 Results from MathSciNet: Mathematical Reviews on the Web
© Copyright American Mathematical Society 2004

99f:58223 58G99 53C20
Danielli, Donatella (1-PURD); Garofalo, Nicola (I-PADV-MM); Nhieu, Duy-Minh (RC-AST)
Isoperimetric and trace inequalities with respect to Carnot-Carathéodory metrics.
This note focuses on the problem of existence of traces for Sobolev spaces associated to a family of locally Lipschitz real vector fields \(\{X_1, \cdots, X_m\} \) in \(\mathbb{R}^n \). Denote by \(d \) the Carnot-Carathéodory metric associated to the system \(X_1, \cdots, X_m \). The vector fields must satisfy the following three conditions: (H1) The identity map from \(\mathbb{R}^n \) equipped with the Euclidean metric into \(\mathbb{R}^n \) equipped with the Carnot-Carathéodory metric is continuous. (H2) The balls of the Carnot-Carathéodory metric satisfy a doubling inequality with respect to the Lebesgue metric. (H3) There exists a weak-type Poincaré inequality with respect to the gradient associated to the \(X_1, \cdots, X_m \).
Examples are given by vector fields satisfying the H"ormander finite rank condition, by the so-called Grushin-Baouendi vector fields and by the (Lipschitz) vector fields associated to the subelliptic operators studied by Fefferman and Phong.

The main theorem states: Let \(f \) be a function whose weak gradient in the \(X_i \) directions has bounded \(L^p \) norm in an open set \(\Omega \). Then \(f \) has an \(L^p \) restriction to the boundary of \(\Omega \) when the surface balls have the correct rate of growth. In the particular case of the Heisenberg group this happens for every \(C^2 \) set.
Several extensions and applications are mentioned in the paper, together with an outline of the proofs.

{For the entire collection see 99b:00019} Luca Capogna (1-AR)