Let $1 < p < \infty$ and denote the norm of the Beurling-Ahlfors transform B on $L^p(C)$ by $\|B\|_{p \to p}$. The estimate $\|B\|_{p \to p} \leq 2(p^* - 1)$, where $p^* = \max\{p, p/(p - 1)\}$, obtained recently by F. Nazarov and A. Volberg [13] is proved here using the martingale techniques of [3] applied to space time Brownian motion.

1. INTRODUCTION

Let $f \in L^p(C)$, $1 < p < \infty$, and define the Beurling-Ahlfors transform by the singular integral operator

$$Bf(z) = -\frac{1}{\pi} \int_{C} \frac{f(\omega)}{\omega - z}^2 dm(\omega),$$

where $dm(\omega)$ is the Lebesgue measure in the complex plane C. This operator is the two dimensional analogue of the Hilbert transform and it plays a fundamental role in the study of quasiconformal mappings, partial differential equations and complex analysis. The general theory of singular integrals [14] implies that B is bounded on $L^p(C)$ for any $1 < p < \infty$. We denote its norm by $\|B\|_{p \to p}$. It was conjectured by T. Iwaniec [9] that $\|B\|_{p \to p} = p^* - 1$, where $p^* = \max\{p, p/(p - 1)\}$. A proof of this conjecture will have many important consequences in the theory of quasiconformal mappings and on the regularity of solutions to certain partial differential equations (see [1], [9], [10] and [11]). It is well known that $\|B\|_{p \to p} \geq p^* - 1$. Using some extensions of the inequalities of D. L. Burkholder ([4], [6]) on differential subordination of martingales and a stochastic integral representation of the operator B, R. Bañuelos and G. Wang [3] proved that $\|B\|_{p \to p} \leq 4(p^* - 1)$ and that $\|B\|_{p \to p} \leq 2\sqrt{2}(p^* - 1)$ when the operator is restricted to real valued functions. More recently, F. Nazarov and A. Volberg [13] obtained the estimate

$$\|B\|_{p \to p} \leq 2(p^* - 1),$$

improving the previous estimate by a factor of 2. They also proved that when the operator is restricted to real valued functions,
(2) \[\|B\|_{p \to p} \leq \sqrt{2}(p^* - 1). \]

The purpose of this paper is to show that the same martingale techniques presented in Bañuelos and Wang [3] can be used to produce these improvements. What is needed is to replace the Brownian motion in the arguments of [3] by the space time Brownian motion. The idea to replace the Brownian motion by the space time Brownian motion arose from reading [13] which uses a heat equation version of Lemma 2 on page 87 of [14], applied to an appropriately constructed Bellman functions. It should be mentioned here that the construction of the Bellman function in [13] is also based on Burkholder’s results on differential subordination of martingales applied to Haar functions. In fact, what they use is a special case of the result in [5]. Their arguments, however, do not use any stochastic integration. Nevertheless, it is interesting to note that the key estimate in both [3] and [13], as well as in this paper, is Burkholder’s inequality on the differential subordination of martingales and that at this point, as far as we know, there are no non-martingale proofs of any of these estimates of \(\|B\|_{p \to p} \).

The connection between martingale transforms and singular integrals has been extensively studied in the literature. We refer the reader to [2], [3], [7] and [8] for more applications. The reader interested in other applications of space time Brownian motion to Littlewood–Paley theory should consult P. A. Meyer [12].

2. Space–time Brownian motion, martingale transforms, and the estimates (1) and (2)

By standard density arguments it suffices to prove that for any \(1 < p < \infty \), \(\|B\varphi\|_p \leq 2(p^* - 1)\|\varphi\|_p \), for all complex valued functions \(\varphi \in C_0^\infty(\mathbb{R}^2) \). Toward this end, fix such a function. The heat kernel for half the Laplacian \(\frac{1}{2} \Delta = \frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \) in \(\mathbb{R}^2 \) is given by

\[P_t(z) = \frac{1}{2\pi t} \exp \left(\frac{-|z|^2}{2t} \right), \]

where \(|z| \) is the Euclidean norm of \(z = (x, y) \) in \(\mathbb{R}^2 \), and its Fourier transform (with \(\xi = (\xi_1, \xi_2) \)) is

\[\hat{P}_t(\xi) = \int_{\mathbb{R}^2} e^{2\pi i z \cdot \xi} P_t(z) \, dz = e^{-2\pi^2 t|\xi|^2}, \]

