1. Simplify: \(\frac{15}{1 - \frac{5}{2}} \).
A. 2/3 B. 2 C. 3/2 D. 6 E. None of the above.

2. Factor: \(16x^2 - 4y^8 \)
A. \((4x - y^2)(4x + y^2)\) B. \((4x - 2y^4)^2\) C. \(4(2x - y^4)(2x + y^4)\) D. \(4(2x - y^2)\) E. None of the above.

3. Simplify: \(\left(\frac{4a^4b^8}{c^2} \right)^{-1/2} \). (All letters denote positive real numbers.)
A. \(\frac{1}{2a^2b^4c} \) B. \(\frac{2a^2b^4}{c} \) C. \(\frac{a^4b^3}{16c^2} \) D. \(\frac{c}{2a^2b^4} \) E. None of the above.

4. Subtract and simplify: \(\frac{2x^2 - 1}{x} \) for \(x \neq 0 \).
A. \(\frac{3x + 1}{3x + 1}(x - 2) \) B. \(\frac{2x^2 - 1}{x} \) C. \(\frac{-7x}{3x + 1}(x - 2) \) D. \(\frac{2x}{3x + 1}(x - 2) \) E. None of the above.

5. Divide and simplify: \(\frac{x - 2}{x^2 - 2x - 9} \).
A. \(\frac{(x - 2)^2}{(x - 3)^2(x + 3)} \) B. \(\frac{x + 3}{(x + 1)^2} \) C. \(\frac{x + 3}{x + 1} \) D. \(\frac{1}{x + 3} \) E. None of the above.

6. A job takes 4 hours for two people working together. If one person works alone he can do the job in 6 hours. How long will it take the other person working alone to complete the job?
A. 4 hrs. B. 6 hrs. C. 8 hrs. D. 10 hrs. E. None of the above.

7. Write without negative exponents: \(\frac{xy^{-1}}{(x + y)^{-1}} \).
A. \(\frac{x(x + y)}{y} \) B. \(\frac{x^2}{x + y} \) C. \(\frac{x + y}{xy} \) D. \(\frac{xy}{x + y} \) E. None of the above.

8. Simplify by rationalizing the denominator: \(\frac{\sqrt{3}}{2 + \sqrt{3}} \).
A. \(\frac{1}{2} \) B. 2 C. \(2\sqrt{3} - 3 \) D. \(\sqrt{3} + 2 \) E. \(\frac{2\sqrt{3} - 3}{7} \)

9. Let \(x \) and \(y \) be two consecutive positive integers such that \(x \) is less than \(y \) and the difference of their squares is 145. Find \(x \).
A. 73 B. 72 C. 12 D. 8 E. None of the above.

10. If \(A = P(1 + rt) \), then \(t = \)
A. \(\frac{A - P}{r} \) B. \(A - P \) C. \(\frac{A - P}{P} \) D. \(\frac{A}{P} \) E. None of the above.

11. A truck enters a freeway traveling 40 mph. One hour later a car enters the same freeway traveling 55 mph. After how many miles will the car overtake the truck?
A. 146 \(\frac{2}{3} \) miles B. 201 \(\frac{2}{3} \) miles C. 120 miles D. 106 \(\frac{2}{3} \) miles E. None of the above.
12. A square of side x is inscribed in a circle. Express the area, A, of the circle as a function of x.
 A. $A = \frac{x^2}{2}$ B. $A = x^2$ C. $A = \pi x^2$ D. $A = \frac{\pi}{4} x^2$ E. None of the above.

13. Solve for p:
 \[\frac{4}{2p-3} + \frac{10}{4p^2 - 9} = \frac{1}{2p + 3} \]
 A. $p = -\frac{3}{2}$ B. $p = \frac{5}{6}$ C. There is no solution D. $p = -\frac{25}{3}$ E. None of the above.

14. How many ml of a 50% acid solution should be added to 40 ml of a 20% acid solution to obtain a solution that is 25% acid?
 A. 10 ml B. 8 ml C. 6 ml D. 4 ml E. None of the above.

15. Solve for x:
 \[x = \sqrt{14 + 5x} \]
 A. $x = 3, x = 14$ B. $x = -2, x = 7$ C. $x = -2$ D. $x = \frac{14}{3}$ E. None of the above.

