This small supplement contains some things discussed in class but not in the book. Given a sequence of numbers $a_0, a_1, a_2 \ldots$

its generating function is the power series

$$g(x) = a_0 + a_1 x + a_2 x^2 + \ldots$$

For our purposes, we treat this as just an expression; we won’t about convergence or things like that.

The basic example is the generating function of $1, 1, 1, \ldots$. This is the geometric series

$$f(x) = \frac{1}{1 - x} = 1 + x + x^2 + \ldots = \sum_{n=0}^{\infty} x^n \quad (1)$$

From this, we can various other examples by substituting for x. For example,

$$\frac{1}{1 - 2x^2} = f(2x^2) = 1 + 2x^2 + 4x^4 + \ldots = \sum_{n=0}^{\infty} 2^n x^{2n}$$

We add and multiply term by term. For example, let us evaluate

$$\frac{1}{(1 - x)^2} = (1 + x + x^2 + \ldots)(1 + x + x^2 + \ldots) \quad (2)$$

$$= (1)(1) + (1)(x) + (x)(1) + (1)(x^2) + (x)(x) + (x^2)(1) + \ldots \quad (3)$$

$$= 1 + 2x + 3x^2 + \ldots \quad (4)$$

In other words, to get x^n, we can pick x^i from the first factor and x^j from the second, with $i + j = n$. There are $n + 1$ do this, so the coefficient of x^n should be $n + 1$. In general, we have

$$\frac{1}{(1 - x)^k} = (1 + x + x^2 + \ldots)(1 + x + x^2 + \ldots) \ldots (1 + x + x^2 + \ldots) = \sum_{n=0}^{\infty} a_n x^n \quad (5)$$

where a_n is the number of ways to pick x^{i_1} from the first factor, x^{i_2} from the second and so on, such that

$$i_1 + i_2 + \ldots + i_k = n$$

1
This is a problem that we thought about before when we were doing combinations, and we have a formula for it. But even if we didn’t, we can derive in an entirely different way. Let $f(x)$ be as above. Differentiating, term by term, yields

$$f'(x) = 1 + 2x + 3x^2 + \ldots = \sum_{n=0}^{\infty} (n+1)x^n$$

On the other hand,

$$f'(x) = [(1 - x)^{-1}]' = (1 - x)^{-2}$$

This already reproves (4). Now do this again

$$f''(x) = (2)(1) + (3)(2)x + (4)(3)x^2 + \ldots = \sum_{n=0}^{\infty} (n + 2)(n + 1)x^n$$

$$f''(x) = 2(1 - x)^{-3}$$

Thus

$$\frac{1}{(1 - x)^3} = \sum_{n=0}^{\infty} \frac{(n + 2)(n + 1)}{2} x^n$$

Note that the coefficient is just \(\binom{n+2}{2} \). Doing this repeatedly gives

$$f^{(k)}(x) = \sum_{n=0}^{\infty} (n + k - 1)(n + k - 2)\ldots(n + 1)x^n$$

$$f^{(k)}(x) = (k - 1)!(1 - x)^{-k}$$

Thus

$$\frac{1}{(1 - x)^k} = \sum_{n=0}^{\infty} \binom{n + k - 1}{k - 1} x^n$$

This can be used in situations, where we don’t know the formula already (perhaps because there isn’t one). We define a partition of an positive integer n as a sum $n = n_1 + n_2 + \ldots + n_k$. We want to consider two partitions the same if the differ by order e.g. $2 + 3 + 1 + 1 = 1 + 2 + 3 + 1$. One way break this ambiguity is to always write the numbers in (nonstrictly) decreasing order: $3 + 2 + 1 + 1$. We can visualize a partition by arranging numbers in a so called Young diagram. We stack n_1 boxes on top of n_2 boxes on top of n_3...

$p(n)$ is the number of partitions of n. For example,

$$4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1$$

so $p(4) = 5$. The Young diagrams look like:
Given a Young diagram

\[
\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array}
\]

the width \(w \) will be the maximum number of across. Let \(i_1 \) be the number of rows of consisting of 1 box across, \(i_2 \) be the number of rows of consisting of 2 boxes across and so on upto \(i_w \). It should be clear that the diagram can be reconstructed using these measurements alone. Also the total number of boxes is given by

\[
i_1 + 2i_2 + 3i_3 + \ldots wi_w = n
\tag{6}
\]

Conversely, given a (nonnegative integer) solution to this equation, we can construct a unique diagram with these measurements. Therefore the number \(p(n, w) \) of Young diagrams with \(n \) boxes and width at most \(w \) is the number of solutions to (6). Since the widest diagram with \(n \) boxes is \(n \), we have \(p(n) = p(n, n) \).

Now consider the series

\[
\frac{1}{(1-x)(1-x^2)\ldots(1-x^w)} = (1 + x + x^2 + \ldots)(1 + x^2 + x^4 + \ldots)\ldots
\tag{7}
\]

After multiplying this out, we find that the coefficient of \(x^n \) is the number of solutions to (6) which just \(p(n, w) \). Therefore

Theorem 1. The series (7) is the generating function \(\sum_n p(n, w)x^n \).

Corollary 2. The generating function of \(p(n) \) is the infinite product

\[
\frac{1}{(1-x)(1-x^2)\ldots}
\]

Using Maple (as we did in class), it easy to multiply this out to any reasonable degree:

\[
\frac{1}{(1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)(1-x^6)(1-x^7)(1-x^8)(1-x^9)(1-x^{10})}
\]
Thus \(p(10) = p(10, 10) = 42 \).

This technique can be used to solve many other counting problems. For example, let \(c_n \) be the number of ways that \(n \) cents can broken up as nickels, dimes and quarters. 15 cents is three nickels, or one dime and nickel, so \(c_{15} = 2 \). If \(i_1 \) is the number of nickels, \(i_2 \) the number of dimes, and \(i_3 \) the number of quarters, then

\[
5i_1 + 10i_2 + 25i_3 = n
\]

This is the number of ways for to get \(x^n \) in the expansion of

\[
(1 + x^5 + x^{10} + x^{15} + \ldots)(1 + x^{10} + x^{100} + \ldots)(1 + x^{25} + \ldots)
\]

Therefore

\[
\sum c_n x^n = \frac{1}{(1 - x^5)(1 - x^{10})(1 - x^{25})}
\]