TABLE OF FORMULAS

1. CIRCLE

\[(x - h)^2 + (y - k)^2 = r^2\]

2. PARABOLA

\[y - k = a(x - h)^2\]

The graph of the function

\[y = f(x) = ax^2 + bx + c\quad (a \neq 0)\]

is a parabola with vertex at \(\left(\frac{-b}{2a}, c - \frac{b^2}{4a} \right)\).

3. COMPOUND INTEREST FORMULA. A principal \(P\), earning interest compounded \(k\) times a year for \(n\) years at an annual rate \(r\), will grow to the future value \(FV\) according to the formula

\[FV = P(1 + i)^{kn}\]

where \(i = \frac{r}{k}\) is the periodic interest rate.

4. EFFECTIVE RATE OF INTEREST. The effective rate of interest \(R\) for an account paying a nominal rate \(r\), compounded \(k\) times per year, is

\[R = (1 + i)^k - 1\]

where \(i\) is the periodic rate, \(i = \frac{r}{k}\).

5. PRESENT VALUE. The present value \(PV\) that must be deposited now to provide a future value, \(FV\), \(n\) years from now is given by the formula

\[PV = FV(1 + i)^{-kn}\]

where interest is compounded \(k\) times per year at an annual rate \(r\) (\(i\) is the periodic rate, \(\frac{r}{k}\)).
6. **FUTURE VALUE OF AN ANNUITY.** The future value \(FV \) of an ordinary annuity with deposits of \(P \) dollars made regularly \(k \) times each year for \(n \) years, with interest compounded \(k \) times per year at an annual rate \(r \), is

\[
FV = \frac{P[(1 + i)^{kn} - 1]}{i}
\]

where \(i \) is the periodic rate, \(i = \frac{r}{k} \).

7. **SINKING FUND PAYMENT.** For an annuity to provide a future value \(FV \), regular deposits \(P \) are made \(k \) times per year for \(n \) years, with interest compounded \(k \) times per year at an annual rate \(r \). The payment \(P \) is given by

\[
P = \frac{FVi}{(1 + i)^{kn} - 1}
\]

where \(i \) is the periodic rate, \(i = \frac{r}{k} \).

8. **PRESENT VALUE OF AN ANNUITY.** The present value \(PV \) of an annuity with payments of \(P \) dollars made \(k \) times per year for \(n \) years, with interest compounded \(k \) times per year at an annual rate \(r \), is

\[
PV = \frac{P[1 - (1 + i)^{-kn}]}{i}
\]

where \(i \) is the periodic rate, \(i = \frac{r}{k} \).

9. **INSTALLMENT PAYMENTS.** The periodic payment \(P \) required to repay an amount \(A \) is given by

\[
P = \frac{Ai}{1 - (1 + i)^{-kn}}
\]

where

- \(r \) is the annual rate,
- \(k \) is the frequency of compounding (usually monthly),
- \(i \) is the periodic rate, \(i = \frac{r}{k} \), and
- \(n \) is the term of the loan in years.