16. Find all solutions: $m^4 - m^2 - 6 = 0$.
 A. $m = 2, 3$ B. $m = -2, \pm \sqrt{3}$ C. $m = \pm \sqrt{3}, \pm 2i$ D. $m = \pm \sqrt{3}, \pm \sqrt{2}i$ E. None of the above.

17. Solve the inequality and express the solution in terms of intervals: $3x - 2 > 6x + 1$
 A. $(-\infty, -1)$ B. $(-1, 1)$ C. $(-\infty, -1]$ D. $(-1, \infty)$ E. None of the above.

18. Solve the inequality: $|6 - 2x| \leq 3$.
 A. $x \geq \frac{3}{2}$ B. $x \leq \frac{3}{2}$ C. $\frac{3}{2} \leq x \leq \frac{9}{2}$ D. $-\frac{9}{2} \leq x \leq \frac{3}{2}$ E. None of the above.

19. Find all values of k so that the solutions of the following equation are real numbers: $2x^2 - 4x + k = 0$.
 A. $k = 2$ B. $k > 2$ C. $k \geq 2$ D. $k \leq 2$ E. None of the above.

20. The base of a triangle is three inches more than its height. If each is increased by 3 inches the area is 14 square inches. Find the original base (b) and original height (h) in inches.
 A. $b = 4, h = 1$ B. $b = 9, h = 6$ C. $b = 8, h = 5$ D. $b = 7/2, h = 1/2$ E. None of the above.

21. Solve for x:
 \[
 \begin{align*}
 2x^2 + y^2 &= 1 \\
 x - y &= 1
 \end{align*}
 \]
 A. $x = 2/3$ B. $x = 0, 2/3$ C. $x = -2/3$ D. $x = 0, 3/2$ E. None of the above.

22. If the point $(2, 3)$ is midway between A and B and the point A has coordinates $(1, -2)$, find the coordinates of the point B.
 A. $(1, 5)$ B. $(3, 1)$ C. $(3, 8)$ D. $(3/2, 1/2)$ E. None of the above.

23. The slope of a line perpendicular to the line drawn is:

 \[
 \text{A. } \frac{1}{3} \text{ B. } -\frac{1}{3} \text{ C. } -3 \text{ D. } 3 \text{ E. None of these.}
 \]

24. If m varies directly as the product of x and y and inversely as z, find the constant of proportionality k if $m = 3$ when $x = 4, y = 2$ and $z = 6$.
 A. $k = 1/6$ B. $k = 9/4$ C. $k = 3$ D. $k = 1/4$ E. None of the above.
25. Give the equation of the line in slope-intercept form which is parallel to the line $2x - 3y = 7$ and contains the point $(4, -1)$.
 A. $y = \frac{2}{3}x - 7$ B. $y = -\frac{2}{3}x + \frac{5}{2}$ C. $y = \frac{2}{3}x - \frac{11}{3}$ D. $y = \frac{2}{3}x + \frac{14}{3}$ E. None of the above.

26. The equation for the circle shown is:

 A. $x^2 + y^2 = 4$ B. $x^2 + y^2 - 4y = 0$ C. $x^2(y - 2) = 4$ D. $x^2 + y^2 + 4y = 0$ E. $x^2 + y^2 + 4x + 4y - 8 = 0$

27. Determine $(g \circ f)(x)$ for the following functions: $f(x) = 1 - \sqrt{x}$ and $g(x) = \frac{1}{x}$.
 A. $-\sqrt{x}$ B. $1 - \sqrt{1/x}$ C. $1 - \sqrt{x}$ D. $\frac{1}{1 - \sqrt{x}}$ E. $1/\sqrt{x}$

28. If $f(x) = \frac{x}{x^2 + 1}$, find $\frac{1}{f(3)}$.
 A. $3/10$ B. $3/16$ C. $16/3$ D. $10/3$ E. None of these.

29. The graph below could best be described by which equation?

 A. $y = 2x^2 + 2$ B. $y = -2x^2 + 2$ C. $y = -2x^2 - 2$ D. $y = 2x^2 - 2$ E. $y = -(x - 2)^2$

30. The figure below most closely resembles the graph of which function?

 A. $y = (1/2)^x$ B. $y = 2^x$ C. $y = -2^x$ D. $y = -(1/2)^x$ E. $y = 1 - 2^x$

31. Express as one logarithm: $\log_b y^3 + \log_b y^2 - \log_b y^4$.
 A. $\log_b y^2$ B. $\log_b y$ C. $\log_b(y^3 + y^2 - y^4)$ D. $\log_b \frac{y^3 + y^2}{y^4}$ E. None of the above.