([14], p. 131). The heat extension of the function \(\varphi \) to the upper half space, \(\mathbb{R}_+^3 = \mathbb{R}^2 \times \mathbb{R}_+ \), is

\[U_\varphi(z, t) = \int_{\mathbb{R}^2} \varphi(w) P_t(z - w) \, dw. \]
This function solves the heat equation in \mathbb{R}^3_+ with boundary values φ. That is,

$$
\begin{align*}
\frac{\partial U_\varphi(z,t)}{\partial t} &= \frac{1}{2} \Delta U_\varphi(z,t), \quad (z,t) \in \mathbb{R}^3_+ \\
U_\varphi(0,z) &= \varphi(z), \quad z \in \mathbb{R}^2.
\end{align*}
$$

We now follow the construction in [12]. Let Z_t be two dimensional Brownian motion with initial distribution the Lebesgue measure m. Fix $T > 0$ and consider the space–time Brownian motion $B_t = (Z_t, T - t), \ t \in [0, T]$. This process starts on the hyperplane $\mathbb{R}^2 \times \{T\}$ with initial distribution $m \otimes \delta_T$. Let P^T denote the “probability” measure associated with this process, and denote by E^T the corresponding expectation. Fubini’s theorem implies that for all functions φ as above

$$
E^T[\varphi(Z_T)] = E^T[U_\varphi(B_T)] = \int_{\mathbb{R}^2} E_z[U_\varphi(Z_T, 0)] \, dz
$$

$$
= \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \varphi(z) P_T(z - w) \, dz \, dw
$$

$$
= \int_{\mathbb{R}^2} \varphi(z) \, dz.
$$

It is well known that $U_\varphi(B_t) = U_\varphi(Z_t, T - t), \ t < T$, is a martingale and Itô’s formula gives that

$$
\varphi(Z_T) = U_\varphi(B_T) = U_\varphi(B_0) + \int_0^T \nabla_z U_\varphi(B_t) \cdot dZ_t
$$

where

$$
\nabla_z U_\varphi(\cdot) = \left(\frac{\partial U_\varphi}{\partial x}(\cdot), \frac{\partial U_\varphi}{\partial y}(\cdot)\right).
$$

We define, for any 2×2 matrix A, the martingale transform of $U_\varphi(B_t)$ by

$$
A \ast U_\varphi = \int_0^T \left[A \nabla_z U_\varphi(B_t) \right] \cdot dZ_t,
$$

and its projection in \mathbb{R}^2 by

$$
S^T_A \varphi(x) = E^T\left[A \ast U_\varphi \mid B_T = (x, 0) \right].
$$

Burkholder’s result on differential subordination of martingales, as presented in Theorem 4.2 in [3], gives that for all $\varphi \in C^\infty_0(\mathbb{R}^2)$

$$
\|S^T_A \varphi\|_p \leq (p^*-1) \|A\| \left(\int_0^T \|\nabla_z U_\varphi(B_s) \cdot dZ_s\|_p\right)
$$

$$
= (p^*-1) \|A\| \left(\left(E^T\left[\varphi(B_T) - U(B_0)\right]\right)^p\right)^{1/p},
$$

where $\|A\| = \sup\{\|A(z, \omega)\|_{C^2} : z, \omega \in C, \|(z, \omega)\|_{C^2} \leq 1\}$.

