);
y = x - z;
w = \text{abs}(y);
```

ASSIGNMENT 3:
1. Let
 \(f(x) = x^2 \) if \(-2 \leq x < 2\)
 and \(f(x) \) is 4-periodic.
 Write \(f.m \) and graph \(f(x) \) on \([-10,10]\).

2. Let
 \(g(x) = x \) if \(-2 \leq x < 2\)
 and \(g(x) \) is 4-periodic.
 Write \(g.m \) and graph \(g(x) \) on \([-10,10]\).