32. Which are true of the function $f(x) = \log_a x$ if $a > 1$?
 I. f is an increasing function. II. f has a as an x intercept. III. f has 1 as a y intercept.
 IV. The domain of f is $(0, \infty)$. List all correct answers.
 A. I, II and III B. I and II C. II and IV D. I and IV E. I and III

3
33. Which of the following is equivalent to \(\log \left(\frac{432}{\sqrt{0.95 \sqrt{72.1}}} \right) \)?
 A. \(\log 432 - \frac{1}{2} \log 0.95 - 3 \log 72.1 \)
 B. \(\log 432 - \frac{1}{3} \log 0.95 - \frac{1}{3} \log 72.1 \)
 C. \(\log 432 - 2 \log 0.95 + 3 \log 72.1 \)
 D. \(\log 432 - \frac{1}{2} \log 0.95 + \frac{1}{3} \log 72.1 \)
 E. \(\log 432 - 2 \log 0.95 - 3 \log 72.1 \)

34. Solve for \(x \): \(3^x = 5 \).
 A. \(x = \log 4 + 5 \log 3 \)
 B. \(x = 5 + \log(4/3) \)
 C. \(x = 5 + \frac{\log 4}{\log 3} \)
 D. \(x = 5 + \log 4 \)
 E. \(x = \frac{5 + \log 4}{\log 3} \)

35. Solve for \(x \): \(\log_3 \sqrt{2x + 3} = 2 \).
 A. \(x = 5/2 \)
 B. \(x = 3/2 \)
 C. \(x = 39 \)
 D. \(x = 17 \)
 E. \(x = 3 \)

36. Given that \(\log_3 m = 8 \), \(\log_3 n = 10 \) and \(\log_3 p = 6 \). Calculate \(\log_3 \left(\frac{\sqrt{mn}}{p^3} \right) \).
 A. \(-9\)
 B. \(\frac{2\sqrt{5}}{27}\)
 C. \(22\)
 D. \(-56\)
 E. \(-4\)

37. The graph of \(y = 2 + 2^x \) crosses the y-axis at
 A. 0
 B. 1
 C. 2
 D. 3
 E. 4

38. Which of the following looks most like the graph of \(y = x^2(x - 1)(x + 1)^2 \)?

39. Which set of equations below has no solution?
 A. \(2x + 3y = 8\)
 B. \(3x + 4y = 5\)
 C. \(2x - 3y = 4\)
 D. \(x - 4y = 6\)
 E. \(3x - 2y = 4\)

40. Determine where the two lines \(x + 4y = 3 \) and \(2x - 6y = 8 \) intersect.
 A. \(x = \frac{-12}{5}, y = \frac{6}{5}\)
 B. \(x = \frac{3}{5}, y = \frac{3}{5}\)
 C. \(x = \frac{2}{7}, y = \frac{5}{7}\)
 D. \(x = \frac{3}{5}, y = \frac{2}{5}\)
 E. None of the above.

41. The value of a rare book is increasing linearly. It was worth $54 in 1981 and $62 in 1983. What is the formula for the value \(v \) of the book \(t \) years after 1980?
 A. \(v = 50 + 4t \)
 B. \(v = 48 + 3t \)
 C. \(v = 50 + 3t \)
 D. \(v = 51 + 4t \)
 E. None of the above.

42. If \(f(x) = x^2 - 2x + 4 \) then \(\frac{f(x+h) - f(x)}{h} = \)
 A. \(2x + h - 2 \)
 B. \(x + 2h - 2 \)
 C. \(x + 2h + 2 \)
 D. \(2x - h - 2 \)
 E. \(2x - h + 2 \).

43. An aquarium in the shape of a rectangular box is to have a height of 1.5 feet and a volume of 6 cubic feet. Let \(x \) denote the length of the base and \(y \) the width of the base. Express \(y \) as a function of \(x \).
 A. \(y = 1.5x \)
 B. \(y = \frac{4}{x} \)
 C. \(y = x^2 \)
 D. \(y = \frac{6}{x} \)
 E. \(y = 9x \)
44. If \(\log_x 2 = 5 \), solve for \(x \). Give your answer correct to four decimal places. (Hint: Change to exponential notation.)

A. 2.2361 B. 1.4142 C. 0.6990 D. 1.1487 E. 0.3010

SOLUTION