8. Preliminary Analysis of the Free Boundary

In this lecture we start the analysis of the free boundary. Our main focus is on the obstacle-type problems that we stated in Lecture 2. Namely, we study the following three problems

Problem A: \(\Delta u = \chi_\Omega \) in \(D \), \(\Omega = D \setminus \{ u = |\nabla u| = 0 \} \)

Problem B: \(\Delta u = \chi_\Omega \) in \(D \), \(\Omega = D \setminus \{ |\nabla u| = 0 \} \)

Problem C: \(\Delta u = \lambda_+ \chi_{\{u>0\}} - \lambda_- \chi_{\{u<0\}} \) in \(D \), \(\lambda_\pm > 0 \).

Here \(D \) is a domain in \(\mathbb{R}^n \) and we will assume that the solution \(u \in C^{1,1}(D) \) throughout this lecture and that the equations are satisfied in the a.e. sense.

8.1. Nondegeneracy. The first property we discuss is the nondegeneracy property of the solutions, which is in a sense opposite to \(C^{1,1} \) estimates. This is going to be important when studying the blowups of the solutions.

In Problems A, B, for any \(x_0 \in \Gamma = \Omega(u) \cap D \) we have the estimate

\[
\sup_{B_r(x_0)} u \leq u(x_0) + \frac{M^2}{2} |x - x_0|^2,
\]

if \(B_r(x_0) \subset \subset D \), where \(M = \|D^2u\|_{L^\infty(D)} \). However, the \(C^{1,1} \) regularity doesn’t exclude that \(u(x) - u(x_0) \) will decay faster than quadratically at \(x_0 \). This is taken care of by the following lemma.

Lemma 8.1 (Nondegeneracy: Problem A). Let \(u \) be a solution of Problem A in \(D \). Then we have the inequality

\[
(8.1) \quad \sup_{\partial B_r(x_0)} u \geq u(x_0) + \frac{r^2}{8n}, \quad \text{for any } x_0 \in \overline{\Omega(u)}
\]

provided \(B_r(x_0) \subset \subset D \).

Remark 8.2. Since \(u \) is subharmonic if it solves Problem A, we can replace sup over \(\partial B_r(x_0) \) to one over \(B_r(x_0) \), obtaining an equivalent statement.

Before giving the proof, consider a similar nodegeneracy statement for solutions of \(\Delta u = 1 \).

Lemma 8.3. Let \(u \) satisfy \(\Delta u = 1 \) in a ball \(B_R \). Then

\[
\sup_{\partial B_r} u \geq u(0) + \frac{r^2}{2n}, \quad 0 < r < R
\]

Proof. Consider the auxiliary function

\[
w(x) = u(x) - \frac{|x|^2}{2n}, \quad x \in B_R.
\]
Then w is harmonic in B_R. Therefore by the maximum principle we obtain that

$$w(0) \leq \sup_{\partial B_r} w = \left(\sup_{\partial B_r} u \right) - \frac{r^2}{2n},$$

which implies the required inequality.

Proof of Lemma 8.1. 1) Assume first that $x_0 \in \Omega(u)$ and moreover $u(x_0) > 0$. Consider then the auxiliary function

$$(8.2) \quad w(x) = u(x) - u(x_0) - \frac{|x-x_0|^2}{2n},$$

similar to the one in the proof the previous lemma. We have $\Delta w = 0$ in $B_r(x_0) \cap \Omega$. Since $w(x_0) = 0$, by the maximum principle we have that

$$\sup_{\partial B_r(x_0) \cap \Omega} w \geq 0.$$

Besides, $w(x) = -u(x_0) - |x-x_0|^2/(2n) < 0$ on $\partial \Omega$. Therefore, we must have

$$\sup_{\partial B_r(x_0) \cap \Omega} w \geq 0.$$

The latter is equivalent to

$$\sup_{\partial B_r(x_0) \cap \Omega} u \geq u(x_0) + \frac{r^2}{2n}$$

and the lemma is proved in this case.

