

11 Wednesday, February 4

Volumes of Solids of Revolution about Arbitrary Axes

Earlier we talked about revolving graphs about the \(x \) and \(y \) axes. Now suppose we want to revolve around an axis shifted away from the \(x \) and \(y \) axes

\[
A(x) = \pi [f(x) - a]^2
\]

\[
A(x) = \pi [f(x) - a]^2
\]

Theorem 11.1 (Volume of a Solid of Revolution). The volume of the solid generated by revolving about the line \(y = b \) (or \(x = b \)) the graph of \(y = f(x) \) (or the graph of \(x = f(y) \)) from \(x = c \) to \(x = d \) (or \(y = c \) to \(y = d \)) is the integral

\[
V = \int_c^d \pi [f(x) - a]^2 \, dx \quad \text{or} \quad V = \int_c^d \pi [f(y) - b]^2 \, dy
\]

(11.1)

Similarly, for the washer method with the graphs of \(y = f(x) \) and \(y = g(x) \) (or \(x = f(y) \) and \(x = g(y) \)), the volume is the integral

\[
V = \int_c^d \pi \left([f(x) - a]^2 - [g(x) - a]^2 \right) \, dx \quad \text{or} \quad V = \int_c^d \pi \left([f(y) - b]^2 - [g(y) - b]^2 \right) \, dy
\]

(11.2)
Example 11.2. Find the volume of the following solids of revolution formed by revolving the regions bounded by the given curves about the given axes.

(1) $y = x^2, y = 4, x = 0$

 (a) about the x-axis

 $V = \int_0^2 \pi \left([4]^2 - [x^2]^2 \right) \, dx$

 (b) about the y-axis

 $V = \int_0^4 \pi \left(\sqrt{y} \right)^2 \, dy$

 (c) about the line $y = 4$

 $V = \int_0^2 \pi \left(x^2 - 4 \right)^2 \, dx$

 (d) about the line $x = -1$

 $V = \int_0^4 \pi \left([\sqrt{y} - (-1)]^2 - [0 - (-1)]^2 \right) \, dy$

 $= \int_0^4 \pi \left([1 + \sqrt{y}]^2 - 1 \right) \, dy$
(2) $y = \frac{4}{x^3}, y = 1/2, x = 1$

(a) about the x-axis

$$V = \int_1^3 \pi \left(\left[\frac{4}{x^3} \right]^2 - \left[\frac{1}{3} \right]^2 \right) \, dx$$

(b) about the y-axis

$$V = \int_{1/3}^4 \pi \left(\left[\frac{4}{y} \right]^{rac{1}{3}} \right)^2 - 1^2 \right) \, dy$$

(c) about the line $x = 2$

$$V = \int_{1/3}^4 \pi \left([1 - 2]^2 - \left[\frac{4}{y} \right]^{rac{1}{3}} - 2 \right)^2 \, dy$$

(d) about the line $y = 4$

$$V = \int_1^3 \pi \left(\left[\frac{1}{3} - 4 \right]^2 - \left[\frac{4}{x^3} - 4 \right]^2 \right) \, dx$$
(3) $y = x^2 - 2x, y = 0$

(a) about the x-axis

$$V = \int_{0}^{a} \pi (x^2 - 2x)^2 \, dx$$

(b) about the y-axis

$$x = 1 \pm \sqrt{y + 1}$$

$$y + 1 = x^2 - 2x + 1 = (x-1)^2$$

$$V = \int_{-1}^{0} \pi \left([1+\sqrt{y+1}]^3 - [1-\sqrt{y+1}]^3 \right) \, dy$$

(c) about the line $x = 2$

$$V = \int_{-1}^{0} \pi \left([1-\sqrt{y+1}]^3 - [1+\sqrt{y+1}]^3 \right) \, dy$$

(d) about the line $y = 2$

$$V = \int_{0}^{3} \pi \left([x^2 - 3x - a]^3 - [0-a]^3 \right) \, dx$$
Example 11.3.

(1) A pulley is shaped like the graph of \(y = 2 + \sec x \) from \(x = -\pi/4 \) to \(x = \pi/4 \) rotated about the \(x \)-axis is to have a hole drilled through the center of it (parallel to the \(x \)-axis). What should the radius of this hole be cut the original volume in half?

(2) A wok is designed to be shaped like a spherical bowl. If the radius of the sphere is is based off of is 16 cm and the bowl is 9 cm deep, what is the resulting volume?

\[
x^2 + y^3 = 256
\]
\[
x^2 = 256 - y^3
\]
\[
x = \pm \sqrt[3]{256 - y^3}
\]

\[
V = \int_{-\pi/4}^{\pi/4} \pi (256 - y^3)^{\frac{3}{2}} \, dy
\]
(3) The arch \(y = \cos x, \pi/2 \leq x \leq \pi/2 \) is revolved about the line \(y = c, 0 \leq c \leq 1 \). What is the value of \(c \) that minimizes the volume of the solid, and what is the minimum volume?

\[
y = 1 - x^2 \quad -1 \leq x \leq 1
\]

\[
c = 1 - x^2 \quad \Rightarrow \quad x = \pm \sqrt{1 - c}
\]

\[
V_1 = \int_{-1}^{-\sqrt{1-c}} \pi (1-x^2-c)^2 \, dx
\]