The estimate for the norm of the Beurling-Ahlfors operator will follow from this. It is easy to show that for all $1 < p < \infty$, $\|\varphi(B_T) - U_\varphi(B_0)\|_p \leq 2\|\varphi\|_p$. This simple estimate, however, is not good enough for our purpose. The following proposition provides the improvement we need.
Proposition 2.1. For all \(\varphi \in C_0^\infty(\mathbb{R}^2) \) and all \(2 \leq p < \infty \),

\[
\lim_{T \to \infty} E^T \left[|\varphi(Z_T) - U_\varphi(B_0)|^p \right] \leq \lim_{T \to \infty} E^T \left[|\varphi(Z_T)|^p \right] = \|\varphi\|_p^p.
\]

Proof: Fix \(z \in \mathbb{C} \). Let \(K \) be the support of \(\varphi \) and let \(Z_t \) be a two dimensional Brownian motion starting at \(z \). If \(p \geq 2 \) is a positive integer we have that

\[
E_z \left[|\varphi(Z_T) - U_\varphi(Z_0, T)|^p \right] \leq E_z \left[\sum_{k=0}^{p} \left(\begin{array}{c} p \\ k \end{array} \right) |U_\varphi(z, T)|^{p-k} |\varphi(Z_T)|^k \right]
\]

(6) \(E_z \left[|\varphi(Z_T)|^p \right] + \sum_{k=0}^{p-1} \left(\begin{array}{c} p \\ k \end{array} \right) \left(E_z \left[|\varphi(Z_T)|^k \right] \right)^{p-k} E_z \left[|\varphi(Z_T)|^k \right]. \)

If \(0 < k < p \) we obtain from Hölder’s inequality that

\[
\left(E_z \left[|\varphi(Z_T)|^k \right] \right)^{p-k} \leq E_z \left[|\varphi(Z_T)|^{p-k} \right] \left(P_z \left[Z_T \in K \right] \right)^{p-k-1},
\]

and

\[
E_z \left[|\varphi(Z_T)|^k \right] \leq \left(P_z \left[Z_T \in K \right] \right)^{1-\left(k/p \right)} \left(E_z \left[|\varphi(Z_T)|^p \right] \right)^{k/p}.
\]

Therefore

\[
\left(E_z \left[|\varphi(Z_T)|^p \right] \right)^{p-k} E_z \left[|\varphi(Z_T)|^k \right] \leq E_z \left[|\varphi(Z_T)|^{p-k} \right] \left(P_z \left[Z_T \in K \right] \right)^{p-k-1} E_z \left[|\varphi(Z_T)|^k \right] \leq \left(E_z \left[|\varphi(Z_T)|^p \right] \right)^{\left[k/p \right] + \left[(p-k)/p \right]} \left(P_z \left[Z_T \in K \right] \right)^{p-k-1 + 1 - \left[k/p \right] + 1 - \left[(p-k)/p \right]}.
\]

Combining this inequality with (6) we have that

\[
E_z \left[|\varphi(Z_T) - U_\varphi(Z_0, T)|^p \right] \leq E_z \left[|\varphi(Z_T)|^p \right] + \sum_{k=0}^{p-1} \left(\begin{array}{c} p \\ k \end{array} \right) E_z \left[|\varphi(Z_T)|^p \right] \left(P_z \left[Z_T \in K \right] \right)^{p-k}.
\]

We deduce that there exists a constant \(C(p) \), depending only on \(p \), such that for all positive integer \(p \geq 2 \)

\[
E_z \left[|\varphi(Z_T) - U_\varphi(Z_0, T)|^p \right] \leq E_z \left[|\varphi(Z_T)|^p \right] \left[1 + C(p) P^z \left[Z_T \in K \right] \right] \leq E_z \left[|\varphi(Z_T)|^p \right] \left[1 + C(p) \frac{m(K)}{2\pi T} \right] .
\]

Consider now the space \(\mathcal{E} = L^p(K, \mu_{T,z}) \), where

\[
d\mu_{T,z} = P_T(w-z)dw,
\]
and the operator H on E given by

$$H(\phi) = \phi - \int_K \phi(w) d\mu_{T,z}(w).$$

Then the last inequality implies that, for all $\phi \in E$ and all positive integer $p \geq 2$, we have that

$$\|H(\phi)\|_E = (E_z|\varphi(Z_T) - U\varphi(Z_0, T)|^p)^{1/p} \leq \left[1 + \frac{C(p) m(K)}{2\pi T}\right]^{1/p} \|\phi\|_E.$$