2) Suppose now $x_0 \in \Omega(u)$ and $u(x_0) \leq 0$. If $B_{r/2}(x_0)$ contains a point x_1 such that $u(x_1) > 0$, then

$$\frac{r^2}{2n} \geq u(x_0) + \frac{r^2}{2n}.$$

If it happens that $u \leq 0$ in $B_{r/2}(x_0)$, from subharmonicity of u and the strong maximum principle we will have that either $u = 0$ identically in $B_{r/2}(x_0)$, or $u < 0$ in $B_{r/2}(x_0)$. The former case is impossible, as $x_0 \in \Omega(u)$, and the latter case implies that $B_{r/2}(x_0) \subset \Omega(u)$ and therefore $\Delta u = 1$ in $B_{r/2}(x_0)$. Then Lemma 8.3 finishes the proof in this case and we obtain

$$\sup_{B_r(x_0)} u \geq \sup_{B_{r/2}(x_0)} u \geq u(x_0) + \frac{r^2}{8n}.$$

3) Finally, for $x_0 \in \overline{\Omega(u)}$, we take a sequence $x_n \in \Omega(u)$ such that $x_n \to x_0$ and pass to the limit in the corresponding nondegeneracy inequality at x_n.

Even though the proof above does not work for Problem B in general, we still have the nondegeneracy.

Lemma 8.4 (Nondegeneracy: Problem B). Let u be a solution of Problem B in D. Then we have the inequality

$$(8.3) \quad \sup_{\partial B_r(x_0)} u \geq u(x_0) + \frac{r^2}{2n}, \quad \text{for any } x_0 \in \overline{\Omega(u)}$$

provided $B_r(x_0) \subset \subset D$.

Proof. By continuity, it suffices to obtain the estimate (8.3) only for points \(x_0 \in \Omega(u) \). Note that at those points we have \(|\nabla u(x_0)| \neq 0 \). Consider now the same auxiliary function \(w \) as in (8.2). Then we claim

\[
(8.4) \quad \sup_{B_r(x_0)} w = \sup_{\partial B_r(x_0)} w.
\]

Indeed, if this fails, then the supremum of \(w \) is attained at some interior point \(y \in B_r(x_0) \), and we would have that \(|\nabla w(y)| = 0 \), which implies that

\[
|\nabla u(y)| = \frac{|y - x_0|}{n}.
\]

First off, this implies that \(y \neq x_0 \), otherwise we would have \(|\nabla u(x_0)| = 0 \). Therefore \(|\nabla u(y)| > 0 \) and consequently \(y \in \Omega(u) \). Since \(w \) is harmonic in \(\Omega(u) \), by the strong maximum principle \(w \) is constant in a neighborhood of \(y \). Thus, the set of maxima of \(w \) is both relatively open and closed in \(B_r(x_0) \), which implies that \(w \) is constant there and (8.4) is trivially satisfied. \(\square \)

Finally, in Problem C we have nondegeneracy in both phases, provided \(\lambda_\pm > 0 \).

Lemma 8.5 (Nondegeneracy: Problem C). If \(u \) is a solution of Problem C in \(D \), then we have

\[
(8.5) \quad \sup_{\partial B_r(x_0)} u \geq u(x_0) + \lambda_+ \frac{r^2}{2n}, \quad \text{for any } x_0 \in \Omega_+(u)
\]

\[
(8.6) \quad \inf_{\partial B_r(x_0)} u \leq u(x_0) - \lambda_- \frac{r^2}{2n}, \quad \text{for any } x_0 \in \Omega_-(u)
\]

provided \(B_r(x_0) \subset D \).

Proof. To prove these inequalities, we consider the auxiliary functions

\[
w(x) = u(x) - u(x_0) - \lambda_\pm \frac{|x - x_0|^2}{2n}
\]

and argue similarly to part 1) of the proof of Lemma 8.1. We leave the details to the reader. \(\square \)

Corollary 8.6 (Nondegeneracy of the gradient). Under the conditions of Lemmas 8.1, 8.4, 8.5 the following inequality holds

\[
\sup_{B_r(x_0)} |\nabla u| \geq c_0 r,
\]

for a positive \(c_0 \), depending only on \(n \) in Problems A, B, and also on \(\lambda_\pm \) for Problem C.

The proof is an application of the mean value theorem and is left as an exercise to the reader.

