Math 530
Practice problems

1. A function is analytic in the strip $-1 < \text{Re } z < 2$. What can be said about the radius of convergence of its Taylor series about i?

2. Prove that power series can be integrated term by term. To be precise, suppose that a power series $\sum_{n=0}^{\infty} a_n z^n$ with radius of convergence $R > 0$ converges on the disc $D_R(0)$ to an analytic function $f(z)$. Prove that the power series $\sum_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1}$ also has radius of convergence R and that this series converges to an analytic anti-derivative of $f(z)$ inside the circle of convergence.

3. Suppose that f and g are analytic in a neighborhood of a. If f has a simple zero at a, then

$$\text{Res}_a \frac{g}{f} = \frac{g(a)}{f'(a)}.$$

Prove a similar formula in case f has a double zero at a, i.e., in case f is such that $f(a) = 0$, $f'(a) = 0$, but $f''(a) \neq 0$.

4. Consider the closed path which starts at the origin, follows the real axis to $R > 0$, then follows the circle $Re^{i\theta}$ as θ ranges from zero to $2\pi/3$, then follows the line segment joining $Re^{i2\pi/3}$ to the origin back to the origin. By letting $R \to \infty$, use this path to calculate

$$\int_0^{\infty} \frac{1}{1+x^3} \, dx.$$

Hint: Show that the integral over the circular part of the curve tends to zero.

5. Give a detailed statement and proof of one of the following theorems:
 - The Schwarz Lemma, or
 - Cauchy’s Theorem for a Triangle (Goursat’s proof), or
 - The Partial Fraction Decomposition Theorem.

6. Show that if f is an analytic mapping of the unit disk into itself such that $f(a) = 0$, then

$$|f(z)| \leq \left| \frac{z-a}{1-\bar{a}z} \right|$$

for all z in the disk.

7. Show that if f is an analytic mapping of the unit disk into itself, then $|f'(0)| \leq 1$.

8. Suppose that f is an analytic function on the unit disc such that $|f(z)| < 1$ for $|z| < 1$. Prove that if f has a zero of order n at the origin, then $|f(z)| \leq |z|^n$ for $|z| < 1$. How big can $|f^{(n)}(0)|$ be?

9. Suppose that f is an entire function that satisfies an estimate $|f(z)| \leq C(1+|z|^N)$ for all z where C is a positive constant and N is a positive integer. Prove that f must be a polynomial of degree N or less.