Thus the Riesz-Thorin Interpolation theorem implies that for all $p \geq 2$, and $\varphi \in C_0^\infty(\mathbb{R}^2)$

$$E_z\left[|\varphi(Z_T) - U\varphi(Z_0, T)|^p\right] \leq E_z\left[|\varphi(Z_T)|^p\right] \left[1 + \frac{C'(p) m(K)}{2\pi T}\right]$$

where the constant $C'(p)$ can be taken to be $\max\{C([p]), C([p]+1)\}$ and $[p]$ the largest integer smaller than p. Integrating in z over \mathbb{R}^2 we have that

$$E^T\left[|\varphi(Z_T) - U\varphi(B_0)|^p\right] \leq \left[1 + \frac{C'(p) m(K)}{2\pi T}\right] E^T\left[|\varphi(Z_T)|^p\right].$$

We conclude that

$$\lim_{T \to \infty} E^T\left[|\varphi(Z_T) - U\varphi(B_0)|^p\right] \leq \lim_{T \to \infty} E^T\left[|\varphi(Z_T)|^p\right] = \|\varphi\|_p^p,$$

proving the Proposition. •

Next, let R_1 and R_2 denote the Riesz transforms in \mathbb{R}^2 with Fourier multipliers

$$m_1(\xi) = \frac{i\xi_1}{|\xi|}, \quad m_2(\xi) = \frac{i\xi_2}{|\xi|},$$

respectively. We recall that the Fourier multiplier of B is given by

$$m(\xi) = \frac{\xi}{|\xi|}.$$

Thus we have the following representation of B in terms of the Riesz transforms in \mathbb{R}^2:

(7) \hspace{1cm} B = R_2^2 - R_1^2 + 2iR_2R_1.

Proposition 2.2. Let $i, j \in \{1, 2\}$ and $A^{i,j} = (a_{r,s}^{i,j})$ be the 2×2 real matrix defined by

$$a_{r,s}^{i,j} = -1 \text{ and } a_{r,s}^{i,j} = 0 \text{ if } r \neq i \text{ or } s \neq j.$$

Then for all $\varphi \in C_0^\infty(\mathbb{R}^2)$

(8) \hspace{1cm} \lim_{T \to \infty} \int_{\mathbb{R}^2} g(z)S_{A^{i,j}}^T \varphi(z) dz = \int_{\mathbb{R}^2} g(z)R_iR_j\varphi(z) dz,

for any $g \in L^q(\mathbb{R}^2)$, $1 < q < \infty$.
Proof: We will only prove the case \(i = j = 1 \), the other cases follow a similar argument. To make the notation a little simpler assume, by splitting into real and imaginary parts, that \(\varphi \) is real valued. Let \(\psi \in C_0^\infty(\mathbb{R}^2) \), which we also assume to be real valued. By (3),

\[
\int_{\mathbb{R}^2} \psi(z) S_{A_{1.1}}(z)dz = -E_T \left[\psi(B_T) \int_0^T \frac{\partial \varphi}{\partial x}(B_t) dZ_t^1 \right]
\]

(9)

\[
= -E_T \left[\psi(B_0) \int_0^T \frac{\partial \varphi}{\partial x}(B_t) dZ_t^1 \right]
- E_T \left[\int_0^T \nabla \cdot U \psi(B_s) \cdot dZ_t \int_0^T \frac{\partial \varphi}{\partial x}(B_t) dZ_t^1 \right].
\]

We claim that

\[
\lim_{T \to \infty} E_T \left[\psi(B_0) \int_0^T \frac{\partial \varphi}{\partial x}(B_t) dZ_t^1 \right] = 0.
\]

(10)