8.2. **Porosity of the Free Boundary and its Lebesgue measure.**

Definition 8.7. We say that the measurable set \(E \subset \mathbb{R}^n \) is porous with porosity constant \(0 < \delta < 1 \) if every ball \(B = B_r(x) \) contains a smaller ball \(B' = B_{\delta r}(y) \) such that

\[
B_{\delta r}(y) \subset B_r(x) \setminus E.
\]
We say that E is \textit{locally porous} in D if $E \cap K$ is porous (with possibly different porosity constants) for any $K \subset D$.

It is clear that the Lebesgue upper density of a porous set E

$$d(x) := \limsup_{r \to 0} \frac{|E \cap B_r(x_0)|}{|B_r(x_0)|} \leq 1 - \delta^n < 1,$$

which implies that E must have Lebesgue measure zero.

\textbf{Proposition 8.8.} \textit{If $E \subset \mathbb{R}^n$ is porous then $|E| = 0$. If E is locally porous in D, then $|E \cap D| = 0$.} \hfill \Box

An immediate corollary of the nondegeneracy and the $C^{1,1}$ regularity is the following result.

\textbf{Lemma 8.9 (Porosity of the free boundary).} \textit{Let u be a solution of Problem A, B in an open set $D \subset \mathbb{R}^n$. Then $\Gamma(u)$ is locally porous for any $K \subset D$.}

\textit{If u is solution of Problem C, then $\Gamma'(u) = \Gamma(u) \cap \{\nabla u = 0\}$ is locally porous.}

\textbf{Proof.} For Problems A, B, Let $x_0 \in \Gamma(u)$ and $B_r(x_0) \subset D$. Using the non-degeneracy of the gradient (Corollary 8.6), one can find $x_1 \in \overline{B_{r/2}(x_0)}$ such that

$$|\nabla u(x_1)| \geq \frac{c_0}{2} r.$$

Now, using that $M = \|D^2 u\|_{L^\infty(D)} < \infty$, we will have

$$\inf_{B_{\tilde{r}_r}(x_1)} |\nabla u| \geq \left(\frac{c_0}{2} - M \delta \right) r \geq \frac{c_0}{4} r, \text{ if } \delta = \frac{c_0}{4M}.$$

This implies that

$$B_{\tilde{r}_r}(x_1) \subset B_r(x_0) \cap \Omega(u) \subset B_r(x_0) \setminus \Gamma,$$

where $\tilde{r} = \min\{\delta, 1\}$. This implies the porosity condition is satisfied for any ball centered at $\Gamma(u)$. It is a now simple exercise to show that porosity condition is satisfied for any ball $B \subset D$ and therefore $\Gamma(u)$ is locally porous.

For Problem C, the same argument as above shows that

$$B_{\tilde{r}_r}(x_1) \subset B_r(x_0) \cap \Omega(u) \cup \Gamma''(u) \subset B_r(x_0) \setminus \Gamma'(u),$$

which implies the local porosity of $\Gamma'(u)$.

\textbf{Corollary 8.10 (Lebesgue measure of Γ).} \textit{Let u be a solution of Problem A, B, and C in D. Then $\Gamma(u)$ has Lebesgue measure zero.}

\textbf{Proof.} In case of Problems A, B the statement follows immediately from the local porosity of $\Gamma(u)$ and Proposition 8.8.

In the case of Problem C, we obtain $|\Gamma'(u)| = 0$. On the other hand $\Gamma''(u)$ is locally a $C^{1,\alpha}$ curve and therefore also has a Lebesgue measure zero. Hence, $|\Gamma(u)| = 0$ also in this case. \hfill \Box

We finish this subsection with the following observation.

\textbf{Lemma 8.11 (Density of Ω).} \textit{Let u be a solution of Problem A, B, and C in D and $x_0 \in \Gamma(u)$. Then}

$$|B_r(x_0) \cap \Omega(u)| \geq \beta, \quad (8.7)$$
provided \(B_r(x_0) \subset D \), where \(\beta \) depends only on \(\| D^2 u \|_{L^\infty(D)} \) and \(n \) for Problems A, B and additionally on \(\lambda_\pm \) for Problem C.

