Chapter 10

Polynomials over a Field

Let K be a field. We can define the commutative ring $R = K[x]$ of polynomials with coefficients in K as in chapter 7. Suppose $f = a_n x^n + \ldots$, where $a_n \neq 0$ and x^n is the highest power of x in f. Then n is called the degree of f, $\deg(f)$, and $a_n x^n$ the leading term. A polynomial of degree 0 called a constant polynomial will be regarded as an element of K.

It turns out that R behaves much like \mathbb{Z}. In particular, one has a version of the division algorithm:

Theorem 10.1. Let $f, g \in R$ with $\deg(g) \neq 0$. Then there exists unique polynomials q and r, such that

$$f = qg + r, \deg(r) < g$$

Proof. The proof is by induction on $\deg(f)$. If $\deg(f) < \deg(g)$, then take $q = 0$ and $r = f$. Otherwise, let ax^n and bx^m be leading coefficients of f and g. Set $q_1 = (ab^{-1})x^{n-m}$ then $f_2 = f - q_1g$ has degree less than $\deg(f)$. Then by induction $f_2 = q_2g + r$. Therefore $f = (q_1 + q_2)g + r$. \qed

Given an element $b \in K$, $f(b) \in K$ is defined by substituting b for x in the expression for f. We say b is a root of f if $f(b) = 0$.

Corollary 10.2. If b is a root of f, then $x - b$ divides f.

Proof. Then $f = g \cdot (x - b) + r$ where r has degree 0. In other words r is an element of K. Then $r = f(b) = 0$. \qed

Corollary 10.3. A nonzero polynomial of degree n can have at most n distinct roots.

With the division algorithm in hand, much of the arithmetic of integers can be carried over to polynomials. Given two polynomials, f and g, we say that f divides g if $g = fq$. A common divisor of f and g can be defined as before. A polynomial p is called a greatest common divisor (or gcd) if $\deg(p)$ is maximal among all common divisors. It’s unique up to multiplication by a nonzero element of K. The analogue of corollary 5.3 holds:
Theorem 10.4. If \(p \) is a greatest common divisor of \(f, g \in K[x] \), then there exists polynomials \(f_1, g_1 \in K[x] \) such that \(ff_1 + gg_1 = p \).

The proof, which is a modification of the previous one, leads to an algorithm which can easily be implemented in Maple (when \(K = \mathbb{Q} \)).

\[
\begin{align*}
 f_1 &:= (f, g) \rightarrow \text{if } (g = 0) \text{ then } 1/f \text{ else } g1(g, \text{rem}(f, g, x)) \text{ fi; } \\
 g1 &:= (f, g) \rightarrow \text{if } (g = 0) \text{ then } 0 \text{ else } \\
 &\quad f1(g, \text{rem}(f, g, x)) - \text{quo}(f, g, x) \times g1(g, \text{rem}(f, g, x)) \text{ fi; }
\end{align*}
\]

In calculus class one learns about partial fractions. There is an implicit assumption that it’s possible. Let’s prove this in special case.

Corollary 10.5. Let \(f, g \) be nonconstant polynomials with 1 as a gcd. Then there exists polynomials \(p, q \) and \(s \) with \(\deg(p) < f \) and \(\deg(g) < g \) such that

\[
\frac{1}{fg} = s + \frac{p}{f} + \frac{q}{g}
\]

Proof. We have \(ff_1 + gg_1 = 1 \). Therefore

\[
\frac{1}{fg} = \frac{g1}{f} + \frac{f1}{g}
\]

Now apply the division to write \(g1 = q1f + r1 \) and \(f1 = q2g + r2 \) and substitute above. \(\square \)

The analogue of a prime number is an irreducible polynomial. Given a polynomial \(f \), and a nonzero element \(a \in K \), we can always factor \(f \) as \(a^{-1}(af) \). We will call this a trivial factorization.

Definition 10.6. A polynomial \(f \in K[x] \) is irreducible if the only factorizations of it are the trivial ones.

The analogue of the fundamental theorem of arithmetic is the following:

Theorem 10.7. Any nonconstant polynomial \(f \in K[x] \) can be factored into a product of irreducible polynomials. Furthermore if \(f = p1 \ldots pn = q1 \ldots qm \) are two such factorizations, them \(n = m \), and after renumbering there \(q \)'s, \(q_i = a_i p_i \) where \(a_i \in K \).

The concept of irreducibility and factorizations depends very much on the field \(K \). For example \(x^2 + 4 \) is irreducible as a polynomial over \(\mathbb{Q} \) but not over \(\mathbb{Q}(i) \) or \(\mathbb{C} \). The Maple procedures \texttt{irreduc(f)} and \texttt{factor(f)} can be used to test irreducibility and do factorizations in \(\mathbb{Q}[x] \). You can also get it to factor in \(\mathbb{Q}(i)[x] \) by typing \texttt{factor(f, I)}.

One of the most important properties of the field of complex numbers is the fundamental theorem of algebra:

Theorem 10.8. Any nonconstant polynomial in \(\mathbb{C}[x] \) has a root.
Corollary 10.9. Any irreducible nonconstant polynomial over \(\mathbb{C} \) is linear, i.e. it has degree 1. Consequently any nonconstant polynomial can be factored into a product of linear polynomials.

Proof. If \(f \in \mathbb{C}[x] \) is a nonconstant linear polynomial then it has a root \(b \). Therefore \(f = (x - b)g \). Since this must be a trivial factorization \(g \) must be a nonzero constant.

10.10 Exercises

1. Find polynomials \(f_1, g_1 \in \mathbb{Q}[x] \) such that \(ff_1 + gg_1 = 1 \) where \(f = x^3 - 2 \) and \(g = x^2 + x + 1 \). Use this to find the partial fraction decomposition of \(\frac{1}{(x^3-2)(x^2+x+1)} \) over \(\mathbb{Q} \).

2. Prove that \(x^n + 1 \) is not irreducible over \(\mathbb{Q}[x] \) if \(n \) is odd.

3. Using Maple, factor \(x^n + 1 \) in \(\mathbb{Q}[x] \) and \(\mathbb{Q}(i)[x] \) for \(n = 2, 4, 6 \ldots 16 \). Can you make a conjecture for when this is irreducible over \(\mathbb{Q}[x] \)?

4. Prove that any nonconstant irreducible polynomial \(f \in \mathbb{R}[x] \) is either linear or quadratic.

 (a) Recall that the conjugate of a complex number is \(\overline{a + bi} = a - bi \). Prove that \((x - c)(x - \overline{c}) \in \mathbb{R}[x] \) for any complex number \(c \).

 (b) Prove that for \(f \in \mathbb{R}[x] \) and \(c \in \mathbb{C} \), \(\overline{f(c)} = f(\overline{c}) \). In particular, if \(c \) is a complex root of \(f \), then so is \(\overline{c} \).

 (c) Let \(f \in \mathbb{R}[x] \) be a nonconstant irreducible polynomial, factor \(f \) over \(\mathbb{C}[x] \), and then apply the previous results to prove that \(f \) is linear or quadratic.