Applying the Cauchy-Schwarz inequality and the \(L^2 \)-isometry of stochastic integrals, we get

\[
E_T \left| U \psi(B_0) \int_0^T \frac{\partial \varphi}{\partial x}(B_t) dZ_t^1 \right| \leq \left(E_T \left| U \psi(B_0) \right|^2 \right)^{1/2} \left(E_T \left| \int_0^T \frac{\partial \varphi}{\partial x}(B_t) dZ_t^1 \right|^2 \right)^{1/2} \leq \left(E_T \left| U \psi(B_0) \right|^2 \right)^{1/2} \left(E_T \left| \int_0^T \frac{\partial \varphi}{\partial x}(B_t) dt \right|^2 \right)^{1/2} \leq \left(E_T \left| U \psi(B_0) \right|^2 \right)^{1/2} \left(E_T \left| \nabla \varphi(B_t) \right|^2 \right)^{1/2} = \left(E_T \left| U \psi(B_0) \right|^2 \right)^{1/2} \left(E_T \left| \varphi(Z_T) - U \phi(B_0) \right|^2 \right)^{1/2}
\]

By Proposition 2.1,

\[
\lim_{T \to \infty} E_T \left| U \psi(B_0) \right| = \left| \psi \right|_2^2.
\]

On the other hand, since \(|U \psi(z, T)| \leq \frac{\| \psi \|_1}{2\pi T} \), uniformly in \(z \) we have,

\[
E_T \left| U \psi(B_0) \right|^2 = \int_{\mathbb{R}^2} E_T |U \psi(B_0)|^2 dz
= \int_{\mathbb{R}^2} |U \psi(z, T)|^2 dz
\leq \frac{\| \psi \|_1}{2\pi T} \int_{\mathbb{R}^2} |U \psi(z, T)| dz
\leq \frac{\| \psi \|_1^2}{2\pi T},
\]

which goes to zero as \(T \to \infty \). This proves the claim.
Returning to (9) the definition of E^T and Parseval’s formula imply that
\[
\begin{align*}
-E^T \left[\int_0^T \frac{\partial U_\varphi}{\partial x}(B_t) dZ_t \int_0^T \nabla z U_\psi(B_t) \cdot dZ_t \right] & = -E^T \left[\int_0^T \frac{\partial U_\varphi}{\partial x}(B_t) \frac{\partial U_\psi}{\partial x}(B_t) dt \right] \\
& = -\int_0^T \int_{\mathbb{R}^2} \frac{\partial U_\varphi}{\partial x}(z, T-t) \frac{\partial U_\psi}{\partial x}(z, T-t) P_t(z-w) dz dw dt \\
& = -\int_0^T \int_{\mathbb{R}^2} \frac{\partial U_\varphi}{\partial x}(\xi, T-t) \frac{\partial U_\psi}{\partial x}(\xi, T-t) \xi dt \\
& = -\int_0^T \int_{\mathbb{R}^2} 4\pi^2 \xi_1^2 e^{-4\pi^2(T-t)|\xi|^2} \hat{\varphi}(\xi) \overline{\hat{\psi}(\xi)} d\xi dt.
\end{align*}
\]
A simple change of variables, the dominated convergence theorem and one more use of Parseval’s formula give
\[
\begin{align*}
-\lim_{T \to \infty} & \int_0^T \int_{\mathbb{R}^2} 4\pi^2 \xi_1^2 e^{-4\pi^2(T-t)|\xi|^2} \hat{\varphi}(\xi) \overline{\hat{\psi}(\xi)} d\xi dt \\
& = -\left(\int_0^\infty \int_{\mathbb{R}^2} 4\pi^2 \xi_1^2 e^{-4\pi^2t|\xi|^2} \hat{\varphi}(\xi) \overline{\hat{\psi}(\xi)} d\xi dt \right) \\
& = -\int_{\mathbb{R}^2} \frac{\xi_1^2}{|\xi|^2} \hat{\varphi}(\xi) \overline{\hat{\psi}(\xi)} d\xi \\
& = \int_{\mathbb{R}^2} \psi(z) R_1^2 \varphi(z) dz,
\end{align*}
\]
Thus,
\[
\lim_{T \to \infty} \int_{\mathbb{R}^2} \psi(z) S^T_{A_1,1} \varphi(z) dz = \int_{\mathbb{R}^2} \psi(z) R_1^2 \varphi(z) dz,
\]
for all $\psi \in C_0^\infty(\mathbb{R}^2)$. By (5) and the fact that $\|\varphi(B_T) - U(B_0)\|_p \leq 2\|\varphi\|_p$ for any $1 < p < \infty$, we see that $\|S^T_{A_1,1} \varphi(z)\|_p \leq C_p \|\varphi\|_p$ with a constant independent of T. Of course, we also know that $\|R_1^2 \varphi\|_p \leq C_p \|\varphi\|_p$, for any $1 < p < \infty$. From this, (11), and the density of $C_0^\infty(\mathbb{R}^2)$ in $L^p(\mathbb{R}^2)$, $1 < p < \infty$ the proposition follows.