Proof. The proof of Lemma 8.9 shows that

\[
\frac{|B_r(x_0) \cap \Omega(u)|}{|B_r(x_0)|} \geq \tilde{\delta}^n
\]

in case of Problems A and B and

\[
\frac{|B_r(x_0) \cap \Omega(u)|}{|B_r(x_0)|} = \frac{|B_r(x_0) \cap [\Omega(u) \cup \Gamma''(u)]|}{|B_r(x_0)|} \geq \tilde{\delta}^n
\]

in case of Problem C. This completes the proof. \(\square \)

8.3. Hausdorff Measure of the Free Boundary

The porosity if the free boundary not only implies that the its Lebesgue measure is zero but also that it actually has a Hausdorff dimension less than \(n \). A stronger result is as follows.

Lemma 8.12 (Hausdorff measure of \(\Gamma \)). Let \(u \) be a \(C^{1,1} \) solution of Problem A, B, or C in an open set \(D \subset \mathbb{R}^n \). Then \(\Gamma(u) \) is a set of finite \((n - 1)\)-dimensional Hausdorff measure locally in \(D \).

Proof. Let

\[v_i = \partial_{x_i} u, \quad E_\epsilon = \{ 0 < |\nabla u| < \epsilon \}. \]

Observe that

\[c_0 \leq |\Delta u|^2 \leq c_n \sum_{i=1}^n |\nabla v_i|^2 \quad \text{in } \Omega, \]

where \(c_0 = 1 \) in case of Problems A, B and \(c_0 = \min\{\lambda_+^2, \lambda_-^2\} \) for Problem C. Thus, for an arbitrary ball \(B \subset \subset D \) we have

\[c_0 |B \cap E_\epsilon| \leq c_n \int_{B \cap E_\epsilon} \sum_i |\nabla v_i|^2 dx \leq c_n \sum_i \int_{B \cap \{0 < |v_i| < \epsilon\}} |\nabla v_i|^2 dx. \]

To estimate the right hand side here we apply Lemma 6.2 (from Lecture 6) noticing that \(M_1 = M_2 = 0 \) for Problems A, B, and C. It gives

\[\int_D |\nabla v_i| \nabla \eta dx \leq 0, \quad i = 1, \ldots, n \]

for any non-negative \(\eta \in C_0^\infty(D) \). These inequalities continue to hold for non-negative \(\eta \in W_0^{1,2}(D) \). Take \(\eta = \psi_t(v_i^\pm)\phi \), with

\[\psi_t(t) = \begin{cases} 0, & 0 \leq t < \epsilon \\ \epsilon^{-1}t, & 0 \leq t \leq \epsilon \\ 1, & t \geq \epsilon \end{cases} \]

and \(\phi \in C_0^\infty(D) \), \(\phi \geq 0 \). We obtain

\[\epsilon^{-1} \int_{B \cap \{0 < |v_i| < \epsilon\}} |\nabla v_i|^2 \phi dx \leq \int_D |\nabla v_i||\nabla \phi| dx \leq c_n M \int_D |\nabla \phi| dx \]

In particular, taking \(\phi = 1 \) on \(B \), after summation by \(i \), we arrive at the estimate

(8.8) \[c_0 |B \cap E_\epsilon| \leq C \epsilon M, \]

where \(C = C(n, B, D) \).
Consider now a covering of $\Gamma \cap B$ by balls B_i of radius ϵ with centers on $\Gamma \cap B$ and with property that at most N balls may overlap. For Problems A and B, we use (8.7), (8.8) and observe $|\nabla u| \leq M\epsilon$ for in each B_i, which gives

$$\sum_i |B_i| \leq \frac{1}{\beta} \sum_i |B_i \cap \Omega| \leq \frac{1}{\beta} \sum_i |B_i \cap E_{M\epsilon}|$$

$$\leq \frac{N}{\beta} |B \cap E_{M\epsilon}| \leq \frac{cNM\epsilon}{c_0\beta}.$$

This gives the estimate

$$H^{n-1}(\Gamma(u) \cap B) \leq C(n, M, B, D).$$

For Problem C, the same proof works for Γ', and the rest part of the free boundary Γ'' is smooth. \hfill \Box

Remark 8.13. The estimate (8.8) essentially means

$$|\Omega \cap \{|\nabla u| < \epsilon\}| \leq C\epsilon,$$

which we will use later. In particular, it gives $|\Omega \cap \{|\nabla u| = 0\}| = 0.$