Elena Beretta - University of Rome “La Sapienza”, Italy

An inverse problem arising from magnetohydrodynamics

Given the semilinear equation $\Delta u = f(u)$ in Ω, where Ω is a two-dimensional bounded domain, with $u = 0$ on $\partial \Omega$, we consider the problem of determining the nonlinear term $f \geq 0$ from knowledge of the normal derivative of u, $\frac{\partial u}{\partial n}$, on $\partial \Omega$. It is easy to see that the identification of f fails if Ω is a ball. We review some uniqueness results for analytic f’s in classes of non-smooth domains Ω and we describe a result of uniqueness in a class of smooth domains Ω obtained recently with M. Vogelius and S. Vessella via a regularity result for the (free) boundary $\partial \Omega$.