MATLAB 8
Numerical Methods

First consider the ode

\[y' = f(x, y) = 2x \cdot y^2 \]
\[y(0) = 0.1. \]

We analyze this using the Euler, Improved Euler and Runge-Kutta methods. First we make a M-file for the right hand side.

function w=f(x,y)
w=2*x*y^2;

Next we make M-files for each of the three methods.

function [X,Y]=eu(x,y,xf,n)
h=(xf-x)/n;
X=x; Y=y;
for i=1:n
 y=y+h*f(x,y);
 x=x+h;
 X=[X;x];
 Y=[Y;y];
end

function [X,Y]=imeul(x,y,xf,n)
h=(xf-x)/n;
X=x; Y=y;
for i=1:n
 k1=f(x,y);
 k2=f(x+h,y+h*k1);
 y=y+h*(k1+k2)/2;
 x=x+h;
 X=[X;x];
 Y=[Y;y];
end

function [X,Y]=rk(x,y,xf,n)
h=(xf-x)/n;
X=x; Y=y;
for i=1:n
 k1=f(x,y);
 k2=f(x+h/2,y+h*k1/2);
 k3=f(x+h/2,y+h*k2/2);
 k4=f(x+h,y+h*k3);
 y=y+h*(k1+2*k2+2*k3+k4)/6;
 x=x+h;
 X=[X;x];
 Y=[Y;y];
end

Here \((x, y) \) are the initial values, \(xf \) is the final \(x \)-value and \(n \) is the number of partitions.
\([X, Y] \) is the \((n+1) \times 2 \) matrix representing the computed nodes.
To plot all three you go to the command window and enter

\[[z,w] = \text{eu}(0,0.1,3,20); \]
\[[s,t] = \text{imeul}(0,0.1,3,20); \]
\[[u,v] = \text{rk}(0,0.1,3,20); \]
plot(z,w,s,t,'--',u,v,'o')

**
Euler is given by a solid curve, Improved Euler by '--'s and
Runge-Kutta by 'o's.

ASSIGNMENT 8:

1. Let \(f(x,y) \) be as above. Type in the M-files for f.m and the three
approximations.
Plot their graphs for \(n=20 \) and \(x_f=3 \).

The actual solution is \(y(x) = 1/(10-x^2) \).
To find the distance between \(y(x) \) and the Euler approximation on the
interval \([0,3]\) for a given value of \(n \) type:

**
\[x = 0:3/n:3; \]
\[y = 1/(10-x.\text{^}2); \]
\[y = y'; \]
% Here we have transposed \(y \) from a row vector to a column vector.
\[[z,w] = \text{eu}(0,0.1,3,n); \]
\[\text{max}(\text{abs}(y-w)) \]

**
Here
\[\text{abs}(y-w) = [\text{abs}(y(1)-w(1)), \ldots, \text{abs}(y(n+1)-w(n+1))]' \]
and \(\text{max}(\text{abs}(y-w)) \) is the maximum of the \(n+1 \) components.
The theory predicts that

\[(*) \quad \text{max}(\text{abs}(y-w)) < C*(3/n) \]
for some constant \(C \) and each \(n>1 \).

2. Set \(C_1(n) = \text{max}(\text{abs}(y-w)) / (3/n) \).
Compute \(C_1(n) \) for \(n=100, n=200, \ldots, n=800 \).
Does \(C_1(n) \) grow as \(n \) gets large or tend to level off? Is this consistent
with (*)?

Set \(C_2(n) = \text{max}(\text{abs}(y-t)) / (3/n)^2 \) for the Improved Euler method.
Compute \(C_2(n) \) for the same values of \(n \).
What should \(C_3(n) \) be for the Runge-Kutta method? Compute \(C_3(n) \).