Contents

Part 1. A Quick Tour 1

Chapter 1. Plane Curves 3
  1.1. Conics 3
  1.2. Singularities 4
  1.3. Bezout’s theorem 6
  1.4. Cubics 7
  1.5. Quartics 9
  1.6. Hyperelliptic curves 11

Part 2. Sheaves and Geometry 15

Chapter 2. Manifolds and Varieties via Sheaves 17
  2.1. Sheaves of functions 17
  2.2. Manifolds 19
  2.3. Algebraic varieties 22
  2.4. Stalks and tangent spaces 26
  2.5. Singular points 29
  2.6. Vector fields and bundles 30
  2.7. Compact complex manifolds and varieties 33

Chapter 3. Basic Sheaf Theory 37
  3.1. The Category of Sheaves 37
  3.2. Exact Sequences 39
  3.3. Direct and Inverse images 42
  3.4. The notion of a scheme 43
  3.5. Gluing schemes 46
  3.6. Sheaves of Modules 49
  3.7. Differentials 53

Chapter 4. Sheaf Cohomology 55
  4.1. Flasque Sheaves 55
  4.2. Cohomology 57
  4.3. Soft sheaves 60
  4.4. $C^\infty$-modules are soft 62
  4.5. Mayer-Vietoris sequence 63

Chapter 5. De Rham cohomology of Manifolds 67
  5.1. Acyclic Resolutions 67
  5.2. De Rham’s theorem 69
  5.3. Poincaré duality 71
5.4. Gysin maps 74
5.5. Fundamental class 76
5.6. Lefschetz trace formula 78

Chapter 6. Riemann Surfaces 81
6.1. Topological Classification 81
6.2. Examples 83
6.3. The $\bar{\partial}$-Poincaré lemma 86
6.4. $\bar{\partial}$-cohomology 87
6.5. Automorphisms 89
6.6. Projective embeddings 90
6.7. Automorphic forms 93

Chapter 7. Simplicial Methods 97
7.1. Simplicial and Singular Cohomology 97
7.2. $H^*(\mathbb{P}^n, \mathbb{Z})$ 101
7.3. Čech cohomology 102
7.4. Čech versus sheaf cohomology 105
7.5. First Chern class 106

Part 3. Hodge Theory 111

Chapter 8. The Hodge theorem for Riemannian manifolds 113
8.1. Hodge theory on a simplicial complex 113
8.2. Harmonic forms 114
8.3. The Heat Equation 117

Chapter 9. Toward Hodge theory for Complex Manifolds 121
9.1. Riemann Surfaces Revisited 121
9.2. Dolbeault’s theorem 122
9.3. Complex Tori 124

Chapter 10. Kähler manifolds 127
10.1. Kähler metrics 127
10.2. The Hodge decomposition 129
10.3. Picard groups 131

Chapter 11. Homological methods in Hodge theory 133
11.1. Pure Hodge structures 133
11.2. Canonical Hodge Decomposition 134
11.3. Hodge decomposition for Moishezon manifolds 138
11.4. Hypercohomology 139
11.5. Holomorphic de Rham complex 141
11.6. The Deligne-Hodge decomposition 142

Chapter 12. A little algebraic surface theory 145
12.1. Examples 145
12.2. The Neron-Severi group 148
12.3. The Hodge index theorem 150
12.4. Fibred surfaces 151
## CONTENTS

Chapter 13. Topology of families

13.1. Fibre bundles 153
13.2. Monodromy of families of elliptic curves 153
13.3. Local systems 157
13.4. Higher direct images 158
13.5. Estimate of first Betti number 160

Chapter 14. The Hard Lefschetz Theorem

14.1. Hard Lefschetz and its consequences 163
14.2. More identities 164
14.3. Lefschetz pencils* 166
14.4. Barth’s theorem* 170
14.5. Degeneration of Leray* 171
14.6. Higher Chern classes 172

### Part 4. Coherent Cohomology

Chapter 15. Coherent sheaves on Projective Space

15.1. Cohomology of line bundles on $\mathbb{P}^n$ 177
15.2. Coherence 179
15.3. Coherent Sheaves on $\mathbb{P}^n$ 181
15.4. Cohomology of coherent sheaves 184
15.5. GAGA 186

Chapter 16. Computation of some Hodge numbers

16.1. Hodge numbers of $\mathbb{P}^n$ 191
16.2. Hodge numbers of a hypersurface 193
16.3. Hodge numbers of a hypersurface II 195
16.4. Double covers 197
16.5. Griffiths Residues 198

Chapter 17. Deformation invariance of Hodge numbers

17.1. Families of varieties via schemes 201
17.2. Semicontinuity of coherent cohomology 203
17.3. Proof of the semicontinuity theorem 205
17.4. Deformation invariance of Hodge numbers 207

### Part 5. A Glimpse Beyond

Chapter 18. Analogies and Conjectures

18.1. Counting points and Euler characteristics 211
18.2. The Weil conjectures 212
18.3. A transcendental analogue of Weil’s conjecture 215
18.4. Conjectures of Grothendieck and Hodge 216
18.5. Problem of Computability 219

Bibliography 221

Index 225