Theorem 2.1. Let $f \in L^p(\mathbb{C})$, $1 < p < \infty$. Then
\[
\|Bf\|_p \leq 2(p^*-1)\|f\|_p.
\]
If in addition, $f : \mathbb{C} \to \mathbb{R}$, then
\[
\|Bf\|_p \leq \sqrt{2}(p^*-1)\|f\|_p
\]
Proof: Consider the matrix
\[
\mathcal{B} = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}
\]
and observe that \(\|B\| = 2 \). Duality and Propositions 2.1 and 2.2, together with (4), (5) and (7), give that for any \(p \geq 2 \) and any \(\varphi \in C_0^{\infty}(\mathbb{R}^2) \),

\[
\|B\varphi\|_p \leq 2(p^*-1)\|\varphi\|_p.
\]

The density of \(C_0^{\infty}(\mathbb{R}^2) \) in \(L^p(\mathbb{C}) \) implies (i) for all \(p \geq 2 \), and the case \(1 < p < 2 \) follows by duality. Finally, (ii) follows from the fact that the norm of \(B \) acting on real vectors is \(\sqrt{2} \).

The above results can be derived for the Riesz transform in \(\mathbb{R}^n \) for any \(n \geq 2 \) and we obtained the following improvement of the first result in Theorem 4 of [3].

Theorem 2.2. Let \(f \in L^p(\mathbb{R}^n) \), \(1 < p < \infty \). Then

\[
\left\| \sum_{j=1}^n a_j R_j^2 f \right\|_p \leq (p^*-1)\|f\|_p, \quad a_j \in \{-1, 0, 1\}
\]

and

\[
\|R_j R_k f\|_p \leq \frac{1}{2}(p^*-1)\|f\|_p, \quad j \neq k.
\]

Furthermore, if \(n \) is even, say \(n = 2m \), then

\[
\left\| \sum_{j=1}^m a_{2j} R_{2j-1} R_{2j} f \right\|_p \leq \frac{1}{2}(p^*-1)\|f\|_p, \quad a_j \in \{-1, 0, 1\}.
\]

This result shows that in particular, \(\|(R_2^2 - R_1^2) f\|_p \leq (p^*-1)\|f\|_p \) and that \(\|2R_1 R_2 f\|_p \leq (p^*-1)\|f\|_p \). Hence, as in the case of the results in [3], the argument does not really treat the Beurling–Ahlfors operator as a single entity. In particular, the argument here does not provide the right constant for \(p = 2 \).

We end with some remarks on the difference between the martingale representation of \(B \) presented here and the one presented in [2], [3] and [8]. In those papers the martingale transform is given in terms of the harmonic extension of \(\varphi \) to \(\mathbb{R}^3_+ \) instead of the heat extension used in this paper. The question arises if one can use other processes to obtain different martingale representations of \(B \) and perhaps improve the estimates on \(\|B\|_{p\to p} \). In particular, it is natural to try to extend \(\varphi \) using the densities of other stable processes or to try to use a Bessel process for the vertical component. We were not able to improve on the constants any further with that strategy.

References

[1] A. Baernstein II and Stephen J. Montgomery-Smith, Some Conjectures about integral means of \(\partial f \) and \(\overline{\partial f} \), Acta Universitatis Upsaliensis 64 (1999), 92-109. (Festschrift for M. Essén, edited by C. Kiselman.)

Mathematics Department, Purdue University, West Lafayette, IN 47907
E-mail address: banuelos@math.purdue.edu

Mathematics Department, Purdue University, West Lafayette, IN 47907
E-mail address: mendez@math.purdue.edu