1. An observer is stationed 300 feet from a rocket launch pad. The rocket rises vertically off the launch pad. A few seconds after takeoff, the rocket is 300 feet in the air and rising at 100 feet/sec. How fast is the angle of elevation, θ, changing at that instant?

\[
\theta = \tan^{-1} \left(\frac{h}{300} \right)
\]

\[
\frac{d\theta}{dt} = \frac{1}{1 + \left(\frac{h}{300} \right)^2} \left(\frac{1}{300} \right) \frac{dh}{dt}
\]

AT INSTANT:

\[
\frac{1}{1 + \left(\frac{300}{300} \right)^2} \left(\frac{1}{300} \right) (100)
\]

A. $\frac{1}{6}$ radian/sec
B. 2 radian/sec
C. $\frac{1}{2}$ radian/sec
D. $\frac{1}{4}$ radian/sec
E. $\frac{2}{3}$ radian/sec

2. Use a linear approximation (or differentials) to estimate the value of $\sqrt{24.8}$

\[
\sqrt{25} + \frac{1}{2\sqrt{25}} (24.8 - 25)
\]

A. 5.20
B. $\boxed{4.98}$
C. 4.95
D. 4.92
E. 4.90
3. Find the minimum value of $f(x) = x^3 - x$ on the closed interval $[-1, 1]$.

Hint: Find the actual value of f and NOT the x-value at which that minimum occurs.

A. 0
B. $-\frac{1}{\sqrt{3}}$
C. $-\frac{1}{3}$
D. $-\frac{2}{3\sqrt{3}}$

E. There is no absolute minimum value.

$f'(x) = 3x^2 - 1$

Crit numbers: $x = \pm\frac{1}{\sqrt{3}}$

$f(-1) = 0$
$f(-\sqrt{3}) = \frac{2}{3\sqrt{3}}$
$f(\sqrt{3}) = -\frac{2}{3\sqrt{3}} $
$f(1) = 0$

4. The function f is continuous on $[0, 2]$ and differentiable on $(0, 2)$, and consequently the direct application of the mean value theorem guarantees the existence of c, where c is between 0 and 2 and pictured below. Find $f'(c)$.

\[
\frac{f(2) - f(0)}{2 - 0} = \frac{1 - 5}{2} = -2
\]

A. -2
B. 1.2
C. 0.5
D. -4
E. -1
5. Which statement accurately describes the function

\[f(x) = x^4 - 6x^3 \]
on the interval \((0, 3)\)?

A. \(f \) is increasing and its graph is concave up.
B. \(f \) is decreasing and its graph is concave up.
C. \(f \) is increasing and its graph is concave down.
D. \(f \) is decreasing and its graph is concave down.
E. None of the above.

\[f'(x) = 4x^3 - 18x^2 \]
\[= 2x^2(2x - 9) \]
\[f''(x) = 12x^2 - 36x \]
\[= 12x(x - 3) \]

6. The graph of \(y = f'(x) \), the derivative of \(f \), is shown below.

Which of the following statements about \(f \) are true?

I. The graph of \(f \) is concave up on the interval \((2, 4)\).
II. \(f(x) \) has a local minimum at \(x = 2 \).
III. \((1, f(1)) \) is an inflection point for \(f \).

A. None of these statements are true.
B. I and III
C. II and III
D. I and II
E. I, II, and III
7. Find the limit.

\[
\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \frac{2\sec x (\sec x \tan x)}{6x} = \lim_{x \to 0} \frac{\tan x}{3\cos^2 x} = \frac{1}{3+0} = \frac{1}{3}
\]

A. \(-\infty \)
B. \(\frac{1}{3} \)
C. 1
D. \(-\frac{1}{6} \)
E. 0

8. Find the \(x \)-coordinate of the inflection point of the function \(f(x) = \frac{1}{\ln x} \) on the interval \(0 < x < 1 \).

\[
f'(x) = -\left(\ln x\right)^2 \left(\frac{1}{x}\right) = \frac{-1}{(\ln x)^2} x
\]

\[
f''(x) = \frac{2(\ln x)(\frac{1}{x})x + (\ln x)^2}{(\ln x)^4} x^2
\]

\[
2 \ln x + (\ln x)^2 = 0
\]

\[
\ln x \left(2 + \ln x\right) = 0
\]

\[
\ln x = -2
\]

\[
x = e^{-2}
\]
9. A six-sided box is to have four clear plastic sides, a wooden square top, and a wooden square bottom. The volume of the box must be 24 ft³. Plastic costs $1 per ft² and wood costs $3 per ft². Find the dimensions of the box which minimize cost.

\[\text{Volume} = x^2 y = 24 \Rightarrow y = \frac{24}{x^2} \]

\[\text{MIN} \]

\[\text{cost} = 1(4xy) + 3(2x^2) = 4x \left(\frac{24}{x^2} \right) + 6x^2 \]

\[C(x) = \frac{96}{x} + 6x^2 \]

\[C'(x) = -\frac{96}{x^2} + 12x = \frac{-96 + 12x^3}{x^2} \]

\[-96 + 12x^3 = 0 \Rightarrow x^3 = 8 \Rightarrow x = 2 \]

10. A rectangle is formed with one corner at (0,0) and the opposite corner on the graph of \(y = -\ln x \), where 0 < x < 1. What is the largest possible area of such a rectangle?

\[\text{MAX} \]

\[\text{Area} = xy \]

\[A(x) = x \left(-\ln x \right) \]

\[A'(x) = -\ln x - x \left(\frac{1}{x} \right) \]

\[-\ln x - 1 = 0 \]

\[\ln x = -1 \]

\[x = \frac{1}{e} \]

\[y = -\ln(e^{\frac{1}{e}}) = \frac{1}{e} \]

\[xy = \left(e^{\frac{1}{e}} \right) \left(\frac{1}{e} \right) \]

A. \(\frac{\sqrt{e}}{2} \)

B. \(e \)

C. \(\frac{1}{e} \)

D. \(\frac{\ln 2}{2} \)

E. There is no maximum.
11. Suppose \(f \) is a differentiable function with \(f''(x) > 0 \) for all real numbers \(x \). Assume that \(f(1) = 3 \) and \(f(5) = 3 \). Which one of these statements must be true?

A. \(f'(x) \) is decreasing at \(x = 3 \).
B. \(f(x) \geq 0 \) for all real numbers \(x \).
C. \(f \) has an inflection point.
D. \(f'(3) > 0 \).
E. \(f \) has a local minimum.

ROLLES:
\[f'(c) = 0 \] for some \(1 < c < 5 \)

SECOND DERIVATIVE TEST:
\[f''(c) > 0 \Rightarrow \text{LOCAL MIN} \] at \(c \)

12. Which of these curves is the graph of \(y = 5x^6 + 6x^5 \)?

- **A.**
 \[y' = 30x^4(x+1) \]
 \[y'' = 30x^3(5x+4) \]

- **B.**
 \[y' \] is DECR: \((-\infty,-1) \) \quad \text{INCR:} \((-1,0) U (0, \infty) \)

- **C.**
 \[y' \] is CONCAVE DOWN: \((-\frac{4}{5},0) \) \quad \text{UP:} \((-\infty,-\frac{4}{5}) U (0, \infty) \)

- **D.**

- **E.**